|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
|
Definition of CuTe Layouts and functions to manipulate them |
|
|
""" |
|
|
|
|
|
from itertools import chain |
|
|
from typing import Union |
|
|
|
|
|
from .int_tuple import * |
|
|
|
|
|
|
|
|
class LayoutBase: |
|
|
pass |
|
|
|
|
|
|
|
|
def is_layout(x): |
|
|
return isinstance(x, LayoutBase) |
|
|
|
|
|
|
|
|
class Layout(LayoutBase): |
|
|
def __init__(self, _shape, _stride=None): |
|
|
self.shape = _shape |
|
|
if _stride is None: |
|
|
self.stride = prefix_product(self.shape) |
|
|
else: |
|
|
self.stride = _stride |
|
|
|
|
|
|
|
|
def __eq__(self, other): |
|
|
return self.shape == other.shape and self.stride == other.stride |
|
|
|
|
|
|
|
|
def __len__(self): |
|
|
if is_tuple(self.shape): |
|
|
return len(self.shape) |
|
|
else: |
|
|
return 1 |
|
|
|
|
|
|
|
|
def __call__(self, *args): |
|
|
""" |
|
|
Map a logical coordinate to a linear index (Coord has no Underscore slice operators) |
|
|
OR |
|
|
Slice the layout and return the sublayout (Coord has an Underscore slice op) |
|
|
|
|
|
Follow the same behavior of `Layout::operator(Coord const&)` in cute C++ |
|
|
""" |
|
|
if has_none(args): |
|
|
if len(args) == 1: |
|
|
return Layout(slice_(args[0], self.shape), slice_(args[0], self.stride)) |
|
|
else: |
|
|
return Layout(slice_(args, self.shape), slice_(args, self.stride)) |
|
|
else: |
|
|
if len(args) == 1: |
|
|
return crd2idx(args[0], self.shape, self.stride) |
|
|
else: |
|
|
return crd2idx(args, self.shape, self.stride) |
|
|
|
|
|
|
|
|
def __getitem__(self, i): |
|
|
if is_tuple(self.shape): |
|
|
return Layout(self.shape[i], self.stride[i]) |
|
|
else: |
|
|
assert i == 0 |
|
|
return Layout(self.shape, self.stride) |
|
|
|
|
|
|
|
|
def size(self): |
|
|
return product(self.shape) |
|
|
|
|
|
|
|
|
def cosize(self): |
|
|
return self(self.size() - 1) + 1 |
|
|
|
|
|
|
|
|
def __str__(self): |
|
|
return f"{self.shape}:{self.stride}" |
|
|
|
|
|
|
|
|
def __repr__(self): |
|
|
return f"Layout({self.shape},{self.stride})" |
|
|
|
|
|
|
|
|
|
|
|
def make_layout(*layouts): |
|
|
if len(layouts) == 1 and not is_layout(layouts[0]): |
|
|
layouts = layouts[0] |
|
|
|
|
|
shape, stride = zip(*((a.shape,a.stride) for a in layouts)) |
|
|
return Layout(shape, stride) |
|
|
|
|
|
|
|
|
|
|
|
def size(layout): |
|
|
if is_layout(layout): |
|
|
return layout.size() |
|
|
return product(layout) |
|
|
|
|
|
|
|
|
|
|
|
def cosize(layout): |
|
|
return layout.cosize() |
|
|
|
|
|
|
|
|
|
|
|
def coalesce(layout, profile=None): |
|
|
if is_tuple(profile): |
|
|
assert len(layout) >= len(profile) |
|
|
return make_layout(chain((coalesce(layout[i], profile[i]) for i in range( 0,len(profile))), |
|
|
(layout[i] for i in range(len(profile),len(layout))))) |
|
|
|
|
|
result_shape = [1] |
|
|
result_stride = [0] |
|
|
for (shape,stride) in zip(flatten(layout.shape),flatten(layout.stride)): |
|
|
|
|
|
if shape == 1: |
|
|
continue |
|
|
|
|
|
elif result_shape[-1] == 1: |
|
|
result_shape[-1] = shape |
|
|
result_stride[-1] = stride |
|
|
|
|
|
elif result_shape[-1] * result_stride[-1] == stride: |
|
|
result_shape[-1] = result_shape[-1] * shape |
|
|
|
|
|
else: |
|
|
result_shape.append(shape) |
|
|
result_stride.append(stride) |
|
|
|
|
|
if len(result_shape) == 1: |
|
|
return Layout(result_shape[0], result_stride[0]) |
|
|
else: |
|
|
return Layout(tuple(result_shape), tuple(result_stride)) |
|
|
|
|
|
|
|
|
|
|
|
def filter(layout, profile=None): |
|
|
if is_tuple(profile): |
|
|
assert len(layout) >= len(profile) |
|
|
return make_layout(chain((filter(layout[i], profile[i]) for i in range( 0,len(profile))), |
|
|
(layout[i] for i in range(len(profile),len(layout))))) |
|
|
|
|
|
result_shape = [] |
|
|
result_stride = [] |
|
|
for (shape,stride) in zip(flatten(layout.shape),flatten(layout.stride)): |
|
|
|
|
|
if not (shape == 1 or stride == 0): |
|
|
result_shape.append(shape) |
|
|
result_stride.append(stride) |
|
|
|
|
|
if len(result_shape) == 0: |
|
|
return Layout(1,0) |
|
|
else: |
|
|
return coalesce(Layout(tuple(result_shape), tuple(result_stride))) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def composition(layoutA, layoutB): |
|
|
if layoutB is None: |
|
|
return layoutA |
|
|
elif is_int(layoutB): |
|
|
return composition(layoutA, Layout(layoutB)) |
|
|
elif is_tuple(layoutB): |
|
|
assert len(layoutA) >= len(layoutB) |
|
|
return make_layout(chain((composition(layoutA[i], layoutB[i]) for i in range( 0,len(layoutB))), |
|
|
(layoutA[i] for i in range(len(layoutB),len(layoutA))))) |
|
|
elif is_tuple(layoutB.shape): |
|
|
return make_layout(composition(layoutA, layoutB_i) for layoutB_i in layoutB) |
|
|
|
|
|
if layoutB.stride == 0: |
|
|
return Layout(layoutB.shape, 0) |
|
|
else: |
|
|
result_shape = [] |
|
|
result_stride = [] |
|
|
rest_shape = layoutB.shape |
|
|
rest_stride = layoutB.stride |
|
|
flat_A = coalesce(layoutA) |
|
|
for (curr_shape, curr_stride) in zip(flatten(flat_A.shape)[:-1], flatten(flat_A.stride)[:-1]): |
|
|
assert curr_shape % rest_stride == 0 or rest_stride % curr_shape == 0 |
|
|
new_shape = min(max(1, curr_shape // rest_stride), rest_shape) |
|
|
|
|
|
if new_shape != 1: |
|
|
result_shape.append(new_shape) |
|
|
result_stride.append(rest_stride * curr_stride) |
|
|
|
|
|
rest_shape = rest_shape // new_shape |
|
|
rest_stride = -(-rest_stride // curr_shape) |
|
|
|
|
|
if rest_shape != 1 or len(result_shape) == 0: |
|
|
result_shape.append(rest_shape) |
|
|
result_stride.append(rest_stride * flatten(flat_A.stride)[-1]) |
|
|
|
|
|
if len(result_shape) == 1: |
|
|
return Layout(result_shape[0], result_stride[0]) |
|
|
else: |
|
|
return Layout(tuple(result_shape), tuple(result_stride)) |
|
|
|
|
|
|
|
|
|
|
|
def complement(layout, max_idx=1): |
|
|
if is_int(layout): |
|
|
return complement(Layout(layout)) |
|
|
|
|
|
result_shape = [] |
|
|
result_stride = [] |
|
|
current_idx = 1 |
|
|
|
|
|
sorted_DS = sorted(zip(flatten(layout.stride), flatten(layout.shape))) |
|
|
for (stride, shape) in sorted_DS: |
|
|
if stride == 0 or shape == 1: |
|
|
continue |
|
|
|
|
|
in_bound = current_idx <= shape * stride |
|
|
|
|
|
assert (type(in_bound) is not bool) or in_bound |
|
|
|
|
|
result_shape.append(stride // current_idx) |
|
|
result_stride.append(current_idx) |
|
|
current_idx = shape * stride |
|
|
|
|
|
result_shape.append((max_idx + current_idx - 1) // current_idx) |
|
|
result_stride.append(current_idx) |
|
|
|
|
|
return coalesce(Layout(tuple(result_shape), tuple(result_stride))) |
|
|
|
|
|
|
|
|
|
|
|
def right_inverse(layout): |
|
|
if layout is None: |
|
|
return None |
|
|
elif is_int(layout): |
|
|
return Layout(layout) |
|
|
|
|
|
result_shape = [] |
|
|
result_stride = [] |
|
|
current_idx = 1 |
|
|
|
|
|
flat_shape = flatten(layout.shape) |
|
|
flat_stride = flatten(layout.stride) |
|
|
sorted_DSA = sorted(zip(flat_stride, flat_shape, prefix_product(flat_shape))) |
|
|
for (stride,shape,rstride) in sorted_DSA: |
|
|
if shape == 1: |
|
|
continue |
|
|
if current_idx != stride: |
|
|
break |
|
|
|
|
|
result_shape.append(shape) |
|
|
result_stride.append(rstride) |
|
|
current_idx = shape * stride |
|
|
|
|
|
return coalesce(Layout(tuple(result_shape), tuple(result_stride))) |
|
|
|
|
|
|
|
|
|
|
|
def left_inverse(layout): |
|
|
if layout is None: |
|
|
return None |
|
|
elif is_int(layout): |
|
|
return Layout(layout) |
|
|
return right_inverse(make_layout(layout, complement(layout))) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def logical_divide(layoutA, layoutB): |
|
|
if layoutB is None: |
|
|
return layoutA |
|
|
elif is_int(layoutB): |
|
|
return logical_divide(layoutA, Layout(layoutB)) |
|
|
elif is_tuple(layoutB): |
|
|
assert len(layoutA) >= len(layoutB) |
|
|
return make_layout(chain((logical_divide(layoutA[i], layoutB[i]) for i in range( 0,len(layoutB))), |
|
|
(layoutA[i] for i in range(len(layoutB),len(layoutA))))) |
|
|
|
|
|
return composition(layoutA, make_layout(layoutB, complement(layoutB, size(layoutA)))) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def logical_product(layoutA, layoutB): |
|
|
if layoutB is None: |
|
|
return layoutA |
|
|
elif is_int(layoutB): |
|
|
return logical_divide(layoutA, Layout(layoutB)) |
|
|
elif is_tuple(layoutB): |
|
|
assert len(layoutA) >= len(layoutB) |
|
|
return make_layout(chain((logical_product(layoutA[i], layoutB[i]) for i in range( 0,len(layoutB))), |
|
|
(layoutA[i] for i in range(len(layoutB),len(layoutA))))) |
|
|
|
|
|
return make_layout(layoutA, composition(complement(layoutA, size(layoutA)*cosize(layoutB)), layoutB)); |
|
|
|
|
|
|
|
|
|
|
|
def hier_unzip(splitter, layoutA, layoutB): |
|
|
if layoutB is None: |
|
|
return make_layout(Layout(1,0), layoutA) |
|
|
elif is_tuple(layoutB): |
|
|
assert len(layoutA) >= len(layoutB) |
|
|
|
|
|
split = make_layout(hier_unzip(splitter, layoutA[i], layoutB[i]) for i in range(0,len(layoutB))) |
|
|
|
|
|
return make_layout(make_layout( split[i][0] for i in range( 0,len(layoutB))), |
|
|
make_layout(chain((split[i][1] for i in range( 0,len(layoutB))), |
|
|
(layoutA[i] for i in range(len(layoutB),len(layoutA)))))) |
|
|
|
|
|
|
|
|
return splitter(layoutA, layoutB) |
|
|
|
|
|
|
|
|
|
|
|
def zipped_divide(layoutA, layoutB): |
|
|
return hier_unzip(logical_divide, layoutA, layoutB) |
|
|
|
|
|
|
|
|
|
|
|
def tiled_divide(layoutA, layoutB): |
|
|
result = zipped_divide(layoutA, layoutB) |
|
|
return make_layout([result[0]] + [result[1][i] for i in range(len(result[1]))]) |
|
|
|
|
|
|
|
|
|
|
|
def zipped_product(layoutA, layoutB): |
|
|
return hier_unzip(logical_product, layoutA, layoutB) |
|
|
|
|
|
|
|
|
|
|
|
def tiled_product(layoutA, layoutB): |
|
|
result = zipped_product(layoutA, layoutB) |
|
|
return make_layout([result[0]] + [result[1][i] for i in range(len(result[1]))]) |
|
|
|
|
|
|
|
|
def slice_and_offset(crd: tuple, |
|
|
layout: Layout): |
|
|
return (Layout(slice_(crd, layout.shape), slice_(crd, layout.stride)), |
|
|
crd2idx(crd, layout.shape, layout.stride)) |
|
|
|