simplecloud's picture
Upload folder using huggingface_hub
fca4fc0 verified
// SPDX-License-Identifier: MIT
// Copyright (c) 2024-2025, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/host/headers.hpp"
#include <rtc/compile_kernel.hpp>
#include <rtc/hip.hpp>
#include <test.hpp>
#include <algorithm>
#include <cmath>
#include <iterator>
#include <numeric>
#include <random>
#include <unordered_set>
inline std::vector<rtc::src_file> create_headers_for_test()
{
auto ck_headers = ck::host::GetHeaders();
std::vector<rtc::src_file> result;
std::transform(ck_headers.begin(), ck_headers.end(), std::back_inserter(result), [](auto& p) {
std::string content;
content.reserve(p.second.size() + 1);
content.push_back(' '); // We need a whitespace before the content for hipRTC to work
content.append(p.second.data(), p.second.size());
return rtc::src_file{p.first, std::move(content)};
});
return result;
}
inline const std::vector<rtc::src_file>& get_headers_for_test()
{
static const std::vector<rtc::src_file> headers = create_headers_for_test();
return headers;
}
template <typename V>
std::size_t GetSize(V mLens, V mStrides)
{
std::size_t space = 1;
for(std::size_t i = 0; i < mLens.Size(); ++i)
{
if(mLens[i] == 0)
continue;
space += (mLens[i] - 1) * mStrides[i];
}
return space;
}
template <class T>
rtc::buffer<T> generate_buffer(std::size_t n, std::size_t seed = 0)
{
rtc::buffer<T> result(n);
std::mt19937 gen(seed);
std::uniform_real_distribution<double> dis(-1.0);
std::generate(result.begin(), result.end(), [&] { return dis(gen); });
return result;
}
template <class T, typename V>
std::enable_if_t<!std::is_integral_v<V>, rtc::buffer<T>>
generate_buffer(V mLens, V mStrides, std::size_t seed = 0)
{
std::size_t space = GetSize(mLens, mStrides);
return generate_buffer<T>(space, seed);
}
template <class T, class U>
bool allclose(const T& a, const U& b, double atol = 0.01, double rtol = 0.01)
{
return std::equal(a.begin(), a.end(), b.begin(), b.end(), [&](double x, double y) {
return fabs(x - y) < atol + rtol * fabs(y);
});
}
inline std::string classify(double x)
{
switch(std::fpclassify(x))
{
case FP_INFINITE: return "inf";
case FP_NAN: return "nan";
case FP_NORMAL: return "normal";
case FP_SUBNORMAL: return "subnormal";
case FP_ZERO: return "zero";
default: return "unknown";
}
}
template <class Buffer>
void print_classification(const Buffer& x)
{
std::unordered_set<std::string> result;
for(const auto& i : x)
result.insert(classify(i));
for(const auto& c : result)
std::cout << c << ", ";
std::cout << std::endl;
}
template <class Buffer>
void print_statistics(const Buffer& x)
{
std::cout << "Min value: " << *std::min_element(x.begin(), x.end()) << ", ";
std::cout << "Max value: " << *std::max_element(x.begin(), x.end()) << ", ";
double num_elements = x.size();
auto mean =
std::accumulate(x.begin(), x.end(), double{0.0}, std::plus<double>{}) / num_elements;
auto stddev = std::sqrt(
std::accumulate(x.begin(),
x.end(),
double{0.0},
[&](double r, double v) { return r + std::pow((v - mean), 2.0); }) /
num_elements);
std::cout << "Mean: " << mean << ", ";
std::cout << "StdDev: " << stddev << "\n";
}
template <class Buffer>
void print_preview(const Buffer& x)
{
if(x.size() <= 10)
{
std::for_each(x.begin(), x.end(), [&](double i) { std::cout << i << ", "; });
}
else
{
std::for_each(x.begin(), x.begin() + 5, [&](double i) { std::cout << i << ", "; });
std::cout << "..., ";
std::for_each(x.end() - 5, x.end(), [&](double i) { std::cout << i << ", "; });
}
std::cout << std::endl;
}
template <class T>
struct check_all
{
rtc::buffer<T> data{};
bool operator()(const rtc::buffer<T>& x)
{
if(data.empty())
{
data = x;
return true;
}
return allclose(data, x);
}
};
template <class Solution>
auto report(const Solution& solution, bool pass)
{
return test::make_predicate(solution.ToTemplateString(), [=] { return pass; });
}