sijpapi commited on
Commit
786d208
1 Parent(s): 33340b2

Create funsds.py

Browse files
Files changed (1) hide show
  1. funsds.py +110 -0
funsds.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ import json
3
+ import os
4
+ import datasets
5
+ from PIL import Image
6
+ import numpy as np
7
+ logger = datasets.logging.get_logger(__name__)
8
+ _CITATION = """\\n@article{Jaume2019FUNSDAD,
9
+ title={FUNSD: A Dataset for Form Understanding in Noisy Scanned Documents},
10
+ author={Guillaume Jaume and H. K. Ekenel and J. Thiran},
11
+ journal={2019 International Conference on Document Analysis and Recognition Workshops (ICDARW)},
12
+ year={2019},
13
+ volume={2},
14
+ pages={1-6}
15
+ }
16
+ """
17
+ _DESCRIPTION = """\\nhttps://guillaumejaume.github.io/FUNSD/
18
+ """
19
+ def load_image(image_path):
20
+ image = Image.open(image_path).convert("RGB")
21
+ w, h = image.size
22
+ # resize image to 224x224
23
+ image = image.resize((224, 224))
24
+ image = np.asarray(image)
25
+ image = image[:, :, ::-1] # flip color channels from RGB to BGR
26
+ image = image.transpose(2, 0, 1) # move channels to first dimension
27
+ return image, (w, h)
28
+ def normalize_bbox(bbox, size):
29
+ return [
30
+ int(1000 * bbox[0] / size[0]),
31
+ int(1000 * bbox[1] / size[1]),
32
+ int(1000 * bbox[2] / size[0]),
33
+ int(1000 * bbox[3] / size[1]),
34
+ ]
35
+ class FunsdConfig(datasets.BuilderConfig):
36
+ """BuilderConfig for FUNSD"""
37
+ def __init__(self, **kwargs):
38
+ """BuilderConfig for FUNSD.
39
+ Args:
40
+ **kwargs: keyword arguments forwarded to super.
41
+ """
42
+ super(FunsdConfig, self).__init__(**kwargs)
43
+ class Funsd(datasets.GeneratorBasedBuilder):
44
+ """FUNSD dataset."""
45
+ BUILDER_CONFIGS = [
46
+ FunsdConfig(name="funsd", version=datasets.Version("1.0.0"), description="FUNSD dataset"),
47
+ ]
48
+ def _info(self):
49
+ return datasets.DatasetInfo(
50
+ description=_DESCRIPTION,
51
+ features=datasets.Features(
52
+ {
53
+ "id": datasets.Value("string"),
54
+ "tokens": datasets.Sequence(datasets.Value("string")),
55
+ "bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
56
+ "ner_tags": datasets.Sequence(
57
+ datasets.features.ClassLabel(
58
+ names=["O", "B-HEADER", "I-HEADER", "B-QUESTION", "I-QUESTION", "B-ANSWER", "I-ANSWER"]
59
+ )
60
+ ),
61
+ "image": datasets.Array3D(shape=(3, 224, 224), dtype="uint8"),
62
+ }
63
+ ),
64
+ supervised_keys=None,
65
+ homepage="https://guillaumejaume.github.io/FUNSD/",
66
+ citation=_CITATION,
67
+ )
68
+ def _split_generators(self, dl_manager):
69
+ """Returns SplitGenerators."""
70
+ return [
71
+ datasets.SplitGenerator(
72
+ name=datasets.Split.TRAIN, gen_kwargs={"filepath": "training_data/"}
73
+ ),
74
+ datasets.SplitGenerator(
75
+ name=datasets.Split.TEST, gen_kwargs={"filepath": "testing_data/"}
76
+ ),
77
+ ]
78
+ def _generate_examples(self, filepath):
79
+ logger.info("⏳ Generating examples from = %s", filepath)
80
+ ann_dir = os.path.join(filepath, "annotations")
81
+ img_dir = os.path.join(filepath, "images")
82
+ for guid, file in enumerate(sorted(os.listdir(ann_dir))):
83
+ tokens = []
84
+ bboxes = []
85
+ ner_tags = []
86
+ file_path = os.path.join(ann_dir, file)
87
+ with open(file_path, "r", encoding="utf8") as f:
88
+ data = json.load(f)
89
+ image_path = os.path.join(img_dir, file)
90
+ image_path = image_path.replace("json", "png")
91
+ image, size = load_image(image_path)
92
+ for item in data["form"]:
93
+ words, label = item["words"], item["label"]
94
+ words = [w for w in words if w["text"].strip() != ""]
95
+ if len(words) == 0:
96
+ continue
97
+ if label == "other":
98
+ for w in words:
99
+ tokens.append(w["text"])
100
+ ner_tags.append("O")
101
+ bboxes.append(normalize_bbox(w["box"], size))
102
+ else:
103
+ tokens.append(words[0]["text"])
104
+ ner_tags.append("B-" + label.upper())
105
+ bboxes.append(normalize_bbox(words[0]["box"], size))
106
+ for w in words[1:]:
107
+ tokens.append(w["text"])
108
+ ner_tags.append("I-" + label.upper())
109
+ bboxes.append(normalize_bbox(w["box"], size))
110
+ yield guid, {"id": str(guid), "tokens": tokens, "bboxes": bboxes, "ner_tags": ner_tags, "image": image}