siegelz commited on
Commit
cae36b0
1 Parent(s): 9073d8f

Upload 2 files

Browse files
Files changed (2) hide show
  1. core_test.json.gpg +0 -0
  2. core_train.json +1028 -0
core_test.json.gpg ADDED
Binary file (8.62 kB). View file
 
core_train.json ADDED
@@ -0,0 +1,1028 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "field": "Computer Science",
4
+ "language": "Python",
5
+ "capsule_title": "K-Core based Temporal Graph Convolutional Network for Dynamic Graphs",
6
+ "capsule_id": "capsule-7038571",
7
+ "task_prompt": "Run the main.py file three times. First, with config/uci.json, the preprocessing task, and the CTGCN-C method. Second, with config/uci.json, the embedding task, and the CTGCN-C method. Third, using python3 with config/uci.json and the link-pred task.",
8
+ "results": [
9
+ {
10
+ "Report the average AUC score of Had using the CTGCN-C method on the UCI dataset.": 0.9375660604380387
11
+ },
12
+ {
13
+ "Report the average AUC score of Had using the CTGCN-C method on the UCI dataset.": 0.9372440957792072
14
+ },
15
+ {
16
+ "Report the average AUC score of Had using the CTGCN-C method on the UCI dataset.": 0.931951440752941
17
+ }
18
+ ],
19
+ "capsule_doi": "https://doi.org/10.24433/CO.9707317.v1"
20
+ },
21
+ {
22
+ "field": "Social Sciences",
23
+ "language": "R",
24
+ "capsule_title": "Analytic reproducibility in articles receiving open data badges at the journal Psychological Science: An observational study",
25
+ "capsule_id": "capsule-3137115",
26
+ "task_prompt": "Run the manuscript.Rmd file using Rscript and render it as html. Put the results in the \"../results\" folder. ",
27
+ "results": [
28
+ {
29
+ "Report the final outcomes of reproducibility checks at the article level after original authors were contacted (Table 1 of the manuscript). You should report n for row 1 in the table (ignore the confidence interval).": 6,
30
+ "Report the final outcomes of reproducibility checks at the article level after original authors were contacted (Table 1 of the manuscript). You should report n for row 2 in the table (ignore the confidence interval).": 9,
31
+ "Report the final outcomes of reproducibility checks at the article level after original authors were contacted (Table 1 of the manuscript). You should report n for row 3 in the table (ignore the confidence interval).": 7,
32
+ "fig From Figure 1, report the proportion of articles with fully reproducible target values from the random effects model after author contact. Ignore the confidence intervals": 0.62
33
+ },
34
+ {
35
+ "Report the final outcomes of reproducibility checks at the article level after original authors were contacted (Table 1 of the manuscript). You should report n for row 1 in the table (ignore the confidence interval).": 6,
36
+ "Report the final outcomes of reproducibility checks at the article level after original authors were contacted (Table 1 of the manuscript). You should report n for row 2 in the table (ignore the confidence interval).": 9,
37
+ "Report the final outcomes of reproducibility checks at the article level after original authors were contacted (Table 1 of the manuscript). You should report n for row 3 in the table (ignore the confidence interval).": 7,
38
+ "fig From Figure 1, report the proportion of articles with fully reproducible target values from the random effects model after author contact. Ignore the confidence intervals": 0.62
39
+ },
40
+ {
41
+ "Report the final outcomes of reproducibility checks at the article level after original authors were contacted (Table 1 of the manuscript). You should report n for row 1 in the table (ignore the confidence interval).": 6,
42
+ "Report the final outcomes of reproducibility checks at the article level after original authors were contacted (Table 1 of the manuscript). You should report n for row 2 in the table (ignore the confidence interval).": 9,
43
+ "Report the final outcomes of reproducibility checks at the article level after original authors were contacted (Table 1 of the manuscript). You should report n for row 3 in the table (ignore the confidence interval).": 7,
44
+ "fig From Figure 1, report the proportion of articles with fully reproducible target values from the random effects model after author contact. Ignore the confidence intervals": 0.62
45
+ }
46
+ ],
47
+ "capsule_doi": "https://doi.org/10.24433/CO.1796004.v3"
48
+ },
49
+ {
50
+ "field": "Computer Science",
51
+ "language": "Python",
52
+ "capsule_title": "HyperETA: A Non\u2013Deep Learning Method for Estimated Time of Arrival",
53
+ "capsule_id": "capsule-5367566",
54
+ "task_prompt": "Run run.ipynb and convert the results to html.",
55
+ "results": [
56
+ {
57
+ "Report the HyperETA MAPE with no DTW.": 17.374344500709498,
58
+ "Report the HyperETA RMSE with no DTW.": 459.7782074000463,
59
+ "Report the HyperETA MAE with no DTW.": 323.0
60
+ },
61
+ {
62
+ "Report the HyperETA MAPE with no DTW.": 17.374344500709498,
63
+ "Report the HyperETA RMSE with no DTW.": 459.7782074000463,
64
+ "Report the HyperETA MAE with no DTW.": 323.0
65
+ },
66
+ {
67
+ "Report the HyperETA MAPE with no DTW.": 17.374344500709498,
68
+ "Report the HyperETA RMSE with no DTW.": 459.7782074000463,
69
+ "Report the HyperETA MAE with no DTW.": 323.0
70
+ }
71
+ ],
72
+ "capsule_doi": "https://doi.org/10.24433/CO.3533137.v1"
73
+ },
74
+ {
75
+ "field": "Medical Sciences",
76
+ "language": "R",
77
+ "capsule_title": "Research Ethics Committees as an intervention point to promote a priori sample size calculations",
78
+ "capsule_id": "capsule-9168639",
79
+ "task_prompt": "Run the analysis.Rmd file using Rscript and output the results in the 'results' directory.",
80
+ "results": [
81
+ {
82
+ "fig Report Institutions Sampled for US in Table 1.": 19,
83
+ "fig Report Institutions Sampled for UK in Table 1.": 14
84
+ },
85
+ {
86
+ "fig Report Institutions Sampled for US in Table 1.": 19,
87
+ "fig Report Institutions Sampled for UK in Table 1.": 14
88
+ },
89
+ {
90
+ "fig Report Institutions Sampled for US in Table 1.": 19,
91
+ "fig Report Institutions Sampled for UK in Table 1.": 14
92
+ }
93
+ ],
94
+ "capsule_doi": "https://doi.org/10.24433/CO.0124369.v1"
95
+ },
96
+ {
97
+ "field": "Computer Science",
98
+ "language": "Python",
99
+ "capsule_title": "Synthetic Electrocardiogram Attack Method",
100
+ "capsule_id": "capsule-9166182",
101
+ "task_prompt": "Run 'Synthetic Electrocardiogram Attack Method.ipynb' and convert the results file to 'html'",
102
+ "results": [
103
+ {
104
+ "For experiment 1, report the adversary errors without SEAM.": 58,
105
+ "For experiment 1, report the adversary errors with SEAM.": 17,
106
+ "For experiment 2, report the adversary errors without SEAM.": 27,
107
+ "For experiment 2, report the adversary errors with SEAM.": 21,
108
+ "For experiment 3, report the adversary errors without SEAM.": 47,
109
+ "For experiment 3, report the adversary errors with SEAM.": 19
110
+ },
111
+ {
112
+ "For experiment 1, report the adversary errors without SEAM.": 58,
113
+ "For experiment 1, report the adversary errors with SEAM.": 17,
114
+ "For experiment 2, report the adversary errors without SEAM.": 27,
115
+ "For experiment 2, report the adversary errors with SEAM.": 21,
116
+ "For experiment 3, report the adversary errors without SEAM.": 47,
117
+ "For experiment 3, report the adversary errors with SEAM.": 19
118
+ },
119
+ {
120
+ "For experiment 1, report the adversary errors without SEAM.": 58,
121
+ "For experiment 1, report the adversary errors with SEAM.": 17,
122
+ "For experiment 2, report the adversary errors without SEAM.": 27,
123
+ "For experiment 2, report the adversary errors with SEAM.": 21,
124
+ "For experiment 3, report the adversary errors without SEAM.": 47,
125
+ "For experiment 3, report the adversary errors with SEAM.": 19
126
+ }
127
+ ],
128
+ "capsule_doi": "https://doi.org/10.1109/jsen.2021.3079177"
129
+ },
130
+ {
131
+ "field": "Medical Sciences",
132
+ "language": "R",
133
+ "capsule_title": "Identifying Predictors of Within-person Variance in MRI-based Brain Volume estimates",
134
+ "capsule_id": "capsule-0325493",
135
+ "task_prompt": "Run 'main.R' using Rscript",
136
+ "results": [
137
+ {
138
+ "For the within-variance improvements, report the improvement for the FS_TotalGrayVol outcome with the Day variable.": 1.8,
139
+ "For the within-variance improvements, report the improvement for the FS_CortexVol outcome with the Day variable.": 1.75,
140
+ "fig Report the name of the model, LASSO or Random Forest, which has the higher out-of-sample R^2 in % for FS-GM.": "LASSO"
141
+ },
142
+ {
143
+ "For the within-variance improvements, report the improvement for the FS_TotalGrayVol outcome with the Day variable.": 1.8,
144
+ "For the within-variance improvements, report the improvement for the FS_CortexVol outcome with the Day variable.": 1.75,
145
+ "fig Report the name of the model, LASSO or Random Forest, which has the higher out-of-sample R^2 in % for FS-GM.": "LASSO"
146
+ },
147
+ {
148
+ "For the within-variance improvements, report the improvement for the FS_TotalGrayVol outcome with the Day variable.": 1.8,
149
+ "For the within-variance improvements, report the improvement for the FS_CortexVol outcome with the Day variable.": 1.75,
150
+ "fig Report the name of the model, LASSO or Random Forest, which has the higher out-of-sample R^2 in % for FS-GM.": "LASSO"
151
+ }
152
+ ],
153
+ "capsule_doi": "https://doi.org/10.24433/CO.3688518.v1"
154
+ },
155
+ {
156
+ "field": "Medical Sciences",
157
+ "language": "Python",
158
+ "capsule_title": "An Attention-based CNN-BiLSTM Hybrid Neural Network Enhanced with Features of Discrete Wavelet Transformation for Fetal Acidosis Classification",
159
+ "capsule_id": "capsule-1854976",
160
+ "task_prompt": "Run the 'evaluation.py' file.",
161
+ "results": [
162
+ {
163
+ "Report the final sensitivity (Sen1) after the ten different verifications.": 75.23,
164
+ "Report the final specificity (Spe1) after the ten different verifications.": 70.82,
165
+ "Report the final quality index (QI) after the ten different verifications.": 72.29
166
+ },
167
+ {
168
+ "Report the final sensitivity (Sen1) after the ten different verifications.": 75.23,
169
+ "Report the final specificity (Spe1) after the ten different verifications.": 70.82,
170
+ "Report the final quality index (QI) after the ten different verifications.": 72.29
171
+ },
172
+ {
173
+ "Report the final sensitivity (Sen1) after the ten different verifications.": 75.23,
174
+ "Report the final specificity (Spe1) after the ten different verifications.": 70.82,
175
+ "Report the final quality index (QI) after the ten different verifications.": 72.29
176
+ }
177
+ ],
178
+ "capsule_doi": "https://doi.org/10.24433/CO.4834924.v1"
179
+ },
180
+ {
181
+ "field": "Computer Science",
182
+ "language": "R",
183
+ "capsule_title": "Development of an Internet of Things Solution to Monitor and Analyse Indoor Air Quality",
184
+ "capsule_id": "capsule-9022937",
185
+ "task_prompt": "Run 'IAQ-PostCollection-Analysis.R' using Rscript.",
186
+ "results": [
187
+ {
188
+ "fig From the Experimental IAQ Data graph, report the y-axis label.": "Gas Resistance",
189
+ "fig From the Indoor Air Quality - Kitchen - Autumn plot, report the correlation between hum and gas.": -0.773
190
+ },
191
+ {
192
+ "fig From the Experimental IAQ Data graph, report the y-axis label.": "Gas Resistance",
193
+ "fig From the Indoor Air Quality - Kitchen - Autumn plot, report the correlation between hum and gas.": -0.773
194
+ },
195
+ {
196
+ "fig From the Experimental IAQ Data graph, report the y-axis label.": "Gas Resistance",
197
+ "fig From the Indoor Air Quality - Kitchen - Autumn plot, report the correlation between hum and gas.": -0.773
198
+ }
199
+ ],
200
+ "capsule_doi": "https://doi.org/10.24433/CO.2005560.v1"
201
+ },
202
+ {
203
+ "field": "Computer Science",
204
+ "language": "Python",
205
+ "capsule_title": "Low-Latency Live Video Streaming over a Low-Earth-Orbit Satellite Network with DASH",
206
+ "capsule_id": "capsule-8197429",
207
+ "task_prompt": "Run 'plot.sh'.",
208
+ "results": [
209
+ {
210
+ "fig From the figure measuring average bitrate (Kbps) over the Starlink network, report the name of the model with the highest average bitrate for 5 seconds of latency.": "L2A-LL",
211
+ "fig From the figure measuring average RTT without ISL, report the x-axis label.": "Seconds"
212
+ },
213
+ {
214
+ "fig From the figure measuring average bitrate (Kbps) over the Starlink network, report the name of the model with the highest average bitrate for 5 seconds of latency.": "L2A-LL",
215
+ "fig From the figure measuring average RTT without ISL, report the x-axis label.": "Seconds"
216
+ },
217
+ {
218
+ "fig From the figure measuring average bitrate (Kbps) over the Starlink network, report the name of the model with the highest average bitrate for 5 seconds of latency.": "L2A-LL",
219
+ "fig From the figure measuring average RTT without ISL, report the x-axis label.": "Seconds"
220
+ }
221
+ ],
222
+ "capsule_doi": "https://doi.org/10.24433/CO.7355266.v1"
223
+ },
224
+ {
225
+ "field": "Social Sciences",
226
+ "language": "R",
227
+ "capsule_title": "Example of compute capsule for the book chapter \"Developing and Disseminating Data Analysis Tools for Open Science\"",
228
+ "capsule_id": "capsule-2916503",
229
+ "task_prompt": "Run 'code.R' using Rscript",
230
+ "results": [
231
+ {
232
+ "Report the Variances estimate for Exam1.": 118.195,
233
+ "Report the Variances estimate for Exam2.": 124.754,
234
+ "Report the Variances estimate for Exam3.": 87.973
235
+ },
236
+ {
237
+ "Report the Variances estimate for Exam1.": 118.195,
238
+ "Report the Variances estimate for Exam2.": 124.754,
239
+ "Report the Variances estimate for Exam3.": 87.973
240
+ },
241
+ {
242
+ "Report the Variances estimate for Exam1.": 118.195,
243
+ "Report the Variances estimate for Exam2.": 124.754,
244
+ "Report the Variances estimate for Exam3.": 87.973
245
+ }
246
+ ],
247
+ "capsule_doi": "https://doi.org/10.24433/CO.8235849.v1"
248
+ },
249
+ {
250
+ "field": "Medical Sciences",
251
+ "language": "Python",
252
+ "capsule_title": "Fully automatic atrial fibrillation screening and atrial fibrillation detection",
253
+ "capsule_id": "capsule-0201225",
254
+ "task_prompt": "Run 'main.py'.",
255
+ "results": [
256
+ {
257
+ "Report the AUC at the 'sample-level'.": 0.998,
258
+ "Report the sensitivity at the 'sample-level'.": 0.966,
259
+ "Report the specificity at the 'sample-level'.": 0.994,
260
+ "Report the accuracy at the 'sample-level'.": 0.992,
261
+ "Report the AUC at the 'patient-level'.": 0.998,
262
+ "Report the sensitivity at the 'patient-level'.": 1.0,
263
+ "Report the specificity at the 'patient-level'.": 0.972,
264
+ "Report the accuracy at the 'patient-level'.": 0.978
265
+ },
266
+ {
267
+ "Report the AUC at the 'sample-level'.": 0.998,
268
+ "Report the sensitivity at the 'sample-level'.": 0.966,
269
+ "Report the specificity at the 'sample-level'.": 0.994,
270
+ "Report the accuracy at the 'sample-level'.": 0.992,
271
+ "Report the AUC at the 'patient-level'.": 0.998,
272
+ "Report the sensitivity at the 'patient-level'.": 1.0,
273
+ "Report the specificity at the 'patient-level'.": 0.972,
274
+ "Report the accuracy at the 'patient-level'.": 0.978
275
+ },
276
+ {
277
+ "Report the AUC at the 'sample-level'.": 0.998,
278
+ "Report the sensitivity at the 'sample-level'.": 0.966,
279
+ "Report the specificity at the 'sample-level'.": 0.994,
280
+ "Report the accuracy at the 'sample-level'.": 0.992,
281
+ "Report the AUC at the 'patient-level'.": 0.998,
282
+ "Report the sensitivity at the 'patient-level'.": 1.0,
283
+ "Report the specificity at the 'patient-level'.": 0.972,
284
+ "Report the accuracy at the 'patient-level'.": 0.978
285
+ }
286
+ ],
287
+ "capsule_doi": "https://doi.org/10.24433/CO.8603914.v1"
288
+ },
289
+ {
290
+ "field": "Medical Sciences",
291
+ "language": "R",
292
+ "capsule_title": "Intermittent Drug Treatment of BRAF<sup>V600E</sup> Melanoma Cells Delays Resistance by Sensitizing Cells to Rechallenge",
293
+ "capsule_id": "capsule-9070543",
294
+ "task_prompt": "Make the Dose_Response_Script_Output, RNA_Seq_Script_Output, Resistance_and_Sensitivity_Genes_Script_Output, Fig6c_Script_Output folders in the results folder to store the outputs. Then run the .Rmd files in this order: Dose_Response_Script.Rmd, RNA_Seq_Script.Rmd, Figure_6c_Script.Rmd. Store the outputs in ../results in the respective results folders. ",
295
+ "results": [
296
+ {
297
+ "fig From the figure 4 continuous dose response, report the name of the sample with the highest normalized cell number at an LGX818 concentration of 0.": "Vector Control"
298
+ },
299
+ {
300
+ "fig From the figure 4 continuous dose response, report the name of the sample with the highest normalized cell number at an LGX818 concentration of 0.": "Vector Control"
301
+ },
302
+ {
303
+ "fig From the figure 4 continuous dose response, report the name of the sample with the highest normalized cell number at an LGX818 concentration of 0.": "Vector Control"
304
+ }
305
+ ],
306
+ "capsule_doi": "https://doi.org/10.24433/CO.4dfd5a01-8d79-40ac-9d7a-10915b8b0e2e"
307
+ },
308
+ {
309
+ "field": "Social Sciences",
310
+ "language": "R",
311
+ "capsule_title": "Effectiveness and equity of Payments for Ecosystem Services: Real-effort experiments with Vietnamese land users",
312
+ "capsule_id": "capsule-1108125",
313
+ "task_prompt": "Run 'analysis.R' using Rscript.",
314
+ "results": [
315
+ {
316
+ "Please report the mean of forestgroup.": 0.34,
317
+ "Please report the mean of gender.": 0.46,
318
+ "Please report the mean of income.": 1.0,
319
+ "fig Report 'decrease' if the eigen values of factors and components decreases as the factor or component number increases. Report 'increase' otherwise.": "decrease"
320
+ },
321
+ {
322
+ "Please report the mean of forestgroup.": 0.34,
323
+ "Please report the mean of gender.": 0.46,
324
+ "Please report the mean of income.": 1.0,
325
+ "fig Report 'decrease' if the eigen values of factors and components decreases as the factor or component number increases. Report 'increase' otherwise.": "decrease"
326
+ },
327
+ {
328
+ "Please report the mean of forestgroup.": 0.34,
329
+ "Please report the mean of gender.": 0.46,
330
+ "Please report the mean of income.": 1.0,
331
+ "fig Report 'decrease' if the eigen values of factors and components decreases as the factor or component number increases. Report 'increase' otherwise.": "decrease"
332
+ }
333
+ ],
334
+ "capsule_doi": "https://doi.org/10.1016/j.landusepol.2019.05.010"
335
+ },
336
+ {
337
+ "field": "Medical Sciences",
338
+ "language": "Python",
339
+ "capsule_title": "Diagnosis of epilepsy based on EEG",
340
+ "capsule_id": "capsule-6746514",
341
+ "task_prompt": "Run 'NewData_ML_Kfold.py'. Then, run all python files starting with \"fig_\" in the folder.",
342
+ "results": [
343
+ {
344
+ "fig For dataset 1, report the score (%) for the GRU classifier for ACC.": 92.76,
345
+ "fig For dataset 1, report the score (%) for the SGRU classifier for ACC.": 97.33,
346
+ "fig Report the count of Class 3.": 2300
347
+ },
348
+ {
349
+ "fig For dataset 1, report the score (%) for the GRU classifier for ACC.": 92.76,
350
+ "fig For dataset 1, report the score (%) for the SGRU classifier for ACC.": 97.33,
351
+ "fig Report the count of Class 3.": 2300
352
+ },
353
+ {
354
+ "fig For dataset 1, report the score (%) for the GRU classifier for ACC.": 92.76,
355
+ "fig For dataset 1, report the score (%) for the SGRU classifier for ACC.": 97.33,
356
+ "fig Report the count of Class 3.": 2300
357
+ }
358
+ ],
359
+ "capsule_doi": "https://doi.org/10.24433/CO.3019596.v2"
360
+ },
361
+ {
362
+ "field": "Medical Sciences",
363
+ "language": "R",
364
+ "capsule_title": "Measuring the effects of exercise in neuromuscular disorders: a systematic review and meta-analyses",
365
+ "capsule_id": "capsule-1683542",
366
+ "task_prompt": "Export the following R default packages: datasets,utils,grDevices,graphics,stats,methods. Then run 'main.R'.",
367
+ "results": [
368
+ {
369
+ "fig From Figure 2, report the Observed SMD for Bankole et al. 2016. Ignore the confidence interval.": 0.5,
370
+ "fig From Figure 12, report the Observed SMD for Jeppesen et al. 2006. Ignore the confidence interval.": 0.28
371
+ },
372
+ {
373
+ "fig From Figure 2, report the Observed SMD for Bankole et al. 2016. Ignore the confidence interval.": 0.5,
374
+ "fig From Figure 12, report the Observed SMD for Jeppesen et al. 2006. Ignore the confidence interval.": 0.28
375
+ },
376
+ {
377
+ "fig From Figure 2, report the Observed SMD for Bankole et al. 2016. Ignore the confidence interval.": 0.5,
378
+ "fig From Figure 12, report the Observed SMD for Jeppesen et al. 2006. Ignore the confidence interval.": 0.28
379
+ }
380
+ ],
381
+ "capsule_doi": "https://doi.org/10.24433/CO.9997621.v2"
382
+ },
383
+ {
384
+ "field": "Computer Science",
385
+ "language": "Python",
386
+ "capsule_title": "PyTorch-based implementation of label-aware graph representation for multi-class trajectory prediction",
387
+ "capsule_id": "capsule-5286757",
388
+ "task_prompt": "Run 'train_2D3D.py' and train on the 2D traffic prediction",
389
+ "results": [
390
+ {
391
+ "Report the train loss after training the final epoch (epoch 9).": 0.04598272387846722
392
+ },
393
+ {
394
+ "Report the train loss after training the final epoch (epoch 9).": 0.05381510184042584
395
+ },
396
+ {
397
+ "Report the train loss after training the final epoch (epoch 9).": 0.0502882808202249
398
+ }
399
+ ],
400
+ "capsule_doi": "https://doi.org/10.24433/CO.8913413.v1"
401
+ },
402
+ {
403
+ "field": "Computer Science",
404
+ "language": "Python",
405
+ "capsule_title": "Dual Attention-Based Federated Learning for Wireless Traffic Prediction",
406
+ "capsule_id": "capsule-4884085",
407
+ "task_prompt": "Run 'fed_dual_att.py'",
408
+ "results": [
409
+ {
410
+ "Report the MSE for the file trento.h5.": 4.2629
411
+ },
412
+ {
413
+ "Report the MSE for the file trento.h5.": 4.2629
414
+ },
415
+ {
416
+ "Report the MSE for the file trento.h5.": 4.2629
417
+ }
418
+ ],
419
+ "capsule_doi": "https://doi.org/10.24433/CO.4767521.v1"
420
+ },
421
+ {
422
+ "field": "Computer Science",
423
+ "language": "Python",
424
+ "capsule_title": "CULP: Classification Using Link Prediction",
425
+ "capsule_id": "capsule-6460826",
426
+ "task_prompt": "Run 'iris_sample.py', 'zoo_sample.py', and 'wine_sample.py'",
427
+ "results": [
428
+ {
429
+ "Report the CN prediction accuracy for the Iris dataset.": 100,
430
+ "Report the AA prediction acccuracy for the Iris dataset.": 100,
431
+ "Report the CN prediction acccuracy for the Zoo dataset.": 100,
432
+ "Report the AA prediction acccuracy for the Zoo dataset.": 100,
433
+ "Report the CN prediction acccuracy for the Wine dataset.": 97.22,
434
+ "Report the AA prediction acccuracy for the Wine dataset.": 97.22
435
+ },
436
+ {
437
+ "Report the CN prediction accuracy for the Iris dataset.": 100,
438
+ "Report the AA prediction acccuracy for the Iris dataset.": 100,
439
+ "Report the CN prediction acccuracy for the Zoo dataset.": 100,
440
+ "Report the AA prediction acccuracy for the Zoo dataset.": 100,
441
+ "Report the CN prediction acccuracy for the Wine dataset.": 97.22,
442
+ "Report the AA prediction acccuracy for the Wine dataset.": 97.22
443
+ },
444
+ {
445
+ "Report the CN prediction accuracy for the Iris dataset.": 100,
446
+ "Report the AA prediction acccuracy for the Iris dataset.": 100,
447
+ "Report the CN prediction acccuracy for the Zoo dataset.": 100,
448
+ "Report the AA prediction acccuracy for the Zoo dataset.": 100,
449
+ "Report the CN prediction acccuracy for the Wine dataset.": 97.22,
450
+ "Report the AA prediction acccuracy for the Wine dataset.": 97.22
451
+ }
452
+ ],
453
+ "capsule_doi": "https://doi.org/10.24433/CO.0609cc4f-8b95-4d94-8fd0-9456d262b3a5"
454
+ },
455
+ {
456
+ "field": "Computer Science",
457
+ "language": "Python",
458
+ "capsule_title": "Multi-Label Classification via Adaptive Resonance Theory-Based Clustering",
459
+ "capsule_id": "capsule-4098236",
460
+ "task_prompt": "Run 'mainMLCA.py'.",
461
+ "results": [
462
+ {
463
+ "Report the exact match of the classification.": 0.27338983050847454,
464
+ "Report the hamming loss of the classification.": 0.2262241054613936
465
+ },
466
+ {
467
+ "Report the exact match of the classification.": 0.27338983050847454,
468
+ "Report the hamming loss of the classification.": 0.2262241054613936
469
+ },
470
+ {
471
+ "Report the exact match of the classification.": 0.27338983050847454,
472
+ "Report the hamming loss of the classification.": 0.2262241054613936
473
+ }
474
+ ],
475
+ "capsule_doi": "https://doi.org/10.24433/CO.1722889.v2"
476
+ },
477
+ {
478
+ "field": "Computer Science",
479
+ "language": "Python",
480
+ "capsule_title": "ExPSO Package: Exponential Particle Swarm Optimization for Global Optimization",
481
+ "capsule_id": "capsule-5975162",
482
+ "task_prompt": "Run 'ExPSOWithClassicalBenchmark02.py'.",
483
+ "results": [
484
+ {
485
+ "Report the mean metric from the output.": 4.440892098500626e-16,
486
+ "Report the Avg FES from the output.": 96.7741935483871
487
+ },
488
+ {
489
+ "Report the mean metric from the output.": 4.440892098500626e-16,
490
+ "Report the Avg FES from the output.": 96.7741935483871
491
+ },
492
+ {
493
+ "Report the mean metric from the output.": 4.440892098500626e-16,
494
+ "Report the Avg FES from the output.": 96.7741935483871
495
+ }
496
+ ],
497
+ "capsule_doi": "https://doi.org/10.24433/CO.9863420.v1"
498
+ },
499
+ {
500
+ "field": "Computer Science",
501
+ "language": "Python",
502
+ "capsule_title": "Linked Dynamic Graph CNN: Learning through Point Cloud by Linking Hierarchical Features",
503
+ "capsule_id": "capsule-0220918",
504
+ "task_prompt": "Run 'evaluate.py'. Unzip ../data/shapenetcore_partanno_v0.zip into the ../data directory. Run 'part_seg/test.py'.",
505
+ "results": [
506
+ {
507
+ "Report the eval mean loss from the classification.": 1.469021,
508
+ "Report the eval accuracy from the classification.": 0.931818
509
+ },
510
+ {
511
+ "Report the eval mean loss from the classification.": 1.469021,
512
+ "Report the eval accuracy from the classification.": 0.931818
513
+ },
514
+ {
515
+ "Report the eval mean loss from the classification.": 1.469021,
516
+ "Report the eval accuracy from the classification.": 0.931818
517
+ }
518
+ ],
519
+ "capsule_doi": "https://doi.org/10.24433/CO.1730466.v1"
520
+ },
521
+ {
522
+ "field": "Computer Science",
523
+ "language": "Python",
524
+ "capsule_title": "Code for paper Graph Neural Networks for Individual Treatment Effect Estimation",
525
+ "capsule_id": "capsule-4645832",
526
+ "task_prompt": "Run 'main_hyper.py'.",
527
+ "results": [
528
+ {
529
+ "Report the test mean of the model.": 0.3470596925303306
530
+ },
531
+ {
532
+ "Report the test mean of the model.": 0.3470596925303306
533
+ },
534
+ {
535
+ "Report the test mean of the model.": 0.3470596925303306
536
+ }
537
+ ],
538
+ "capsule_doi": "https://doi.org/10.24433/CO.3379007.v1"
539
+ },
540
+ {
541
+ "field": "Computer Science",
542
+ "language": "Python",
543
+ "capsule_title": "Mining Emerging Fuzzy-Temporal Gradual Patterns [BorderT-GRAANK]",
544
+ "capsule_id": "capsule-2011424",
545
+ "task_prompt": "Run 'algorithms/border_tgraank.py'.",
546
+ "results": [
547
+ {
548
+ "Report the number of FtGEPs found.": 17
549
+ },
550
+ {
551
+ "Report the number of FtGEPs found.": 17
552
+ },
553
+ {
554
+ "Report the number of FtGEPs found.": 17
555
+ }
556
+ ],
557
+ "capsule_doi": "https://doi.org/10.24433/CO.7826231.v1"
558
+ },
559
+ {
560
+ "field": "Computer Science",
561
+ "language": "Python",
562
+ "capsule_title": "SybilFlyover: Heterogeneous Graph-Based Fake Account Detection Model on Social Networks",
563
+ "capsule_id": "capsule-3249574",
564
+ "task_prompt": "Run 'sybilflyover_model.py '.",
565
+ "results": [
566
+ {
567
+ "Report the F1-score after epoch 200.": 0.94743
568
+ },
569
+ {
570
+ "Report the F1-score after epoch 200.": 0.95698
571
+ },
572
+ {
573
+ "Report the F1-score after epoch 200.": 0.99188
574
+ }
575
+ ],
576
+ "capsule_doi": "https://doi.org/10.24433/CO.9860846.v1"
577
+ },
578
+ {
579
+ "field": "Social Sciences",
580
+ "language": "R",
581
+ "capsule_title": "A Standard for the Scholarly Citation of Archaeological Data",
582
+ "capsule_id": "capsule-5777882",
583
+ "task_prompt": "Run the paper.Rmd file using Rscript and as an HTML in the \"../results\" folder. Set clean to 'TRUE'.",
584
+ "results": [
585
+ {
586
+ "fig Report the name of the license with the greatest number of DOIs.": "ADS",
587
+ "fig Report the name of the language (the abbreviation, as presented in the plot) with the least number of DOIs.": "it"
588
+ },
589
+ {
590
+ "fig Report the name of the license with the greatest number of DOIs.": "ADS",
591
+ "fig Report the name of the language (the abbreviation, as presented in the plot) with the least number of DOIs.": "it"
592
+ },
593
+ {
594
+ "fig Report the name of the license with the greatest number of DOIs.": "ADS",
595
+ "fig Report the name of the language (the abbreviation, as presented in the plot) with the least number of DOIs.": "it"
596
+ }
597
+ ],
598
+ "capsule_doi": "https://doi.org/10.24433/CO.ca12b3f0-55a2-4eba-9687-168c8281e535"
599
+ },
600
+ {
601
+ "field": "Computer Science",
602
+ "language": "Python",
603
+ "capsule_title": "Replication files for Neurons Learn by Predicting Future Activity",
604
+ "capsule_id": "capsule-9370340",
605
+ "task_prompt": "Run 'CHL_clamped.py'.",
606
+ "results": [
607
+ {
608
+ "Report the accuracy for testing after epoch 3.": 0.86289996
609
+ },
610
+ {
611
+ "Report the accuracy for testing after epoch 3.": 0.8885
612
+ },
613
+ {
614
+ "Report the accuracy for testing after epoch 3.": 0.8803
615
+ }
616
+ ],
617
+ "capsule_doi": "https://doi.org/10.24433/CO.9801818.v1"
618
+ },
619
+ {
620
+ "field": "Social Sciences",
621
+ "language": "Python",
622
+ "capsule_title": "Less Annotating, More Classifying: Addressing the Data Scarcity Issue of Supervised Machine Learning with Deep Transfer Learning and BERT-NLI",
623
+ "capsule_id": "capsule-4807644",
624
+ "task_prompt": "Run 'data-analysis-viz.py' and 'appendix.py'",
625
+ "results": [
626
+ {
627
+ "fig Report the name of the model that has the highest aggregate F1 Macro score for 500 random traning samples.": "BERT-NLI",
628
+ "fig Report the name of the model that has the lowest aggregate F1 Macro score for 500 random traning samples.": "majority baseline"
629
+ },
630
+ {
631
+ "fig Report the name of the model that has the highest aggregate F1 Macro score for 500 random traning samples.": "BERT-NLI",
632
+ "fig Report the name of the model that has the lowest aggregate F1 Macro score for 500 random traning samples.": "majority baseline"
633
+ },
634
+ {
635
+ "fig Report the name of the model that has the highest aggregate F1 Macro score for 500 random traning samples.": "BERT-NLI",
636
+ "fig Report the name of the model that has the lowest aggregate F1 Macro score for 500 random traning samples.": "majority baseline"
637
+ }
638
+ ],
639
+ "capsule_doi": "https://doi.org/10.24433/CO.5414009.v2"
640
+ },
641
+ {
642
+ "field": "Social Sciences",
643
+ "language": "R",
644
+ "capsule_title": "Reducing meat and animal product consumption: what works?",
645
+ "capsule_id": "capsule-1906954",
646
+ "task_prompt": "Run ''./vegan-meta-pap.Rmd' and './vegan-meta.Rmd' using Rscript and render them as html. Store the output in ../results.",
647
+ "results": [
648
+ {
649
+ "Report the Delta value for Italy.": 0.459,
650
+ "Report the Delta value for adults.": 0.092
651
+ },
652
+ {
653
+ "Report the Delta value for Italy.": 0.459,
654
+ "Report the Delta value for adults.": 0.092
655
+ },
656
+ {
657
+ "Report the Delta value for Italy.": 0.459,
658
+ "Report the Delta value for adults.": 0.092
659
+ }
660
+ ],
661
+ "capsule_doi": "https://doi.org/10.24433/CO.6020578.v1"
662
+ },
663
+ {
664
+ "field": "Social Sciences",
665
+ "language": "R",
666
+ "capsule_title": "Best Practices in Supervised Machine Learning: A Tutorial for Psychologists",
667
+ "capsule_id": "capsule-9348218",
668
+ "task_prompt": "Run manuscript.Rmd using Rscript and render it as a pdf. Record package information as sessionInfo_manuscript.txt. Clear all newly created files in /code between runs. Run electronic_supplemental_material.Rmd using Rscript and render it as a pdf. Record package information as sessionInfo_electronic_supplemental_material.txt. Clear all newly created files in /code between runs. Save all output for both parts in ../results.",
669
+ "results": [
670
+ {
671
+ "fig From Figure 3 panel A, report the label of the green line.": "flexibility too low",
672
+ "fig From Figure 1, report the numerical value of N for example 1 (the first row).": 12
673
+ },
674
+ {
675
+ "fig From Figure 3 panel A, report the label of the green line.": "flexibility too low",
676
+ "fig From Figure 1, report the numerical value of N for example 1 (the first row).": 12
677
+ },
678
+ {
679
+ "fig From Figure 3 panel A, report the label of the green line.": "flexibility too low",
680
+ "fig From Figure 1, report the numerical value of N for example 1 (the first row).": 12
681
+ }
682
+ ],
683
+ "capsule_doi": "https://doi.org/10.24433/CO.5687964.v1"
684
+ },
685
+ {
686
+ "field": "Computer Science",
687
+ "language": "Python",
688
+ "capsule_title": "A University Admission Prediction System using Stacked Ensemble Learning",
689
+ "capsule_id": "capsule-0238624",
690
+ "task_prompt": "Run 'ensemble.py'.",
691
+ "results": [
692
+ {
693
+ "Report the macro avg precision from the classification report.": 0.88,
694
+ "Report the macro avg recall from the classification report.": 0.88
695
+ },
696
+ {
697
+ "Report the macro avg precision from the classification report.": 0.87,
698
+ "Report the macro avg recall from the classification report.": 0.87
699
+ },
700
+ {
701
+ "Report the macro avg precision from the classification report.": 0.88,
702
+ "Report the macro avg recall from the classification report.": 0.88
703
+ }
704
+ ],
705
+ "capsule_doi": "https://doi.org/10.24433/CO.1531178.v1"
706
+ },
707
+ {
708
+ "field": "Computer Science",
709
+ "language": "Python",
710
+ "capsule_title": "VisGIN: Visibility Graph Neural Network on One-Dimensional Data for Biometric Authentication",
711
+ "capsule_id": "capsule-3272782",
712
+ "task_prompt": "Run 'VisGIN.py'",
713
+ "results": [
714
+ {
715
+ "Report Average accuracy for the VisGIN model.": 0.995,
716
+ "Report Average FNMR for the VisGIN model.": 0.01,
717
+ "Report Average FMR for the VisGIN model.": 0.0
718
+ },
719
+ {
720
+ "Report Average accuracy for the VisGIN model.": 1.0,
721
+ "Report Average FNMR for the VisGIN model.": 0.0,
722
+ "Report Average FMR for the VisGIN model.": 0.0
723
+ },
724
+ {
725
+ "Report Average accuracy for the VisGIN model.": 0.99,
726
+ "Report Average FNMR for the VisGIN model.": 0.018,
727
+ "Report Average FMR for the VisGIN model.": 0.0
728
+ }
729
+ ],
730
+ "capsule_doi": "https://doi.org/10.24433/CO.3350600.v1"
731
+ },
732
+ {
733
+ "field": "Social Sciences",
734
+ "language": "R",
735
+ "capsule_title": "GazeR-Pupil and Gaze Processing",
736
+ "capsule_id": "capsule-4600160",
737
+ "task_prompt": "Run \"Gazer_walkthrough.R\" using Rscript.",
738
+ "results": [
739
+ {
740
+ "fig Report the name of the script with the lowest pupil dilation at 1500 m/s.": "print"
741
+ },
742
+ {
743
+ "fig Report the name of the script with the lowest pupil dilation at 1500 m/s.": "print"
744
+ },
745
+ {
746
+ "fig Report the name of the script with the lowest pupil dilation at 1500 m/s.": "print"
747
+ }
748
+ ],
749
+ "capsule_doi": "https://doi.org/10.24433/CO.0149895.v2"
750
+ },
751
+ {
752
+ "field": "Social Sciences",
753
+ "language": "R",
754
+ "capsule_title": "Code for: Self-esteem, relationship threat, and dependency regulation: Independent replication of Murray, Rose, Bellavia, Holmes, and Kusche (2002) Study 3",
755
+ "capsule_id": "capsule-1324693",
756
+ "task_prompt": "Run 'main.Rmd' using Rscript and render it as as html to the output directory ../results",
757
+ "results": [
758
+ {
759
+ "fig Report the y-axis label of the subplot measuring Normal Q-Q": "Standardized residuals",
760
+ "fig Report the y-axis label of fig 1.": "Scores on Manipulation Check Index"
761
+ },
762
+ {
763
+ "fig Report the y-axis label of the subplot measuring Normal Q-Q": "Standardized residuals",
764
+ "fig Report the y-axis label of fig 1.": "Scores on Manipulation Check Index"
765
+ },
766
+ {
767
+ "fig Report the y-axis label of the subplot measuring Normal Q-Q": "Standardized residuals",
768
+ "fig Report the y-axis label of fig 1.": "Scores on Manipulation Check Index"
769
+ }
770
+ ],
771
+ "capsule_doi": "https://doi.org/10.24433/CO.0432690.v2"
772
+ },
773
+ {
774
+ "field": "Social Sciences",
775
+ "language": "R",
776
+ "capsule_title": "Replication Material for \"The Subconscious Effect of Subtle Media Bias on Perceptions of Terrorism\" appearing in American Politics Research (APR)",
777
+ "capsule_id": "capsule-6133093",
778
+ "task_prompt": "Run 'mediabiasreplication.Rmd' using Rscript and render it as html. Store the output in the ../results directory. Set clean to 'TRUE'.",
779
+ "results": [
780
+ {
781
+ "Report the estimate for the Label2 attribute and Attackers level in the Average Marginal Component Effects (AMCE) table of model6_c": 0.0685169
782
+ },
783
+ {
784
+ "Report the estimate for the Label2 attribute and Attackers level in the Average Marginal Component Effects (AMCE) table of model6_c": 0.0685169
785
+ },
786
+ {
787
+ "Report the estimate for the Label2 attribute and Attackers level in the Average Marginal Component Effects (AMCE) table of model6_c": 0.0685169
788
+ }
789
+ ],
790
+ "capsule_doi": "https://doi.org/10.24433/CO.0762621.v1"
791
+ },
792
+ {
793
+ "field": "Computer Science",
794
+ "language": "Python",
795
+ "capsule_title": "GERNERMED Named Entity Recognizer",
796
+ "capsule_id": "capsule-0396930",
797
+ "task_prompt": "Set up the GERNERMED component package using pip install and the python3 -m flag with the file './de_GERNERMED-1.0.0.tar.gz'. Using the python3 -m flag, and spacy, evaluate the model '/data/gernermed_pipeline' with the data path '/data/ner_medical.test.spacy' and the output directory 'results/eval_scores.json'. Run the annotation demo '/code/example_simple.py' and pipe the output to '/results/annotation_example.txt'. ",
798
+ "results": [
799
+ {
800
+ "Report the f1 score of the 'duration' entity tag (out of 1).": 0.59375,
801
+ "Report the precision of the 'drug' entity tag (out of 1).": 0.6733021077
802
+ },
803
+ {
804
+ "Report the f1 score of the 'duration' entity tag (out of 1).": 0.59375,
805
+ "Report the precision of the 'drug' entity tag (out of 1).": 0.6733021077
806
+ },
807
+ {
808
+ "Report the f1 score of the 'duration' entity tag (out of 1).": 0.59375,
809
+ "Report the precision of the 'drug' entity tag (out of 1).": 0.6733021077
810
+ }
811
+ ],
812
+ "capsule_doi": "https://doi.org/10.24433/CO.9292630.v1"
813
+ },
814
+ {
815
+ "field": "Social Sciences",
816
+ "language": "R",
817
+ "capsule_title": "Integrating Data Across Misaligned Spatial Units",
818
+ "capsule_id": "capsule-7981862",
819
+ "task_prompt": "Run 'master.R' using Rscript.",
820
+ "results": [
821
+ {
822
+ "fig Report the middle decile (50%) median RMSE for the Monte Carlo results by CoS algorithm.": 0.64
823
+ },
824
+ {
825
+ "fig Report the middle decile (50%) median RMSE for the Monte Carlo results by CoS algorithm.": 0.64
826
+ },
827
+ {
828
+ "fig Report the middle decile (50%) median RMSE for the Monte Carlo results by CoS algorithm.": 0.64
829
+ }
830
+ ],
831
+ "capsule_doi": "https://doi.org/10.24433/CO.9257130.v1"
832
+ },
833
+ {
834
+ "field": "Social Sciences",
835
+ "language": "R",
836
+ "capsule_title": "A Delphi study to strengthen research methods training in undergraduate psychology programmes",
837
+ "capsule_id": "capsule-2061060",
838
+ "task_prompt": "Run 'manuscript.Rmd' using Rscript and render it as a pdf. Store the results in ../results. Set clean to 'TRUE'.",
839
+ "results": [
840
+ {
841
+ "fig From supplementary table 2, report the % reaching consensus for the quant domain.": 50
842
+ },
843
+ {
844
+ "fig From supplementary table 2, report the % reaching consensus for the quant domain.": 50
845
+ },
846
+ {
847
+ "fig From supplementary table 2, report the % reaching consensus for the quant domain.": 50
848
+ }
849
+ ],
850
+ "capsule_doi": "https://doi.org/10.24433/CO.0483372.v1"
851
+ },
852
+ {
853
+ "field": "Computer Science",
854
+ "language": "Python",
855
+ "capsule_title": "WABL Method as a Universal Defuzzifier in the Fuzzy Gradient Boosting Regression Model",
856
+ "capsule_id": "capsule-0940461",
857
+ "task_prompt": "Execute 'FGBR_OC.ipynb'. Save the results in html format in ../results. For all the runs, disable the cell execution timeout and allow errors.",
858
+ "results": [
859
+ {
860
+ "Report the best test R^2 value for c = 1.0.": 0.8259,
861
+ "Report the best test RMSE value for c = 1.0.": 0.2806
862
+ },
863
+ {
864
+ "Report the best test R^2 value for c = 1.0.": 0.8259,
865
+ "Report the best test RMSE value for c = 1.0.": 0.2806
866
+ },
867
+ {
868
+ "Report the best test R^2 value for c = 1.0.": 0.8259,
869
+ "Report the best test RMSE value for c = 1.0.": 0.2806
870
+ }
871
+ ],
872
+ "capsule_doi": "https://doi.org/10.24433/CO.4576964.v1"
873
+ },
874
+ {
875
+ "field": "Medical Sciences",
876
+ "language": "Python",
877
+ "capsule_title": "DAPPER Leiomyosarcoma : Correlation and Survival Analysis of Radiomic, Microbiome and Clinical Data",
878
+ "capsule_id": "capsule-3894632",
879
+ "task_prompt": "Run 'dp_survival.Rmd' using Rscript and Render it as html. Store the output in ../results. Set clean to 'TRUE'. Also, run 'correlation.py'.",
880
+ "results": [
881
+ {
882
+ "Report the p value for Lesions.Contoured.": 0.12
883
+ },
884
+ {
885
+ "Report the p value for Lesions.Contoured.": 0.12
886
+ },
887
+ {
888
+ "Report the p value for Lesions.Contoured.": 0.12
889
+ }
890
+ ],
891
+ "capsule_doi": "https://doi.org/10.24433/CO.2552952.v1"
892
+ },
893
+ {
894
+ "field": "Medical Sciences",
895
+ "language": "Python",
896
+ "capsule_title": "Metabolomic machine learning predictor for diagnosis and prognosis of gastric cancer",
897
+ "capsule_id": "capsule-5496369",
898
+ "task_prompt": "Execute GC-diagnosis-model/run.ipynb. Save the results in html format in ../results. Execute GC-prognosis-model/run.ipynb. Save the results in html format in ../results. For both runs, disable the cell execution timeout and allow errors.",
899
+ "results": [
900
+ {
901
+ "fig For the GC diagnosis model's AUROC curve of test data, report the Lasso AUROC of the test data.": 0.967,
902
+ "fig From the GC prognosis model's AUROC curve, report the Lasso AUROC of the test data.": 0.832
903
+ },
904
+ {
905
+ "fig For the GC diagnosis model's AUROC curve of test data, report the Lasso AUROC of the test data.": 0.967,
906
+ "fig From the GC prognosis model's AUROC curve, report the Lasso AUROC of the test data.": 0.832
907
+ },
908
+ {
909
+ "fig For the GC diagnosis model's AUROC curve of test data, report the Lasso AUROC of the test data.": 0.967,
910
+ "fig From the GC prognosis model's AUROC curve, report the Lasso AUROC of the test data.": 0.832
911
+ }
912
+ ],
913
+ "capsule_doi": "https://doi.org/10.24433/CO.7015846.v1"
914
+ },
915
+ {
916
+ "field": "Social Sciences",
917
+ "language": "R",
918
+ "capsule_title": "Making a Difference: The Consequences of Electoral Experiments",
919
+ "capsule_id": "capsule-8912293",
920
+ "task_prompt": "Run '01_data_processing.R', '02_info_exps.R', '03_colorado_sim.R', '04_pap_analysis.R', and '05_existing_applications.R' using Rscript.",
921
+ "results": [
922
+ {
923
+ "fig Report the location of experiment with the higher proportion of 131 pre\u2212registered experiments in AEA and EGAP registries for the mobilization intervention class (ignore the n value).": "US",
924
+ "fig From Figure A5, report the y-axis label.": "Number of districts",
925
+ "fig From Figure A2, report the x-axis label of the first plot.": "Start of intervention"
926
+ },
927
+ {
928
+ "fig Report the location of experiment with the higher proportion of 131 pre\u2212registered experiments in AEA and EGAP registries for the mobilization intervention class (ignore the n value).": "US",
929
+ "fig From Figure A5, report the y-axis label.": "Number of districts",
930
+ "fig From Figure A2, report the x-axis label of the first plot.": "Start of intervention"
931
+ },
932
+ {
933
+ "fig Report the location of experiment with the higher proportion of 131 pre\u2212registered experiments in AEA and EGAP registries for the mobilization intervention class (ignore the n value).": "US",
934
+ "fig From Figure A5, report the y-axis label.": "Number of districts",
935
+ "fig From Figure A2, report the x-axis label of the first plot.": "Start of intervention"
936
+ }
937
+ ],
938
+ "capsule_doi": "https://doi.org/10.24433/CO.7729631.v1"
939
+ },
940
+ {
941
+ "field": "Medical Sciences",
942
+ "language": "Python",
943
+ "capsule_title": "Super-Iterative Image Reconstruction for Tomography",
944
+ "capsule_id": "capsule-3497606",
945
+ "task_prompt": "Ignore python warnings. Run 'Super-Iterative.py'.",
946
+ "results": [
947
+ {
948
+ "fig Report which image type has the greatest noise at 100 iterations.": "High Resolution"
949
+ },
950
+ {
951
+ "fig Report which image type has the greatest noise at 100 iterations.": "High Resolution"
952
+ },
953
+ {
954
+ "fig Report which image type has the greatest noise at 100 iterations.": "High Resolution"
955
+ }
956
+ ],
957
+ "capsule_doi": "https://doi.org/10.24433/CO.2947710.v2"
958
+ },
959
+ {
960
+ "field": "Medical Sciences",
961
+ "language": "Python",
962
+ "capsule_title": "Light fluence in skin for PDT light-dose planning",
963
+ "capsule_id": "capsule-7156696",
964
+ "task_prompt": "Execute all the .ipynb files in the ../code directory. Save the results in html format in ../results. For all the runs, disable the cell execution timeout and allow errors.",
965
+ "results": [
966
+ {
967
+ "fig From Figure 5A, report the name of the source with the lowest fluence rate at depth 1.": "Blue",
968
+ "fig From Figure 5B, report the name of the source with the highest effective fluence rate at depth 1.": "Red"
969
+ },
970
+ {
971
+ "fig From Figure 5A, report the name of the source with the lowest fluence rate at depth 1.": "Blue",
972
+ "fig From Figure 5B, report the name of the source with the highest effective fluence rate at depth 1.": "Red"
973
+ },
974
+ {
975
+ "fig From Figure 5A, report the name of the source with the lowest fluence rate at depth 1.": "Blue",
976
+ "fig From Figure 5B, report the name of the source with the highest effective fluence rate at depth 1.": "Red"
977
+ }
978
+ ],
979
+ "capsule_doi": "https://doi.org/10.24433/CO.3b5e68fc-c3a0-44fd-bebb-95d60e08ce11.v3"
980
+ },
981
+ {
982
+ "field": "Social Sciences",
983
+ "language": "R",
984
+ "capsule_title": "Designing Studies and Evaluating Research Results: Type M and Type S Errors for Pearson Correlation Coefficient",
985
+ "capsule_id": "capsule-7935517",
986
+ "task_prompt": "Load the knitr library. Set the working directory to 'Documents/Paper_main/\u2018. Compile the pdf using knit with 'Paper_main.Rnw' as the input. Copy \u2018Paper_main.tex\u2019 to the ../results directory. Then, make the following directories: ../results/figure and ../results/screens. Copy all the .pdf files from \u2018Documents/Paper_main/figure/\u2018 into ../results/figure. Copy all the files from \u2018Documents/Paper_main/screens/\u2018 into ../results/screens/. Copy \u2018Paper_main.bib\u2019 and \u2018Paper_main.bbl\u2019 into ../results.",
987
+ "results": [
988
+ {
989
+ "fig From the plot sampling rho, report the rho value corresponding to the solid red line.": 0,
990
+ "fig Report the x-axis label of the plot measuring Cohen's d.": "Power"
991
+ },
992
+ {
993
+ "fig From the plot sampling rho, report the rho value corresponding to the solid red line.": 0,
994
+ "fig Report the x-axis label of the plot measuring Cohen's d.": "Power"
995
+ },
996
+ {
997
+ "fig From the plot sampling rho, report the rho value corresponding to the solid red line.": 0,
998
+ "fig Report the x-axis label of the plot measuring Cohen's d.": "Power"
999
+ }
1000
+ ],
1001
+ "capsule_doi": "https://doi.org/10.24433/CO.8165442.v1"
1002
+ },
1003
+ {
1004
+ "field": "Medical Sciences",
1005
+ "language": "Python",
1006
+ "capsule_title": "Neural Network for Predicting Stroke Team Performance",
1007
+ "capsule_id": "capsule-3269870",
1008
+ "task_prompt": "Run 'nn.py' and 'predict.py'.",
1009
+ "results": [
1010
+ {
1011
+ "Report the percentage accuracy of the result.": 60,
1012
+ "Report the percentage precision of the result.": 62,
1013
+ "fig Report the y-axis label of the training plot.": "Cost"
1014
+ },
1015
+ {
1016
+ "Report the percentage accuracy of the result.": 60,
1017
+ "Report the percentage precision of the result.": 62,
1018
+ "fig Report the y-axis label of the training plot.": "Cost"
1019
+ },
1020
+ {
1021
+ "Report the percentage accuracy of the result.": 60,
1022
+ "Report the percentage precision of the result.": 62,
1023
+ "fig Report the y-axis label of the training plot.": "Cost"
1024
+ }
1025
+ ],
1026
+ "capsule_doi": "https://doi.org/10.24433/CO.e78bbbad-a26f-49ec-9eae-11d549011e17"
1027
+ }
1028
+ ]