Upload 2 files
Browse files- core_test.json.gpg +0 -0
- core_train.json +1028 -0
core_test.json.gpg
ADDED
Binary file (8.62 kB). View file
|
|
core_train.json
ADDED
@@ -0,0 +1,1028 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"field": "Computer Science",
|
4 |
+
"language": "Python",
|
5 |
+
"capsule_title": "K-Core based Temporal Graph Convolutional Network for Dynamic Graphs",
|
6 |
+
"capsule_id": "capsule-7038571",
|
7 |
+
"task_prompt": "Run the main.py file three times. First, with config/uci.json, the preprocessing task, and the CTGCN-C method. Second, with config/uci.json, the embedding task, and the CTGCN-C method. Third, using python3 with config/uci.json and the link-pred task.",
|
8 |
+
"results": [
|
9 |
+
{
|
10 |
+
"Report the average AUC score of Had using the CTGCN-C method on the UCI dataset.": 0.9375660604380387
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"Report the average AUC score of Had using the CTGCN-C method on the UCI dataset.": 0.9372440957792072
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"Report the average AUC score of Had using the CTGCN-C method on the UCI dataset.": 0.931951440752941
|
17 |
+
}
|
18 |
+
],
|
19 |
+
"capsule_doi": "https://doi.org/10.24433/CO.9707317.v1"
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"field": "Social Sciences",
|
23 |
+
"language": "R",
|
24 |
+
"capsule_title": "Analytic reproducibility in articles receiving open data badges at the journal Psychological Science: An observational study",
|
25 |
+
"capsule_id": "capsule-3137115",
|
26 |
+
"task_prompt": "Run the manuscript.Rmd file using Rscript and render it as html. Put the results in the \"../results\" folder. ",
|
27 |
+
"results": [
|
28 |
+
{
|
29 |
+
"Report the final outcomes of reproducibility checks at the article level after original authors were contacted (Table 1 of the manuscript). You should report n for row 1 in the table (ignore the confidence interval).": 6,
|
30 |
+
"Report the final outcomes of reproducibility checks at the article level after original authors were contacted (Table 1 of the manuscript). You should report n for row 2 in the table (ignore the confidence interval).": 9,
|
31 |
+
"Report the final outcomes of reproducibility checks at the article level after original authors were contacted (Table 1 of the manuscript). You should report n for row 3 in the table (ignore the confidence interval).": 7,
|
32 |
+
"fig From Figure 1, report the proportion of articles with fully reproducible target values from the random effects model after author contact. Ignore the confidence intervals": 0.62
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"Report the final outcomes of reproducibility checks at the article level after original authors were contacted (Table 1 of the manuscript). You should report n for row 1 in the table (ignore the confidence interval).": 6,
|
36 |
+
"Report the final outcomes of reproducibility checks at the article level after original authors were contacted (Table 1 of the manuscript). You should report n for row 2 in the table (ignore the confidence interval).": 9,
|
37 |
+
"Report the final outcomes of reproducibility checks at the article level after original authors were contacted (Table 1 of the manuscript). You should report n for row 3 in the table (ignore the confidence interval).": 7,
|
38 |
+
"fig From Figure 1, report the proportion of articles with fully reproducible target values from the random effects model after author contact. Ignore the confidence intervals": 0.62
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"Report the final outcomes of reproducibility checks at the article level after original authors were contacted (Table 1 of the manuscript). You should report n for row 1 in the table (ignore the confidence interval).": 6,
|
42 |
+
"Report the final outcomes of reproducibility checks at the article level after original authors were contacted (Table 1 of the manuscript). You should report n for row 2 in the table (ignore the confidence interval).": 9,
|
43 |
+
"Report the final outcomes of reproducibility checks at the article level after original authors were contacted (Table 1 of the manuscript). You should report n for row 3 in the table (ignore the confidence interval).": 7,
|
44 |
+
"fig From Figure 1, report the proportion of articles with fully reproducible target values from the random effects model after author contact. Ignore the confidence intervals": 0.62
|
45 |
+
}
|
46 |
+
],
|
47 |
+
"capsule_doi": "https://doi.org/10.24433/CO.1796004.v3"
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"field": "Computer Science",
|
51 |
+
"language": "Python",
|
52 |
+
"capsule_title": "HyperETA: A Non\u2013Deep Learning Method for Estimated Time of Arrival",
|
53 |
+
"capsule_id": "capsule-5367566",
|
54 |
+
"task_prompt": "Run run.ipynb and convert the results to html.",
|
55 |
+
"results": [
|
56 |
+
{
|
57 |
+
"Report the HyperETA MAPE with no DTW.": 17.374344500709498,
|
58 |
+
"Report the HyperETA RMSE with no DTW.": 459.7782074000463,
|
59 |
+
"Report the HyperETA MAE with no DTW.": 323.0
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"Report the HyperETA MAPE with no DTW.": 17.374344500709498,
|
63 |
+
"Report the HyperETA RMSE with no DTW.": 459.7782074000463,
|
64 |
+
"Report the HyperETA MAE with no DTW.": 323.0
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"Report the HyperETA MAPE with no DTW.": 17.374344500709498,
|
68 |
+
"Report the HyperETA RMSE with no DTW.": 459.7782074000463,
|
69 |
+
"Report the HyperETA MAE with no DTW.": 323.0
|
70 |
+
}
|
71 |
+
],
|
72 |
+
"capsule_doi": "https://doi.org/10.24433/CO.3533137.v1"
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"field": "Medical Sciences",
|
76 |
+
"language": "R",
|
77 |
+
"capsule_title": "Research Ethics Committees as an intervention point to promote a priori sample size calculations",
|
78 |
+
"capsule_id": "capsule-9168639",
|
79 |
+
"task_prompt": "Run the analysis.Rmd file using Rscript and output the results in the 'results' directory.",
|
80 |
+
"results": [
|
81 |
+
{
|
82 |
+
"fig Report Institutions Sampled for US in Table 1.": 19,
|
83 |
+
"fig Report Institutions Sampled for UK in Table 1.": 14
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"fig Report Institutions Sampled for US in Table 1.": 19,
|
87 |
+
"fig Report Institutions Sampled for UK in Table 1.": 14
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"fig Report Institutions Sampled for US in Table 1.": 19,
|
91 |
+
"fig Report Institutions Sampled for UK in Table 1.": 14
|
92 |
+
}
|
93 |
+
],
|
94 |
+
"capsule_doi": "https://doi.org/10.24433/CO.0124369.v1"
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"field": "Computer Science",
|
98 |
+
"language": "Python",
|
99 |
+
"capsule_title": "Synthetic Electrocardiogram Attack Method",
|
100 |
+
"capsule_id": "capsule-9166182",
|
101 |
+
"task_prompt": "Run 'Synthetic Electrocardiogram Attack Method.ipynb' and convert the results file to 'html'",
|
102 |
+
"results": [
|
103 |
+
{
|
104 |
+
"For experiment 1, report the adversary errors without SEAM.": 58,
|
105 |
+
"For experiment 1, report the adversary errors with SEAM.": 17,
|
106 |
+
"For experiment 2, report the adversary errors without SEAM.": 27,
|
107 |
+
"For experiment 2, report the adversary errors with SEAM.": 21,
|
108 |
+
"For experiment 3, report the adversary errors without SEAM.": 47,
|
109 |
+
"For experiment 3, report the adversary errors with SEAM.": 19
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"For experiment 1, report the adversary errors without SEAM.": 58,
|
113 |
+
"For experiment 1, report the adversary errors with SEAM.": 17,
|
114 |
+
"For experiment 2, report the adversary errors without SEAM.": 27,
|
115 |
+
"For experiment 2, report the adversary errors with SEAM.": 21,
|
116 |
+
"For experiment 3, report the adversary errors without SEAM.": 47,
|
117 |
+
"For experiment 3, report the adversary errors with SEAM.": 19
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"For experiment 1, report the adversary errors without SEAM.": 58,
|
121 |
+
"For experiment 1, report the adversary errors with SEAM.": 17,
|
122 |
+
"For experiment 2, report the adversary errors without SEAM.": 27,
|
123 |
+
"For experiment 2, report the adversary errors with SEAM.": 21,
|
124 |
+
"For experiment 3, report the adversary errors without SEAM.": 47,
|
125 |
+
"For experiment 3, report the adversary errors with SEAM.": 19
|
126 |
+
}
|
127 |
+
],
|
128 |
+
"capsule_doi": "https://doi.org/10.1109/jsen.2021.3079177"
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"field": "Medical Sciences",
|
132 |
+
"language": "R",
|
133 |
+
"capsule_title": "Identifying Predictors of Within-person Variance in MRI-based Brain Volume estimates",
|
134 |
+
"capsule_id": "capsule-0325493",
|
135 |
+
"task_prompt": "Run 'main.R' using Rscript",
|
136 |
+
"results": [
|
137 |
+
{
|
138 |
+
"For the within-variance improvements, report the improvement for the FS_TotalGrayVol outcome with the Day variable.": 1.8,
|
139 |
+
"For the within-variance improvements, report the improvement for the FS_CortexVol outcome with the Day variable.": 1.75,
|
140 |
+
"fig Report the name of the model, LASSO or Random Forest, which has the higher out-of-sample R^2 in % for FS-GM.": "LASSO"
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"For the within-variance improvements, report the improvement for the FS_TotalGrayVol outcome with the Day variable.": 1.8,
|
144 |
+
"For the within-variance improvements, report the improvement for the FS_CortexVol outcome with the Day variable.": 1.75,
|
145 |
+
"fig Report the name of the model, LASSO or Random Forest, which has the higher out-of-sample R^2 in % for FS-GM.": "LASSO"
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"For the within-variance improvements, report the improvement for the FS_TotalGrayVol outcome with the Day variable.": 1.8,
|
149 |
+
"For the within-variance improvements, report the improvement for the FS_CortexVol outcome with the Day variable.": 1.75,
|
150 |
+
"fig Report the name of the model, LASSO or Random Forest, which has the higher out-of-sample R^2 in % for FS-GM.": "LASSO"
|
151 |
+
}
|
152 |
+
],
|
153 |
+
"capsule_doi": "https://doi.org/10.24433/CO.3688518.v1"
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"field": "Medical Sciences",
|
157 |
+
"language": "Python",
|
158 |
+
"capsule_title": "An Attention-based CNN-BiLSTM Hybrid Neural Network Enhanced with Features of Discrete Wavelet Transformation for Fetal Acidosis Classification",
|
159 |
+
"capsule_id": "capsule-1854976",
|
160 |
+
"task_prompt": "Run the 'evaluation.py' file.",
|
161 |
+
"results": [
|
162 |
+
{
|
163 |
+
"Report the final sensitivity (Sen1) after the ten different verifications.": 75.23,
|
164 |
+
"Report the final specificity (Spe1) after the ten different verifications.": 70.82,
|
165 |
+
"Report the final quality index (QI) after the ten different verifications.": 72.29
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"Report the final sensitivity (Sen1) after the ten different verifications.": 75.23,
|
169 |
+
"Report the final specificity (Spe1) after the ten different verifications.": 70.82,
|
170 |
+
"Report the final quality index (QI) after the ten different verifications.": 72.29
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"Report the final sensitivity (Sen1) after the ten different verifications.": 75.23,
|
174 |
+
"Report the final specificity (Spe1) after the ten different verifications.": 70.82,
|
175 |
+
"Report the final quality index (QI) after the ten different verifications.": 72.29
|
176 |
+
}
|
177 |
+
],
|
178 |
+
"capsule_doi": "https://doi.org/10.24433/CO.4834924.v1"
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"field": "Computer Science",
|
182 |
+
"language": "R",
|
183 |
+
"capsule_title": "Development of an Internet of Things Solution to Monitor and Analyse Indoor Air Quality",
|
184 |
+
"capsule_id": "capsule-9022937",
|
185 |
+
"task_prompt": "Run 'IAQ-PostCollection-Analysis.R' using Rscript.",
|
186 |
+
"results": [
|
187 |
+
{
|
188 |
+
"fig From the Experimental IAQ Data graph, report the y-axis label.": "Gas Resistance",
|
189 |
+
"fig From the Indoor Air Quality - Kitchen - Autumn plot, report the correlation between hum and gas.": -0.773
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"fig From the Experimental IAQ Data graph, report the y-axis label.": "Gas Resistance",
|
193 |
+
"fig From the Indoor Air Quality - Kitchen - Autumn plot, report the correlation between hum and gas.": -0.773
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"fig From the Experimental IAQ Data graph, report the y-axis label.": "Gas Resistance",
|
197 |
+
"fig From the Indoor Air Quality - Kitchen - Autumn plot, report the correlation between hum and gas.": -0.773
|
198 |
+
}
|
199 |
+
],
|
200 |
+
"capsule_doi": "https://doi.org/10.24433/CO.2005560.v1"
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"field": "Computer Science",
|
204 |
+
"language": "Python",
|
205 |
+
"capsule_title": "Low-Latency Live Video Streaming over a Low-Earth-Orbit Satellite Network with DASH",
|
206 |
+
"capsule_id": "capsule-8197429",
|
207 |
+
"task_prompt": "Run 'plot.sh'.",
|
208 |
+
"results": [
|
209 |
+
{
|
210 |
+
"fig From the figure measuring average bitrate (Kbps) over the Starlink network, report the name of the model with the highest average bitrate for 5 seconds of latency.": "L2A-LL",
|
211 |
+
"fig From the figure measuring average RTT without ISL, report the x-axis label.": "Seconds"
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"fig From the figure measuring average bitrate (Kbps) over the Starlink network, report the name of the model with the highest average bitrate for 5 seconds of latency.": "L2A-LL",
|
215 |
+
"fig From the figure measuring average RTT without ISL, report the x-axis label.": "Seconds"
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"fig From the figure measuring average bitrate (Kbps) over the Starlink network, report the name of the model with the highest average bitrate for 5 seconds of latency.": "L2A-LL",
|
219 |
+
"fig From the figure measuring average RTT without ISL, report the x-axis label.": "Seconds"
|
220 |
+
}
|
221 |
+
],
|
222 |
+
"capsule_doi": "https://doi.org/10.24433/CO.7355266.v1"
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"field": "Social Sciences",
|
226 |
+
"language": "R",
|
227 |
+
"capsule_title": "Example of compute capsule for the book chapter \"Developing and Disseminating Data Analysis Tools for Open Science\"",
|
228 |
+
"capsule_id": "capsule-2916503",
|
229 |
+
"task_prompt": "Run 'code.R' using Rscript",
|
230 |
+
"results": [
|
231 |
+
{
|
232 |
+
"Report the Variances estimate for Exam1.": 118.195,
|
233 |
+
"Report the Variances estimate for Exam2.": 124.754,
|
234 |
+
"Report the Variances estimate for Exam3.": 87.973
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"Report the Variances estimate for Exam1.": 118.195,
|
238 |
+
"Report the Variances estimate for Exam2.": 124.754,
|
239 |
+
"Report the Variances estimate for Exam3.": 87.973
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"Report the Variances estimate for Exam1.": 118.195,
|
243 |
+
"Report the Variances estimate for Exam2.": 124.754,
|
244 |
+
"Report the Variances estimate for Exam3.": 87.973
|
245 |
+
}
|
246 |
+
],
|
247 |
+
"capsule_doi": "https://doi.org/10.24433/CO.8235849.v1"
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"field": "Medical Sciences",
|
251 |
+
"language": "Python",
|
252 |
+
"capsule_title": "Fully automatic atrial fibrillation screening and atrial fibrillation detection",
|
253 |
+
"capsule_id": "capsule-0201225",
|
254 |
+
"task_prompt": "Run 'main.py'.",
|
255 |
+
"results": [
|
256 |
+
{
|
257 |
+
"Report the AUC at the 'sample-level'.": 0.998,
|
258 |
+
"Report the sensitivity at the 'sample-level'.": 0.966,
|
259 |
+
"Report the specificity at the 'sample-level'.": 0.994,
|
260 |
+
"Report the accuracy at the 'sample-level'.": 0.992,
|
261 |
+
"Report the AUC at the 'patient-level'.": 0.998,
|
262 |
+
"Report the sensitivity at the 'patient-level'.": 1.0,
|
263 |
+
"Report the specificity at the 'patient-level'.": 0.972,
|
264 |
+
"Report the accuracy at the 'patient-level'.": 0.978
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"Report the AUC at the 'sample-level'.": 0.998,
|
268 |
+
"Report the sensitivity at the 'sample-level'.": 0.966,
|
269 |
+
"Report the specificity at the 'sample-level'.": 0.994,
|
270 |
+
"Report the accuracy at the 'sample-level'.": 0.992,
|
271 |
+
"Report the AUC at the 'patient-level'.": 0.998,
|
272 |
+
"Report the sensitivity at the 'patient-level'.": 1.0,
|
273 |
+
"Report the specificity at the 'patient-level'.": 0.972,
|
274 |
+
"Report the accuracy at the 'patient-level'.": 0.978
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"Report the AUC at the 'sample-level'.": 0.998,
|
278 |
+
"Report the sensitivity at the 'sample-level'.": 0.966,
|
279 |
+
"Report the specificity at the 'sample-level'.": 0.994,
|
280 |
+
"Report the accuracy at the 'sample-level'.": 0.992,
|
281 |
+
"Report the AUC at the 'patient-level'.": 0.998,
|
282 |
+
"Report the sensitivity at the 'patient-level'.": 1.0,
|
283 |
+
"Report the specificity at the 'patient-level'.": 0.972,
|
284 |
+
"Report the accuracy at the 'patient-level'.": 0.978
|
285 |
+
}
|
286 |
+
],
|
287 |
+
"capsule_doi": "https://doi.org/10.24433/CO.8603914.v1"
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"field": "Medical Sciences",
|
291 |
+
"language": "R",
|
292 |
+
"capsule_title": "Intermittent Drug Treatment of BRAF<sup>V600E</sup> Melanoma Cells Delays Resistance by Sensitizing Cells to Rechallenge",
|
293 |
+
"capsule_id": "capsule-9070543",
|
294 |
+
"task_prompt": "Make the Dose_Response_Script_Output, RNA_Seq_Script_Output, Resistance_and_Sensitivity_Genes_Script_Output, Fig6c_Script_Output folders in the results folder to store the outputs. Then run the .Rmd files in this order: Dose_Response_Script.Rmd, RNA_Seq_Script.Rmd, Figure_6c_Script.Rmd. Store the outputs in ../results in the respective results folders. ",
|
295 |
+
"results": [
|
296 |
+
{
|
297 |
+
"fig From the figure 4 continuous dose response, report the name of the sample with the highest normalized cell number at an LGX818 concentration of 0.": "Vector Control"
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"fig From the figure 4 continuous dose response, report the name of the sample with the highest normalized cell number at an LGX818 concentration of 0.": "Vector Control"
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"fig From the figure 4 continuous dose response, report the name of the sample with the highest normalized cell number at an LGX818 concentration of 0.": "Vector Control"
|
304 |
+
}
|
305 |
+
],
|
306 |
+
"capsule_doi": "https://doi.org/10.24433/CO.4dfd5a01-8d79-40ac-9d7a-10915b8b0e2e"
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"field": "Social Sciences",
|
310 |
+
"language": "R",
|
311 |
+
"capsule_title": "Effectiveness and equity of Payments for Ecosystem Services: Real-effort experiments with Vietnamese land users",
|
312 |
+
"capsule_id": "capsule-1108125",
|
313 |
+
"task_prompt": "Run 'analysis.R' using Rscript.",
|
314 |
+
"results": [
|
315 |
+
{
|
316 |
+
"Please report the mean of forestgroup.": 0.34,
|
317 |
+
"Please report the mean of gender.": 0.46,
|
318 |
+
"Please report the mean of income.": 1.0,
|
319 |
+
"fig Report 'decrease' if the eigen values of factors and components decreases as the factor or component number increases. Report 'increase' otherwise.": "decrease"
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"Please report the mean of forestgroup.": 0.34,
|
323 |
+
"Please report the mean of gender.": 0.46,
|
324 |
+
"Please report the mean of income.": 1.0,
|
325 |
+
"fig Report 'decrease' if the eigen values of factors and components decreases as the factor or component number increases. Report 'increase' otherwise.": "decrease"
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"Please report the mean of forestgroup.": 0.34,
|
329 |
+
"Please report the mean of gender.": 0.46,
|
330 |
+
"Please report the mean of income.": 1.0,
|
331 |
+
"fig Report 'decrease' if the eigen values of factors and components decreases as the factor or component number increases. Report 'increase' otherwise.": "decrease"
|
332 |
+
}
|
333 |
+
],
|
334 |
+
"capsule_doi": "https://doi.org/10.1016/j.landusepol.2019.05.010"
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"field": "Medical Sciences",
|
338 |
+
"language": "Python",
|
339 |
+
"capsule_title": "Diagnosis of epilepsy based on EEG",
|
340 |
+
"capsule_id": "capsule-6746514",
|
341 |
+
"task_prompt": "Run 'NewData_ML_Kfold.py'. Then, run all python files starting with \"fig_\" in the folder.",
|
342 |
+
"results": [
|
343 |
+
{
|
344 |
+
"fig For dataset 1, report the score (%) for the GRU classifier for ACC.": 92.76,
|
345 |
+
"fig For dataset 1, report the score (%) for the SGRU classifier for ACC.": 97.33,
|
346 |
+
"fig Report the count of Class 3.": 2300
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"fig For dataset 1, report the score (%) for the GRU classifier for ACC.": 92.76,
|
350 |
+
"fig For dataset 1, report the score (%) for the SGRU classifier for ACC.": 97.33,
|
351 |
+
"fig Report the count of Class 3.": 2300
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"fig For dataset 1, report the score (%) for the GRU classifier for ACC.": 92.76,
|
355 |
+
"fig For dataset 1, report the score (%) for the SGRU classifier for ACC.": 97.33,
|
356 |
+
"fig Report the count of Class 3.": 2300
|
357 |
+
}
|
358 |
+
],
|
359 |
+
"capsule_doi": "https://doi.org/10.24433/CO.3019596.v2"
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"field": "Medical Sciences",
|
363 |
+
"language": "R",
|
364 |
+
"capsule_title": "Measuring the effects of exercise in neuromuscular disorders: a systematic review and meta-analyses",
|
365 |
+
"capsule_id": "capsule-1683542",
|
366 |
+
"task_prompt": "Export the following R default packages: datasets,utils,grDevices,graphics,stats,methods. Then run 'main.R'.",
|
367 |
+
"results": [
|
368 |
+
{
|
369 |
+
"fig From Figure 2, report the Observed SMD for Bankole et al. 2016. Ignore the confidence interval.": 0.5,
|
370 |
+
"fig From Figure 12, report the Observed SMD for Jeppesen et al. 2006. Ignore the confidence interval.": 0.28
|
371 |
+
},
|
372 |
+
{
|
373 |
+
"fig From Figure 2, report the Observed SMD for Bankole et al. 2016. Ignore the confidence interval.": 0.5,
|
374 |
+
"fig From Figure 12, report the Observed SMD for Jeppesen et al. 2006. Ignore the confidence interval.": 0.28
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"fig From Figure 2, report the Observed SMD for Bankole et al. 2016. Ignore the confidence interval.": 0.5,
|
378 |
+
"fig From Figure 12, report the Observed SMD for Jeppesen et al. 2006. Ignore the confidence interval.": 0.28
|
379 |
+
}
|
380 |
+
],
|
381 |
+
"capsule_doi": "https://doi.org/10.24433/CO.9997621.v2"
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"field": "Computer Science",
|
385 |
+
"language": "Python",
|
386 |
+
"capsule_title": "PyTorch-based implementation of label-aware graph representation for multi-class trajectory prediction",
|
387 |
+
"capsule_id": "capsule-5286757",
|
388 |
+
"task_prompt": "Run 'train_2D3D.py' and train on the 2D traffic prediction",
|
389 |
+
"results": [
|
390 |
+
{
|
391 |
+
"Report the train loss after training the final epoch (epoch 9).": 0.04598272387846722
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"Report the train loss after training the final epoch (epoch 9).": 0.05381510184042584
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"Report the train loss after training the final epoch (epoch 9).": 0.0502882808202249
|
398 |
+
}
|
399 |
+
],
|
400 |
+
"capsule_doi": "https://doi.org/10.24433/CO.8913413.v1"
|
401 |
+
},
|
402 |
+
{
|
403 |
+
"field": "Computer Science",
|
404 |
+
"language": "Python",
|
405 |
+
"capsule_title": "Dual Attention-Based Federated Learning for Wireless Traffic Prediction",
|
406 |
+
"capsule_id": "capsule-4884085",
|
407 |
+
"task_prompt": "Run 'fed_dual_att.py'",
|
408 |
+
"results": [
|
409 |
+
{
|
410 |
+
"Report the MSE for the file trento.h5.": 4.2629
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"Report the MSE for the file trento.h5.": 4.2629
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"Report the MSE for the file trento.h5.": 4.2629
|
417 |
+
}
|
418 |
+
],
|
419 |
+
"capsule_doi": "https://doi.org/10.24433/CO.4767521.v1"
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"field": "Computer Science",
|
423 |
+
"language": "Python",
|
424 |
+
"capsule_title": "CULP: Classification Using Link Prediction",
|
425 |
+
"capsule_id": "capsule-6460826",
|
426 |
+
"task_prompt": "Run 'iris_sample.py', 'zoo_sample.py', and 'wine_sample.py'",
|
427 |
+
"results": [
|
428 |
+
{
|
429 |
+
"Report the CN prediction accuracy for the Iris dataset.": 100,
|
430 |
+
"Report the AA prediction acccuracy for the Iris dataset.": 100,
|
431 |
+
"Report the CN prediction acccuracy for the Zoo dataset.": 100,
|
432 |
+
"Report the AA prediction acccuracy for the Zoo dataset.": 100,
|
433 |
+
"Report the CN prediction acccuracy for the Wine dataset.": 97.22,
|
434 |
+
"Report the AA prediction acccuracy for the Wine dataset.": 97.22
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"Report the CN prediction accuracy for the Iris dataset.": 100,
|
438 |
+
"Report the AA prediction acccuracy for the Iris dataset.": 100,
|
439 |
+
"Report the CN prediction acccuracy for the Zoo dataset.": 100,
|
440 |
+
"Report the AA prediction acccuracy for the Zoo dataset.": 100,
|
441 |
+
"Report the CN prediction acccuracy for the Wine dataset.": 97.22,
|
442 |
+
"Report the AA prediction acccuracy for the Wine dataset.": 97.22
|
443 |
+
},
|
444 |
+
{
|
445 |
+
"Report the CN prediction accuracy for the Iris dataset.": 100,
|
446 |
+
"Report the AA prediction acccuracy for the Iris dataset.": 100,
|
447 |
+
"Report the CN prediction acccuracy for the Zoo dataset.": 100,
|
448 |
+
"Report the AA prediction acccuracy for the Zoo dataset.": 100,
|
449 |
+
"Report the CN prediction acccuracy for the Wine dataset.": 97.22,
|
450 |
+
"Report the AA prediction acccuracy for the Wine dataset.": 97.22
|
451 |
+
}
|
452 |
+
],
|
453 |
+
"capsule_doi": "https://doi.org/10.24433/CO.0609cc4f-8b95-4d94-8fd0-9456d262b3a5"
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"field": "Computer Science",
|
457 |
+
"language": "Python",
|
458 |
+
"capsule_title": "Multi-Label Classification via Adaptive Resonance Theory-Based Clustering",
|
459 |
+
"capsule_id": "capsule-4098236",
|
460 |
+
"task_prompt": "Run 'mainMLCA.py'.",
|
461 |
+
"results": [
|
462 |
+
{
|
463 |
+
"Report the exact match of the classification.": 0.27338983050847454,
|
464 |
+
"Report the hamming loss of the classification.": 0.2262241054613936
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"Report the exact match of the classification.": 0.27338983050847454,
|
468 |
+
"Report the hamming loss of the classification.": 0.2262241054613936
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"Report the exact match of the classification.": 0.27338983050847454,
|
472 |
+
"Report the hamming loss of the classification.": 0.2262241054613936
|
473 |
+
}
|
474 |
+
],
|
475 |
+
"capsule_doi": "https://doi.org/10.24433/CO.1722889.v2"
|
476 |
+
},
|
477 |
+
{
|
478 |
+
"field": "Computer Science",
|
479 |
+
"language": "Python",
|
480 |
+
"capsule_title": "ExPSO Package: Exponential Particle Swarm Optimization for Global Optimization",
|
481 |
+
"capsule_id": "capsule-5975162",
|
482 |
+
"task_prompt": "Run 'ExPSOWithClassicalBenchmark02.py'.",
|
483 |
+
"results": [
|
484 |
+
{
|
485 |
+
"Report the mean metric from the output.": 4.440892098500626e-16,
|
486 |
+
"Report the Avg FES from the output.": 96.7741935483871
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"Report the mean metric from the output.": 4.440892098500626e-16,
|
490 |
+
"Report the Avg FES from the output.": 96.7741935483871
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"Report the mean metric from the output.": 4.440892098500626e-16,
|
494 |
+
"Report the Avg FES from the output.": 96.7741935483871
|
495 |
+
}
|
496 |
+
],
|
497 |
+
"capsule_doi": "https://doi.org/10.24433/CO.9863420.v1"
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"field": "Computer Science",
|
501 |
+
"language": "Python",
|
502 |
+
"capsule_title": "Linked Dynamic Graph CNN: Learning through Point Cloud by Linking Hierarchical Features",
|
503 |
+
"capsule_id": "capsule-0220918",
|
504 |
+
"task_prompt": "Run 'evaluate.py'. Unzip ../data/shapenetcore_partanno_v0.zip into the ../data directory. Run 'part_seg/test.py'.",
|
505 |
+
"results": [
|
506 |
+
{
|
507 |
+
"Report the eval mean loss from the classification.": 1.469021,
|
508 |
+
"Report the eval accuracy from the classification.": 0.931818
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"Report the eval mean loss from the classification.": 1.469021,
|
512 |
+
"Report the eval accuracy from the classification.": 0.931818
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"Report the eval mean loss from the classification.": 1.469021,
|
516 |
+
"Report the eval accuracy from the classification.": 0.931818
|
517 |
+
}
|
518 |
+
],
|
519 |
+
"capsule_doi": "https://doi.org/10.24433/CO.1730466.v1"
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"field": "Computer Science",
|
523 |
+
"language": "Python",
|
524 |
+
"capsule_title": "Code for paper Graph Neural Networks for Individual Treatment Effect Estimation",
|
525 |
+
"capsule_id": "capsule-4645832",
|
526 |
+
"task_prompt": "Run 'main_hyper.py'.",
|
527 |
+
"results": [
|
528 |
+
{
|
529 |
+
"Report the test mean of the model.": 0.3470596925303306
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"Report the test mean of the model.": 0.3470596925303306
|
533 |
+
},
|
534 |
+
{
|
535 |
+
"Report the test mean of the model.": 0.3470596925303306
|
536 |
+
}
|
537 |
+
],
|
538 |
+
"capsule_doi": "https://doi.org/10.24433/CO.3379007.v1"
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"field": "Computer Science",
|
542 |
+
"language": "Python",
|
543 |
+
"capsule_title": "Mining Emerging Fuzzy-Temporal Gradual Patterns [BorderT-GRAANK]",
|
544 |
+
"capsule_id": "capsule-2011424",
|
545 |
+
"task_prompt": "Run 'algorithms/border_tgraank.py'.",
|
546 |
+
"results": [
|
547 |
+
{
|
548 |
+
"Report the number of FtGEPs found.": 17
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"Report the number of FtGEPs found.": 17
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"Report the number of FtGEPs found.": 17
|
555 |
+
}
|
556 |
+
],
|
557 |
+
"capsule_doi": "https://doi.org/10.24433/CO.7826231.v1"
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"field": "Computer Science",
|
561 |
+
"language": "Python",
|
562 |
+
"capsule_title": "SybilFlyover: Heterogeneous Graph-Based Fake Account Detection Model on Social Networks",
|
563 |
+
"capsule_id": "capsule-3249574",
|
564 |
+
"task_prompt": "Run 'sybilflyover_model.py '.",
|
565 |
+
"results": [
|
566 |
+
{
|
567 |
+
"Report the F1-score after epoch 200.": 0.94743
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"Report the F1-score after epoch 200.": 0.95698
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"Report the F1-score after epoch 200.": 0.99188
|
574 |
+
}
|
575 |
+
],
|
576 |
+
"capsule_doi": "https://doi.org/10.24433/CO.9860846.v1"
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"field": "Social Sciences",
|
580 |
+
"language": "R",
|
581 |
+
"capsule_title": "A Standard for the Scholarly Citation of Archaeological Data",
|
582 |
+
"capsule_id": "capsule-5777882",
|
583 |
+
"task_prompt": "Run the paper.Rmd file using Rscript and as an HTML in the \"../results\" folder. Set clean to 'TRUE'.",
|
584 |
+
"results": [
|
585 |
+
{
|
586 |
+
"fig Report the name of the license with the greatest number of DOIs.": "ADS",
|
587 |
+
"fig Report the name of the language (the abbreviation, as presented in the plot) with the least number of DOIs.": "it"
|
588 |
+
},
|
589 |
+
{
|
590 |
+
"fig Report the name of the license with the greatest number of DOIs.": "ADS",
|
591 |
+
"fig Report the name of the language (the abbreviation, as presented in the plot) with the least number of DOIs.": "it"
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"fig Report the name of the license with the greatest number of DOIs.": "ADS",
|
595 |
+
"fig Report the name of the language (the abbreviation, as presented in the plot) with the least number of DOIs.": "it"
|
596 |
+
}
|
597 |
+
],
|
598 |
+
"capsule_doi": "https://doi.org/10.24433/CO.ca12b3f0-55a2-4eba-9687-168c8281e535"
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"field": "Computer Science",
|
602 |
+
"language": "Python",
|
603 |
+
"capsule_title": "Replication files for Neurons Learn by Predicting Future Activity",
|
604 |
+
"capsule_id": "capsule-9370340",
|
605 |
+
"task_prompt": "Run 'CHL_clamped.py'.",
|
606 |
+
"results": [
|
607 |
+
{
|
608 |
+
"Report the accuracy for testing after epoch 3.": 0.86289996
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"Report the accuracy for testing after epoch 3.": 0.8885
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"Report the accuracy for testing after epoch 3.": 0.8803
|
615 |
+
}
|
616 |
+
],
|
617 |
+
"capsule_doi": "https://doi.org/10.24433/CO.9801818.v1"
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"field": "Social Sciences",
|
621 |
+
"language": "Python",
|
622 |
+
"capsule_title": "Less Annotating, More Classifying: Addressing the Data Scarcity Issue of Supervised Machine Learning with Deep Transfer Learning and BERT-NLI",
|
623 |
+
"capsule_id": "capsule-4807644",
|
624 |
+
"task_prompt": "Run 'data-analysis-viz.py' and 'appendix.py'",
|
625 |
+
"results": [
|
626 |
+
{
|
627 |
+
"fig Report the name of the model that has the highest aggregate F1 Macro score for 500 random traning samples.": "BERT-NLI",
|
628 |
+
"fig Report the name of the model that has the lowest aggregate F1 Macro score for 500 random traning samples.": "majority baseline"
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"fig Report the name of the model that has the highest aggregate F1 Macro score for 500 random traning samples.": "BERT-NLI",
|
632 |
+
"fig Report the name of the model that has the lowest aggregate F1 Macro score for 500 random traning samples.": "majority baseline"
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"fig Report the name of the model that has the highest aggregate F1 Macro score for 500 random traning samples.": "BERT-NLI",
|
636 |
+
"fig Report the name of the model that has the lowest aggregate F1 Macro score for 500 random traning samples.": "majority baseline"
|
637 |
+
}
|
638 |
+
],
|
639 |
+
"capsule_doi": "https://doi.org/10.24433/CO.5414009.v2"
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"field": "Social Sciences",
|
643 |
+
"language": "R",
|
644 |
+
"capsule_title": "Reducing meat and animal product consumption: what works?",
|
645 |
+
"capsule_id": "capsule-1906954",
|
646 |
+
"task_prompt": "Run ''./vegan-meta-pap.Rmd' and './vegan-meta.Rmd' using Rscript and render them as html. Store the output in ../results.",
|
647 |
+
"results": [
|
648 |
+
{
|
649 |
+
"Report the Delta value for Italy.": 0.459,
|
650 |
+
"Report the Delta value for adults.": 0.092
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"Report the Delta value for Italy.": 0.459,
|
654 |
+
"Report the Delta value for adults.": 0.092
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"Report the Delta value for Italy.": 0.459,
|
658 |
+
"Report the Delta value for adults.": 0.092
|
659 |
+
}
|
660 |
+
],
|
661 |
+
"capsule_doi": "https://doi.org/10.24433/CO.6020578.v1"
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"field": "Social Sciences",
|
665 |
+
"language": "R",
|
666 |
+
"capsule_title": "Best Practices in Supervised Machine Learning: A Tutorial for Psychologists",
|
667 |
+
"capsule_id": "capsule-9348218",
|
668 |
+
"task_prompt": "Run manuscript.Rmd using Rscript and render it as a pdf. Record package information as sessionInfo_manuscript.txt. Clear all newly created files in /code between runs. Run electronic_supplemental_material.Rmd using Rscript and render it as a pdf. Record package information as sessionInfo_electronic_supplemental_material.txt. Clear all newly created files in /code between runs. Save all output for both parts in ../results.",
|
669 |
+
"results": [
|
670 |
+
{
|
671 |
+
"fig From Figure 3 panel A, report the label of the green line.": "flexibility too low",
|
672 |
+
"fig From Figure 1, report the numerical value of N for example 1 (the first row).": 12
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"fig From Figure 3 panel A, report the label of the green line.": "flexibility too low",
|
676 |
+
"fig From Figure 1, report the numerical value of N for example 1 (the first row).": 12
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"fig From Figure 3 panel A, report the label of the green line.": "flexibility too low",
|
680 |
+
"fig From Figure 1, report the numerical value of N for example 1 (the first row).": 12
|
681 |
+
}
|
682 |
+
],
|
683 |
+
"capsule_doi": "https://doi.org/10.24433/CO.5687964.v1"
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"field": "Computer Science",
|
687 |
+
"language": "Python",
|
688 |
+
"capsule_title": "A University Admission Prediction System using Stacked Ensemble Learning",
|
689 |
+
"capsule_id": "capsule-0238624",
|
690 |
+
"task_prompt": "Run 'ensemble.py'.",
|
691 |
+
"results": [
|
692 |
+
{
|
693 |
+
"Report the macro avg precision from the classification report.": 0.88,
|
694 |
+
"Report the macro avg recall from the classification report.": 0.88
|
695 |
+
},
|
696 |
+
{
|
697 |
+
"Report the macro avg precision from the classification report.": 0.87,
|
698 |
+
"Report the macro avg recall from the classification report.": 0.87
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"Report the macro avg precision from the classification report.": 0.88,
|
702 |
+
"Report the macro avg recall from the classification report.": 0.88
|
703 |
+
}
|
704 |
+
],
|
705 |
+
"capsule_doi": "https://doi.org/10.24433/CO.1531178.v1"
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"field": "Computer Science",
|
709 |
+
"language": "Python",
|
710 |
+
"capsule_title": "VisGIN: Visibility Graph Neural Network on One-Dimensional Data for Biometric Authentication",
|
711 |
+
"capsule_id": "capsule-3272782",
|
712 |
+
"task_prompt": "Run 'VisGIN.py'",
|
713 |
+
"results": [
|
714 |
+
{
|
715 |
+
"Report Average accuracy for the VisGIN model.": 0.995,
|
716 |
+
"Report Average FNMR for the VisGIN model.": 0.01,
|
717 |
+
"Report Average FMR for the VisGIN model.": 0.0
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"Report Average accuracy for the VisGIN model.": 1.0,
|
721 |
+
"Report Average FNMR for the VisGIN model.": 0.0,
|
722 |
+
"Report Average FMR for the VisGIN model.": 0.0
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"Report Average accuracy for the VisGIN model.": 0.99,
|
726 |
+
"Report Average FNMR for the VisGIN model.": 0.018,
|
727 |
+
"Report Average FMR for the VisGIN model.": 0.0
|
728 |
+
}
|
729 |
+
],
|
730 |
+
"capsule_doi": "https://doi.org/10.24433/CO.3350600.v1"
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"field": "Social Sciences",
|
734 |
+
"language": "R",
|
735 |
+
"capsule_title": "GazeR-Pupil and Gaze Processing",
|
736 |
+
"capsule_id": "capsule-4600160",
|
737 |
+
"task_prompt": "Run \"Gazer_walkthrough.R\" using Rscript.",
|
738 |
+
"results": [
|
739 |
+
{
|
740 |
+
"fig Report the name of the script with the lowest pupil dilation at 1500 m/s.": "print"
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"fig Report the name of the script with the lowest pupil dilation at 1500 m/s.": "print"
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"fig Report the name of the script with the lowest pupil dilation at 1500 m/s.": "print"
|
747 |
+
}
|
748 |
+
],
|
749 |
+
"capsule_doi": "https://doi.org/10.24433/CO.0149895.v2"
|
750 |
+
},
|
751 |
+
{
|
752 |
+
"field": "Social Sciences",
|
753 |
+
"language": "R",
|
754 |
+
"capsule_title": "Code for: Self-esteem, relationship threat, and dependency regulation: Independent replication of Murray, Rose, Bellavia, Holmes, and Kusche (2002) Study 3",
|
755 |
+
"capsule_id": "capsule-1324693",
|
756 |
+
"task_prompt": "Run 'main.Rmd' using Rscript and render it as as html to the output directory ../results",
|
757 |
+
"results": [
|
758 |
+
{
|
759 |
+
"fig Report the y-axis label of the subplot measuring Normal Q-Q": "Standardized residuals",
|
760 |
+
"fig Report the y-axis label of fig 1.": "Scores on Manipulation Check Index"
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"fig Report the y-axis label of the subplot measuring Normal Q-Q": "Standardized residuals",
|
764 |
+
"fig Report the y-axis label of fig 1.": "Scores on Manipulation Check Index"
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"fig Report the y-axis label of the subplot measuring Normal Q-Q": "Standardized residuals",
|
768 |
+
"fig Report the y-axis label of fig 1.": "Scores on Manipulation Check Index"
|
769 |
+
}
|
770 |
+
],
|
771 |
+
"capsule_doi": "https://doi.org/10.24433/CO.0432690.v2"
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"field": "Social Sciences",
|
775 |
+
"language": "R",
|
776 |
+
"capsule_title": "Replication Material for \"The Subconscious Effect of Subtle Media Bias on Perceptions of Terrorism\" appearing in American Politics Research (APR)",
|
777 |
+
"capsule_id": "capsule-6133093",
|
778 |
+
"task_prompt": "Run 'mediabiasreplication.Rmd' using Rscript and render it as html. Store the output in the ../results directory. Set clean to 'TRUE'.",
|
779 |
+
"results": [
|
780 |
+
{
|
781 |
+
"Report the estimate for the Label2 attribute and Attackers level in the Average Marginal Component Effects (AMCE) table of model6_c": 0.0685169
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"Report the estimate for the Label2 attribute and Attackers level in the Average Marginal Component Effects (AMCE) table of model6_c": 0.0685169
|
785 |
+
},
|
786 |
+
{
|
787 |
+
"Report the estimate for the Label2 attribute and Attackers level in the Average Marginal Component Effects (AMCE) table of model6_c": 0.0685169
|
788 |
+
}
|
789 |
+
],
|
790 |
+
"capsule_doi": "https://doi.org/10.24433/CO.0762621.v1"
|
791 |
+
},
|
792 |
+
{
|
793 |
+
"field": "Computer Science",
|
794 |
+
"language": "Python",
|
795 |
+
"capsule_title": "GERNERMED Named Entity Recognizer",
|
796 |
+
"capsule_id": "capsule-0396930",
|
797 |
+
"task_prompt": "Set up the GERNERMED component package using pip install and the python3 -m flag with the file './de_GERNERMED-1.0.0.tar.gz'. Using the python3 -m flag, and spacy, evaluate the model '/data/gernermed_pipeline' with the data path '/data/ner_medical.test.spacy' and the output directory 'results/eval_scores.json'. Run the annotation demo '/code/example_simple.py' and pipe the output to '/results/annotation_example.txt'. ",
|
798 |
+
"results": [
|
799 |
+
{
|
800 |
+
"Report the f1 score of the 'duration' entity tag (out of 1).": 0.59375,
|
801 |
+
"Report the precision of the 'drug' entity tag (out of 1).": 0.6733021077
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"Report the f1 score of the 'duration' entity tag (out of 1).": 0.59375,
|
805 |
+
"Report the precision of the 'drug' entity tag (out of 1).": 0.6733021077
|
806 |
+
},
|
807 |
+
{
|
808 |
+
"Report the f1 score of the 'duration' entity tag (out of 1).": 0.59375,
|
809 |
+
"Report the precision of the 'drug' entity tag (out of 1).": 0.6733021077
|
810 |
+
}
|
811 |
+
],
|
812 |
+
"capsule_doi": "https://doi.org/10.24433/CO.9292630.v1"
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"field": "Social Sciences",
|
816 |
+
"language": "R",
|
817 |
+
"capsule_title": "Integrating Data Across Misaligned Spatial Units",
|
818 |
+
"capsule_id": "capsule-7981862",
|
819 |
+
"task_prompt": "Run 'master.R' using Rscript.",
|
820 |
+
"results": [
|
821 |
+
{
|
822 |
+
"fig Report the middle decile (50%) median RMSE for the Monte Carlo results by CoS algorithm.": 0.64
|
823 |
+
},
|
824 |
+
{
|
825 |
+
"fig Report the middle decile (50%) median RMSE for the Monte Carlo results by CoS algorithm.": 0.64
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"fig Report the middle decile (50%) median RMSE for the Monte Carlo results by CoS algorithm.": 0.64
|
829 |
+
}
|
830 |
+
],
|
831 |
+
"capsule_doi": "https://doi.org/10.24433/CO.9257130.v1"
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"field": "Social Sciences",
|
835 |
+
"language": "R",
|
836 |
+
"capsule_title": "A Delphi study to strengthen research methods training in undergraduate psychology programmes",
|
837 |
+
"capsule_id": "capsule-2061060",
|
838 |
+
"task_prompt": "Run 'manuscript.Rmd' using Rscript and render it as a pdf. Store the results in ../results. Set clean to 'TRUE'.",
|
839 |
+
"results": [
|
840 |
+
{
|
841 |
+
"fig From supplementary table 2, report the % reaching consensus for the quant domain.": 50
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"fig From supplementary table 2, report the % reaching consensus for the quant domain.": 50
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"fig From supplementary table 2, report the % reaching consensus for the quant domain.": 50
|
848 |
+
}
|
849 |
+
],
|
850 |
+
"capsule_doi": "https://doi.org/10.24433/CO.0483372.v1"
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"field": "Computer Science",
|
854 |
+
"language": "Python",
|
855 |
+
"capsule_title": "WABL Method as a Universal Defuzzifier in the Fuzzy Gradient Boosting Regression Model",
|
856 |
+
"capsule_id": "capsule-0940461",
|
857 |
+
"task_prompt": "Execute 'FGBR_OC.ipynb'. Save the results in html format in ../results. For all the runs, disable the cell execution timeout and allow errors.",
|
858 |
+
"results": [
|
859 |
+
{
|
860 |
+
"Report the best test R^2 value for c = 1.0.": 0.8259,
|
861 |
+
"Report the best test RMSE value for c = 1.0.": 0.2806
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"Report the best test R^2 value for c = 1.0.": 0.8259,
|
865 |
+
"Report the best test RMSE value for c = 1.0.": 0.2806
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"Report the best test R^2 value for c = 1.0.": 0.8259,
|
869 |
+
"Report the best test RMSE value for c = 1.0.": 0.2806
|
870 |
+
}
|
871 |
+
],
|
872 |
+
"capsule_doi": "https://doi.org/10.24433/CO.4576964.v1"
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"field": "Medical Sciences",
|
876 |
+
"language": "Python",
|
877 |
+
"capsule_title": "DAPPER Leiomyosarcoma : Correlation and Survival Analysis of Radiomic, Microbiome and Clinical Data",
|
878 |
+
"capsule_id": "capsule-3894632",
|
879 |
+
"task_prompt": "Run 'dp_survival.Rmd' using Rscript and Render it as html. Store the output in ../results. Set clean to 'TRUE'. Also, run 'correlation.py'.",
|
880 |
+
"results": [
|
881 |
+
{
|
882 |
+
"Report the p value for Lesions.Contoured.": 0.12
|
883 |
+
},
|
884 |
+
{
|
885 |
+
"Report the p value for Lesions.Contoured.": 0.12
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"Report the p value for Lesions.Contoured.": 0.12
|
889 |
+
}
|
890 |
+
],
|
891 |
+
"capsule_doi": "https://doi.org/10.24433/CO.2552952.v1"
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"field": "Medical Sciences",
|
895 |
+
"language": "Python",
|
896 |
+
"capsule_title": "Metabolomic machine learning predictor for diagnosis and prognosis of gastric cancer",
|
897 |
+
"capsule_id": "capsule-5496369",
|
898 |
+
"task_prompt": "Execute GC-diagnosis-model/run.ipynb. Save the results in html format in ../results. Execute GC-prognosis-model/run.ipynb. Save the results in html format in ../results. For both runs, disable the cell execution timeout and allow errors.",
|
899 |
+
"results": [
|
900 |
+
{
|
901 |
+
"fig For the GC diagnosis model's AUROC curve of test data, report the Lasso AUROC of the test data.": 0.967,
|
902 |
+
"fig From the GC prognosis model's AUROC curve, report the Lasso AUROC of the test data.": 0.832
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"fig For the GC diagnosis model's AUROC curve of test data, report the Lasso AUROC of the test data.": 0.967,
|
906 |
+
"fig From the GC prognosis model's AUROC curve, report the Lasso AUROC of the test data.": 0.832
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"fig For the GC diagnosis model's AUROC curve of test data, report the Lasso AUROC of the test data.": 0.967,
|
910 |
+
"fig From the GC prognosis model's AUROC curve, report the Lasso AUROC of the test data.": 0.832
|
911 |
+
}
|
912 |
+
],
|
913 |
+
"capsule_doi": "https://doi.org/10.24433/CO.7015846.v1"
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"field": "Social Sciences",
|
917 |
+
"language": "R",
|
918 |
+
"capsule_title": "Making a Difference: The Consequences of Electoral Experiments",
|
919 |
+
"capsule_id": "capsule-8912293",
|
920 |
+
"task_prompt": "Run '01_data_processing.R', '02_info_exps.R', '03_colorado_sim.R', '04_pap_analysis.R', and '05_existing_applications.R' using Rscript.",
|
921 |
+
"results": [
|
922 |
+
{
|
923 |
+
"fig Report the location of experiment with the higher proportion of 131 pre\u2212registered experiments in AEA and EGAP registries for the mobilization intervention class (ignore the n value).": "US",
|
924 |
+
"fig From Figure A5, report the y-axis label.": "Number of districts",
|
925 |
+
"fig From Figure A2, report the x-axis label of the first plot.": "Start of intervention"
|
926 |
+
},
|
927 |
+
{
|
928 |
+
"fig Report the location of experiment with the higher proportion of 131 pre\u2212registered experiments in AEA and EGAP registries for the mobilization intervention class (ignore the n value).": "US",
|
929 |
+
"fig From Figure A5, report the y-axis label.": "Number of districts",
|
930 |
+
"fig From Figure A2, report the x-axis label of the first plot.": "Start of intervention"
|
931 |
+
},
|
932 |
+
{
|
933 |
+
"fig Report the location of experiment with the higher proportion of 131 pre\u2212registered experiments in AEA and EGAP registries for the mobilization intervention class (ignore the n value).": "US",
|
934 |
+
"fig From Figure A5, report the y-axis label.": "Number of districts",
|
935 |
+
"fig From Figure A2, report the x-axis label of the first plot.": "Start of intervention"
|
936 |
+
}
|
937 |
+
],
|
938 |
+
"capsule_doi": "https://doi.org/10.24433/CO.7729631.v1"
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"field": "Medical Sciences",
|
942 |
+
"language": "Python",
|
943 |
+
"capsule_title": "Super-Iterative Image Reconstruction for Tomography",
|
944 |
+
"capsule_id": "capsule-3497606",
|
945 |
+
"task_prompt": "Ignore python warnings. Run 'Super-Iterative.py'.",
|
946 |
+
"results": [
|
947 |
+
{
|
948 |
+
"fig Report which image type has the greatest noise at 100 iterations.": "High Resolution"
|
949 |
+
},
|
950 |
+
{
|
951 |
+
"fig Report which image type has the greatest noise at 100 iterations.": "High Resolution"
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"fig Report which image type has the greatest noise at 100 iterations.": "High Resolution"
|
955 |
+
}
|
956 |
+
],
|
957 |
+
"capsule_doi": "https://doi.org/10.24433/CO.2947710.v2"
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"field": "Medical Sciences",
|
961 |
+
"language": "Python",
|
962 |
+
"capsule_title": "Light fluence in skin for PDT light-dose planning",
|
963 |
+
"capsule_id": "capsule-7156696",
|
964 |
+
"task_prompt": "Execute all the .ipynb files in the ../code directory. Save the results in html format in ../results. For all the runs, disable the cell execution timeout and allow errors.",
|
965 |
+
"results": [
|
966 |
+
{
|
967 |
+
"fig From Figure 5A, report the name of the source with the lowest fluence rate at depth 1.": "Blue",
|
968 |
+
"fig From Figure 5B, report the name of the source with the highest effective fluence rate at depth 1.": "Red"
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"fig From Figure 5A, report the name of the source with the lowest fluence rate at depth 1.": "Blue",
|
972 |
+
"fig From Figure 5B, report the name of the source with the highest effective fluence rate at depth 1.": "Red"
|
973 |
+
},
|
974 |
+
{
|
975 |
+
"fig From Figure 5A, report the name of the source with the lowest fluence rate at depth 1.": "Blue",
|
976 |
+
"fig From Figure 5B, report the name of the source with the highest effective fluence rate at depth 1.": "Red"
|
977 |
+
}
|
978 |
+
],
|
979 |
+
"capsule_doi": "https://doi.org/10.24433/CO.3b5e68fc-c3a0-44fd-bebb-95d60e08ce11.v3"
|
980 |
+
},
|
981 |
+
{
|
982 |
+
"field": "Social Sciences",
|
983 |
+
"language": "R",
|
984 |
+
"capsule_title": "Designing Studies and Evaluating Research Results: Type M and Type S Errors for Pearson Correlation Coefficient",
|
985 |
+
"capsule_id": "capsule-7935517",
|
986 |
+
"task_prompt": "Load the knitr library. Set the working directory to 'Documents/Paper_main/\u2018. Compile the pdf using knit with 'Paper_main.Rnw' as the input. Copy \u2018Paper_main.tex\u2019 to the ../results directory. Then, make the following directories: ../results/figure and ../results/screens. Copy all the .pdf files from \u2018Documents/Paper_main/figure/\u2018 into ../results/figure. Copy all the files from \u2018Documents/Paper_main/screens/\u2018 into ../results/screens/. Copy \u2018Paper_main.bib\u2019 and \u2018Paper_main.bbl\u2019 into ../results.",
|
987 |
+
"results": [
|
988 |
+
{
|
989 |
+
"fig From the plot sampling rho, report the rho value corresponding to the solid red line.": 0,
|
990 |
+
"fig Report the x-axis label of the plot measuring Cohen's d.": "Power"
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"fig From the plot sampling rho, report the rho value corresponding to the solid red line.": 0,
|
994 |
+
"fig Report the x-axis label of the plot measuring Cohen's d.": "Power"
|
995 |
+
},
|
996 |
+
{
|
997 |
+
"fig From the plot sampling rho, report the rho value corresponding to the solid red line.": 0,
|
998 |
+
"fig Report the x-axis label of the plot measuring Cohen's d.": "Power"
|
999 |
+
}
|
1000 |
+
],
|
1001 |
+
"capsule_doi": "https://doi.org/10.24433/CO.8165442.v1"
|
1002 |
+
},
|
1003 |
+
{
|
1004 |
+
"field": "Medical Sciences",
|
1005 |
+
"language": "Python",
|
1006 |
+
"capsule_title": "Neural Network for Predicting Stroke Team Performance",
|
1007 |
+
"capsule_id": "capsule-3269870",
|
1008 |
+
"task_prompt": "Run 'nn.py' and 'predict.py'.",
|
1009 |
+
"results": [
|
1010 |
+
{
|
1011 |
+
"Report the percentage accuracy of the result.": 60,
|
1012 |
+
"Report the percentage precision of the result.": 62,
|
1013 |
+
"fig Report the y-axis label of the training plot.": "Cost"
|
1014 |
+
},
|
1015 |
+
{
|
1016 |
+
"Report the percentage accuracy of the result.": 60,
|
1017 |
+
"Report the percentage precision of the result.": 62,
|
1018 |
+
"fig Report the y-axis label of the training plot.": "Cost"
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"Report the percentage accuracy of the result.": 60,
|
1022 |
+
"Report the percentage precision of the result.": 62,
|
1023 |
+
"fig Report the y-axis label of the training plot.": "Cost"
|
1024 |
+
}
|
1025 |
+
],
|
1026 |
+
"capsule_doi": "https://doi.org/10.24433/CO.e78bbbad-a26f-49ec-9eae-11d549011e17"
|
1027 |
+
}
|
1028 |
+
]
|