Datasets:
parquet-converter
commited on
Commit
•
0e92fc3
1
Parent(s):
2383458
Update parquet files
Browse files- .gitattributes +2 -0
- README.md +0 -9
- analytics.ipynb +0 -399
- counts.csv → default/train/0000.parquet +2 -2
- index.csv → default/train/0001.parquet +2 -2
- index.py +0 -123
- urls +0 -0
.gitattributes
CHANGED
@@ -1 +1,3 @@
|
|
1 |
*.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
1 |
*.csv filter=lfs diff=lfs merge=lfs -text
|
2 |
+
default/train/0000.parquet filter=lfs diff=lfs merge=lfs -text
|
3 |
+
default/train/0001.parquet filter=lfs diff=lfs merge=lfs -text
|
README.md
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
|
2 |
-
# AI/Tech Dataset
|
3 |
-
|
4 |
-
This dataset is a collection of AI/tech articles scraped from the web.
|
5 |
-
|
6 |
-
- [analytics.ipynb](analytics.ipynb) - Notebook containing some details about the dataset and how to load it.
|
7 |
-
- [index.csv](./index.csv) - CSV file containing all the data. You can load this with `pandas.read_csv`.
|
8 |
-
- [counts.csv](./counts.csv) - CSV file containing the counts of each year.
|
9 |
-
- For raw text files, see the [scraper repo](https://github.com/siavava/scrape.hs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
analytics.ipynb
DELETED
@@ -1,399 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "markdown",
|
5 |
-
"metadata": {},
|
6 |
-
"source": [
|
7 |
-
"# Data Analytics for the Corpus\n",
|
8 |
-
"\n",
|
9 |
-
"## Author: Amittai Siavava"
|
10 |
-
]
|
11 |
-
},
|
12 |
-
{
|
13 |
-
"cell_type": "markdown",
|
14 |
-
"metadata": {},
|
15 |
-
"source": [
|
16 |
-
"### Load the CSV metadata"
|
17 |
-
]
|
18 |
-
},
|
19 |
-
{
|
20 |
-
"cell_type": "code",
|
21 |
-
"execution_count": 3,
|
22 |
-
"metadata": {},
|
23 |
-
"outputs": [],
|
24 |
-
"source": [
|
25 |
-
"import numpy as np\n",
|
26 |
-
"import pandas as pd\n",
|
27 |
-
"import matplotlib.pyplot as plt\n",
|
28 |
-
"from collections import Counter\n"
|
29 |
-
]
|
30 |
-
},
|
31 |
-
{
|
32 |
-
"cell_type": "code",
|
33 |
-
"execution_count": 6,
|
34 |
-
"metadata": {},
|
35 |
-
"outputs": [
|
36 |
-
{
|
37 |
-
"data": {
|
38 |
-
"text/html": [
|
39 |
-
"<div>\n",
|
40 |
-
"<style scoped>\n",
|
41 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
42 |
-
" vertical-align: middle;\n",
|
43 |
-
" }\n",
|
44 |
-
"\n",
|
45 |
-
" .dataframe tbody tr th {\n",
|
46 |
-
" vertical-align: top;\n",
|
47 |
-
" }\n",
|
48 |
-
"\n",
|
49 |
-
" .dataframe thead th {\n",
|
50 |
-
" text-align: right;\n",
|
51 |
-
" }\n",
|
52 |
-
"</style>\n",
|
53 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
54 |
-
" <thead>\n",
|
55 |
-
" <tr style=\"text-align: right;\">\n",
|
56 |
-
" <th></th>\n",
|
57 |
-
" <th>id</th>\n",
|
58 |
-
" <th>year</th>\n",
|
59 |
-
" <th>title</th>\n",
|
60 |
-
" <th>url</th>\n",
|
61 |
-
" <th>text</th>\n",
|
62 |
-
" </tr>\n",
|
63 |
-
" </thead>\n",
|
64 |
-
" <tbody>\n",
|
65 |
-
" <tr>\n",
|
66 |
-
" <th>0</th>\n",
|
67 |
-
" <td>0</td>\n",
|
68 |
-
" <td>2023.0</td>\n",
|
69 |
-
" <td>\"MIT Technology Review\"</td>\n",
|
70 |
-
" <td>\"https://www.technologyreview.com\"</td>\n",
|
71 |
-
" <td>\"Featured Topics Newsletters Events Podcasts F...</td>\n",
|
72 |
-
" </tr>\n",
|
73 |
-
" <tr>\n",
|
74 |
-
" <th>1</th>\n",
|
75 |
-
" <td>1</td>\n",
|
76 |
-
" <td>2023.0</td>\n",
|
77 |
-
" <td>\"WIRED - The Latest in Technology, Science, Cu...</td>\n",
|
78 |
-
" <td>\"https://www.wired.com\"</td>\n",
|
79 |
-
" <td>\"Open Navigation Menu To revisit this article,...</td>\n",
|
80 |
-
" </tr>\n",
|
81 |
-
" <tr>\n",
|
82 |
-
" <th>2</th>\n",
|
83 |
-
" <td>2</td>\n",
|
84 |
-
" <td>2019.0</td>\n",
|
85 |
-
" <td>\"The Verge\"</td>\n",
|
86 |
-
" <td>\"https://www.theverge.com\"</td>\n",
|
87 |
-
" <td>\"The Verge homepage The Verge The Verge logo.\\...</td>\n",
|
88 |
-
" </tr>\n",
|
89 |
-
" <tr>\n",
|
90 |
-
" <th>3</th>\n",
|
91 |
-
" <td>3</td>\n",
|
92 |
-
" <td>2023.0</td>\n",
|
93 |
-
" <td>\"TechCrunch | Startup and Technology News\"</td>\n",
|
94 |
-
" <td>\"https://www.techcrunch.com\"</td>\n",
|
95 |
-
" <td>\"WeWork reportedly on the verge of filing for ...</td>\n",
|
96 |
-
" </tr>\n",
|
97 |
-
" <tr>\n",
|
98 |
-
" <th>4</th>\n",
|
99 |
-
" <td>4</td>\n",
|
100 |
-
" <td>2022.0</td>\n",
|
101 |
-
" <td>\"A new vision of artificial intelligence for t...</td>\n",
|
102 |
-
" <td>\"https://www.technologyreview.com/2022/04/22/1...</td>\n",
|
103 |
-
" <td>\"Featured Topics Newsletters Events Podcasts A...</td>\n",
|
104 |
-
" </tr>\n",
|
105 |
-
" <tr>\n",
|
106 |
-
" <th>5</th>\n",
|
107 |
-
" <td>5</td>\n",
|
108 |
-
" <td>2022.0</td>\n",
|
109 |
-
" <td>\"The scientist who co-created CRISPR isn’t rul...</td>\n",
|
110 |
-
" <td>\"https://www.technologyreview.com/2022/04/26/1...</td>\n",
|
111 |
-
" <td>\"Featured Topics Newsletters Events Podcasts F...</td>\n",
|
112 |
-
" </tr>\n",
|
113 |
-
" <tr>\n",
|
114 |
-
" <th>6</th>\n",
|
115 |
-
" <td>6</td>\n",
|
116 |
-
" <td>2022.0</td>\n",
|
117 |
-
" <td>\"These fast, cheap tests could help us coexist...</td>\n",
|
118 |
-
" <td>\"https://www.technologyreview.com/2022/04/27/1...</td>\n",
|
119 |
-
" <td>\"Featured Topics Newsletters Events Podcasts F...</td>\n",
|
120 |
-
" </tr>\n",
|
121 |
-
" <tr>\n",
|
122 |
-
" <th>7</th>\n",
|
123 |
-
" <td>7</td>\n",
|
124 |
-
" <td>2022.0</td>\n",
|
125 |
-
" <td>\"Tackling multiple tasks with a single visual ...</td>\n",
|
126 |
-
" <td>\"http://www.deepmind.com/blog/tackling-multipl...</td>\n",
|
127 |
-
" <td>\"DeepMind Search Search Close DeepMind About O...</td>\n",
|
128 |
-
" </tr>\n",
|
129 |
-
" <tr>\n",
|
130 |
-
" <th>8</th>\n",
|
131 |
-
" <td>8</td>\n",
|
132 |
-
" <td>2019.0</td>\n",
|
133 |
-
" <td>\"About - Google DeepMind\"</td>\n",
|
134 |
-
" <td>\"https://www.deepmind.com/about\"</td>\n",
|
135 |
-
" <td>\"DeepMind Search Search Close DeepMind About O...</td>\n",
|
136 |
-
" </tr>\n",
|
137 |
-
" <tr>\n",
|
138 |
-
" <th>9</th>\n",
|
139 |
-
" <td>9</td>\n",
|
140 |
-
" <td>2023.0</td>\n",
|
141 |
-
" <td>\"Blog - Google DeepMind\"</td>\n",
|
142 |
-
" <td>\"https://www.deepmind.com/blog-categories/appl...</td>\n",
|
143 |
-
" <td>\"DeepMind Search Search Close DeepMind About O...</td>\n",
|
144 |
-
" </tr>\n",
|
145 |
-
" <tr>\n",
|
146 |
-
" <th>10</th>\n",
|
147 |
-
" <td>10</td>\n",
|
148 |
-
" <td>2022.0</td>\n",
|
149 |
-
" <td>\"Accelerating fusion science through learned p...</td>\n",
|
150 |
-
" <td>\"https://www.deepmind.com/blog/accelerating-fu...</td>\n",
|
151 |
-
" <td>\"DeepMind Search Search Close DeepMind About O...</td>\n",
|
152 |
-
" </tr>\n",
|
153 |
-
" <tr>\n",
|
154 |
-
" <th>11</th>\n",
|
155 |
-
" <td>11</td>\n",
|
156 |
-
" <td>2022.0</td>\n",
|
157 |
-
" <td>\"DeepMind’s latest research at ICLR 2022 - Goo...</td>\n",
|
158 |
-
" <td>\"https://www.deepmind.com/blog/deepminds-lates...</td>\n",
|
159 |
-
" <td>\"DeepMind Search Search Close DeepMind About O...</td>\n",
|
160 |
-
" </tr>\n",
|
161 |
-
" <tr>\n",
|
162 |
-
" <th>12</th>\n",
|
163 |
-
" <td>12</td>\n",
|
164 |
-
" <td>2022.0</td>\n",
|
165 |
-
" <td>\"MuZero’s first step from research into the re...</td>\n",
|
166 |
-
" <td>\"https://www.deepmind.com/blog/muzeros-first-s...</td>\n",
|
167 |
-
" <td>\"DeepMind Search Search Close DeepMind About O...</td>\n",
|
168 |
-
" </tr>\n",
|
169 |
-
" <tr>\n",
|
170 |
-
" <th>13</th>\n",
|
171 |
-
" <td>13</td>\n",
|
172 |
-
" <td>2022.0</td>\n",
|
173 |
-
" <td>\"Predicting the past with Ithaca - Google Deep...</td>\n",
|
174 |
-
" <td>\"https://www.deepmind.com/blog/predicting-the-...</td>\n",
|
175 |
-
" <td>\"DeepMind Search Search Close DeepMind About O...</td>\n",
|
176 |
-
" </tr>\n",
|
177 |
-
" <tr>\n",
|
178 |
-
" <th>14</th>\n",
|
179 |
-
" <td>14</td>\n",
|
180 |
-
" <td>2022.0</td>\n",
|
181 |
-
" <td>\"Tackling multiple tasks with a single visual ...</td>\n",
|
182 |
-
" <td>\"https://www.deepmind.com/blog/tackling-multip...</td>\n",
|
183 |
-
" <td>\"DeepMind Search Search Close DeepMind About O...</td>\n",
|
184 |
-
" </tr>\n",
|
185 |
-
" <tr>\n",
|
186 |
-
" <th>15</th>\n",
|
187 |
-
" <td>15</td>\n",
|
188 |
-
" <td>2016.0</td>\n",
|
189 |
-
" <td>\"AlphaGo - Google DeepMind\"</td>\n",
|
190 |
-
" <td>\"https://www.deepmind.com/research/highlighted...</td>\n",
|
191 |
-
" <td>\"DeepMind Search Search Close DeepMind About O...</td>\n",
|
192 |
-
" </tr>\n",
|
193 |
-
" <tr>\n",
|
194 |
-
" <th>17</th>\n",
|
195 |
-
" <td>17</td>\n",
|
196 |
-
" <td>2023.0</td>\n",
|
197 |
-
" <td>\"Responsibility & Safety - Google DeepMind\"</td>\n",
|
198 |
-
" <td>\"https://www.deepmind.com/safety-and-ethics\"</td>\n",
|
199 |
-
" <td>\"DeepMind Search Search Close DeepMind About O...</td>\n",
|
200 |
-
" </tr>\n",
|
201 |
-
" <tr>\n",
|
202 |
-
" <th>18</th>\n",
|
203 |
-
" <td>18</td>\n",
|
204 |
-
" <td>2022.0</td>\n",
|
205 |
-
" <td>\"This Week’s Awesome Tech Stories From Around ...</td>\n",
|
206 |
-
" <td>\"https://singularityhub.com/2022/04/16/this-we...</td>\n",
|
207 |
-
" <td>\"Topics AI Biotech Computing Space Energy Futu...</td>\n",
|
208 |
-
" </tr>\n",
|
209 |
-
" <tr>\n",
|
210 |
-
" <th>19</th>\n",
|
211 |
-
" <td>19</td>\n",
|
212 |
-
" <td>2022.0</td>\n",
|
213 |
-
" <td>\"There's Now an Algorithm to Help Workers Avoi...</td>\n",
|
214 |
-
" <td>\"https://singularityhub.com/2022/04/18/theres-...</td>\n",
|
215 |
-
" <td>\"Topics AI Biotech Computing Space Energy Futu...</td>\n",
|
216 |
-
" </tr>\n",
|
217 |
-
" <tr>\n",
|
218 |
-
" <th>20</th>\n",
|
219 |
-
" <td>20</td>\n",
|
220 |
-
" <td>2022.0</td>\n",
|
221 |
-
" <td>\"This Week’s Awesome Tech Stories From Around ...</td>\n",
|
222 |
-
" <td>\"https://singularityhub.com/2022/04/23/this-we...</td>\n",
|
223 |
-
" <td>\"Topics AI Biotech Computing Space Energy Futu...</td>\n",
|
224 |
-
" </tr>\n",
|
225 |
-
" </tbody>\n",
|
226 |
-
"</table>\n",
|
227 |
-
"</div>"
|
228 |
-
],
|
229 |
-
"text/plain": [
|
230 |
-
" id year title \\\n",
|
231 |
-
"0 0 2023.0 \"MIT Technology Review\" \n",
|
232 |
-
"1 1 2023.0 \"WIRED - The Latest in Technology, Science, Cu... \n",
|
233 |
-
"2 2 2019.0 \"The Verge\" \n",
|
234 |
-
"3 3 2023.0 \"TechCrunch | Startup and Technology News\" \n",
|
235 |
-
"4 4 2022.0 \"A new vision of artificial intelligence for t... \n",
|
236 |
-
"5 5 2022.0 \"The scientist who co-created CRISPR isn’t rul... \n",
|
237 |
-
"6 6 2022.0 \"These fast, cheap tests could help us coexist... \n",
|
238 |
-
"7 7 2022.0 \"Tackling multiple tasks with a single visual ... \n",
|
239 |
-
"8 8 2019.0 \"About - Google DeepMind\" \n",
|
240 |
-
"9 9 2023.0 \"Blog - Google DeepMind\" \n",
|
241 |
-
"10 10 2022.0 \"Accelerating fusion science through learned p... \n",
|
242 |
-
"11 11 2022.0 \"DeepMind’s latest research at ICLR 2022 - Goo... \n",
|
243 |
-
"12 12 2022.0 \"MuZero’s first step from research into the re... \n",
|
244 |
-
"13 13 2022.0 \"Predicting the past with Ithaca - Google Deep... \n",
|
245 |
-
"14 14 2022.0 \"Tackling multiple tasks with a single visual ... \n",
|
246 |
-
"15 15 2016.0 \"AlphaGo - Google DeepMind\" \n",
|
247 |
-
"17 17 2023.0 \"Responsibility & Safety - Google DeepMind\" \n",
|
248 |
-
"18 18 2022.0 \"This Week’s Awesome Tech Stories From Around ... \n",
|
249 |
-
"19 19 2022.0 \"There's Now an Algorithm to Help Workers Avoi... \n",
|
250 |
-
"20 20 2022.0 \"This Week’s Awesome Tech Stories From Around ... \n",
|
251 |
-
"\n",
|
252 |
-
" url \\\n",
|
253 |
-
"0 \"https://www.technologyreview.com\" \n",
|
254 |
-
"1 \"https://www.wired.com\" \n",
|
255 |
-
"2 \"https://www.theverge.com\" \n",
|
256 |
-
"3 \"https://www.techcrunch.com\" \n",
|
257 |
-
"4 \"https://www.technologyreview.com/2022/04/22/1... \n",
|
258 |
-
"5 \"https://www.technologyreview.com/2022/04/26/1... \n",
|
259 |
-
"6 \"https://www.technologyreview.com/2022/04/27/1... \n",
|
260 |
-
"7 \"http://www.deepmind.com/blog/tackling-multipl... \n",
|
261 |
-
"8 \"https://www.deepmind.com/about\" \n",
|
262 |
-
"9 \"https://www.deepmind.com/blog-categories/appl... \n",
|
263 |
-
"10 \"https://www.deepmind.com/blog/accelerating-fu... \n",
|
264 |
-
"11 \"https://www.deepmind.com/blog/deepminds-lates... \n",
|
265 |
-
"12 \"https://www.deepmind.com/blog/muzeros-first-s... \n",
|
266 |
-
"13 \"https://www.deepmind.com/blog/predicting-the-... \n",
|
267 |
-
"14 \"https://www.deepmind.com/blog/tackling-multip... \n",
|
268 |
-
"15 \"https://www.deepmind.com/research/highlighted... \n",
|
269 |
-
"17 \"https://www.deepmind.com/safety-and-ethics\" \n",
|
270 |
-
"18 \"https://singularityhub.com/2022/04/16/this-we... \n",
|
271 |
-
"19 \"https://singularityhub.com/2022/04/18/theres-... \n",
|
272 |
-
"20 \"https://singularityhub.com/2022/04/23/this-we... \n",
|
273 |
-
"\n",
|
274 |
-
" text \n",
|
275 |
-
"0 \"Featured Topics Newsletters Events Podcasts F... \n",
|
276 |
-
"1 \"Open Navigation Menu To revisit this article,... \n",
|
277 |
-
"2 \"The Verge homepage The Verge The Verge logo.\\... \n",
|
278 |
-
"3 \"WeWork reportedly on the verge of filing for ... \n",
|
279 |
-
"4 \"Featured Topics Newsletters Events Podcasts A... \n",
|
280 |
-
"5 \"Featured Topics Newsletters Events Podcasts F... \n",
|
281 |
-
"6 \"Featured Topics Newsletters Events Podcasts F... \n",
|
282 |
-
"7 \"DeepMind Search Search Close DeepMind About O... \n",
|
283 |
-
"8 \"DeepMind Search Search Close DeepMind About O... \n",
|
284 |
-
"9 \"DeepMind Search Search Close DeepMind About O... \n",
|
285 |
-
"10 \"DeepMind Search Search Close DeepMind About O... \n",
|
286 |
-
"11 \"DeepMind Search Search Close DeepMind About O... \n",
|
287 |
-
"12 \"DeepMind Search Search Close DeepMind About O... \n",
|
288 |
-
"13 \"DeepMind Search Search Close DeepMind About O... \n",
|
289 |
-
"14 \"DeepMind Search Search Close DeepMind About O... \n",
|
290 |
-
"15 \"DeepMind Search Search Close DeepMind About O... \n",
|
291 |
-
"17 \"DeepMind Search Search Close DeepMind About O... \n",
|
292 |
-
"18 \"Topics AI Biotech Computing Space Energy Futu... \n",
|
293 |
-
"19 \"Topics AI Biotech Computing Space Energy Futu... \n",
|
294 |
-
"20 \"Topics AI Biotech Computing Space Energy Futu... "
|
295 |
-
]
|
296 |
-
},
|
297 |
-
"execution_count": 6,
|
298 |
-
"metadata": {},
|
299 |
-
"output_type": "execute_result"
|
300 |
-
}
|
301 |
-
],
|
302 |
-
"source": [
|
303 |
-
"df = pd.read_csv(\"index.csv\")\n",
|
304 |
-
"df.dropna(inplace=True)\n",
|
305 |
-
"df.head(20)\n"
|
306 |
-
]
|
307 |
-
},
|
308 |
-
{
|
309 |
-
"cell_type": "code",
|
310 |
-
"execution_count": 11,
|
311 |
-
"metadata": {},
|
312 |
-
"outputs": [
|
313 |
-
{
|
314 |
-
"name": "stdout",
|
315 |
-
"output_type": "stream",
|
316 |
-
"text": [
|
317 |
-
"unique_years = [2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023]\n"
|
318 |
-
]
|
319 |
-
},
|
320 |
-
{
|
321 |
-
"data": {
|
322 |
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAitUlEQVR4nO3df2xV9f3H8deVtpdS22tb5F7uKNhl1Uxb/FFNpTrppBQZtTO44YQZl7AFRaoVCNLxB52bLbIIbBDZYAQQwuqS2Y1ERcrUOqzMWiW2uDmNVYv22g3rva3WW4TP9w/D+e62/Lr0tv20PB/JSXbPfd/bc/LZHc+d3tvrMsYYAQAAWOSCoT4AAACA3ggUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANaJG+oDOBfHjx/Xxx9/rOTkZLlcrqE+HAAAcBaMMers7JTf79cFF5z+GsmwDJSPP/5YGRkZQ30YAADgHLS2tmrChAmnnRmWgZKcnCzp6xNMSUkZ4qMBAABnIxQKKSMjw/l3/HSGZaCc+LVOSkoKgQIAwDBzNm/P4E2yAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwTtxQHwAAAJAuWf50vx7//qpZMToSO0R9BeWjjz7Sj3/8Y6Wnp2vMmDG66qqr1NjY6NxvjFFFRYX8fr8SExNVUFCgQ4cORTxHOBxWaWmpxo4dq6SkJJWUlOjw4cP9PxsAADAiRBUoHR0duuGGGxQfH69nn31Wb731lh577DFddNFFzszq1au1Zs0abdiwQQ0NDfL5fJo+fbo6OzudmbKyMtXU1Ki6ulr79+9XV1eXiouLdezYsZidGAAAGL5cxhhztsPLly/Xyy+/rL///e8nvd8YI7/fr7KyMj300EOSvr5a4vV69eijj2rBggUKBoO6+OKLtWPHDt1xxx2SpI8//lgZGRl65plnNGPGjDMeRygUksfjUTAYVEpKytkePgAA1joffsUTzb/fUV1B2b17t6699lr98Ic/1Lhx43T11Vdr8+bNzv0tLS0KBAIqKipy9rndbk2dOlX19fWSpMbGRh09ejRixu/3Kzs725npLRwOKxQKRWwAAGDkiipQ3nvvPW3cuFFZWVl67rnndM899+j+++/XE088IUkKBAKSJK/XG/E4r9fr3BcIBJSQkKDU1NRTzvRWVVUlj8fjbBkZGdEcNgAAGGaiCpTjx4/rmmuuUWVlpa6++motWLBAP/vZz7Rx48aIOZfLFXHbGNNnX2+nmykvL1cwGHS21tbWaA4bAAAMM1EFyvjx43X55ZdH7Pv2t7+tDz/8UJLk8/kkqc+VkPb2dueqis/nU09Pjzo6Ok4505vb7VZKSkrEBgAARq6oAuWGG27Q22+/HbHv3//+tyZNmiRJyszMlM/nU21trXN/T0+P6urqlJ+fL0nKzc1VfHx8xExbW5uam5udGQAAcH6L6g+1Pfjgg8rPz1dlZaXmzJmjV199VZs2bdKmTZskff2rnbKyMlVWViorK0tZWVmqrKzUmDFjNHfuXEmSx+PR/PnztWTJEqWnpystLU1Lly5VTk6OCgsLY3+GAABg2IkqUK677jrV1NSovLxcDz/8sDIzM7Vu3TrNmzfPmVm2bJm6u7u1cOFCdXR0KC8vT3v37lVycrIzs3btWsXFxWnOnDnq7u7WtGnTtG3bNo0aNSp2ZwYAAIatqP4Oii34OygAgJGGv4MSiS8LBAAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgnbihPgAAABB7lyx/ul+Pf3/VrBgdybnhCgoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA60QVKBUVFXK5XBGbz+dz7jfGqKKiQn6/X4mJiSooKNChQ4ciniMcDqu0tFRjx45VUlKSSkpKdPjw4dicDQAAGBGivoJyxRVXqK2tzdmampqc+1avXq01a9Zow4YNamhokM/n0/Tp09XZ2enMlJWVqaamRtXV1dq/f7+6urpUXFysY8eOxeaMAADAsBf1X5KNi4uLuGpygjFG69at04oVKzR79mxJ0vbt2+X1erVr1y4tWLBAwWBQW7Zs0Y4dO1RYWChJ2rlzpzIyMrRv3z7NmDGjn6cDAABGgqivoLzzzjvy+/3KzMzUj370I7333nuSpJaWFgUCARUVFTmzbrdbU6dOVX19vSSpsbFRR48ejZjx+/3Kzs52Zk4mHA4rFApFbAAAYOSKKlDy8vL0xBNP6LnnntPmzZsVCASUn5+vI0eOKBAISJK8Xm/EY7xer3NfIBBQQkKCUlNTTzlzMlVVVfJ4PM6WkZERzWEDAIBhJqpAmTlzpm6//Xbl5OSosLBQTz/99RcRbd++3ZlxuVwRjzHG9NnX25lmysvLFQwGna21tTWawwYAAMNMvz5mnJSUpJycHL3zzjvO+1J6Xwlpb293rqr4fD719PSoo6PjlDMn43a7lZKSErEBAICRq1+BEg6H9c9//lPjx49XZmamfD6famtrnft7enpUV1en/Px8SVJubq7i4+MjZtra2tTc3OzMAAAARPUpnqVLl+rWW2/VxIkT1d7erl/96lcKhUK6++675XK5VFZWpsrKSmVlZSkrK0uVlZUaM2aM5s6dK0nyeDyaP3++lixZovT0dKWlpWnp0qXOr4wAAACkKAPl8OHDuvPOO/Xf//5XF198sa6//nodOHBAkyZNkiQtW7ZM3d3dWrhwoTo6OpSXl6e9e/cqOTnZeY61a9cqLi5Oc+bMUXd3t6ZNm6Zt27Zp1KhRsT0zAAAwbLmMMWaoDyJaoVBIHo9HwWCQ96MAAEaES5Y/3a/Hv79q1oA+XyxE8+8338UDAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsEzfUBwAAwHB0yfKn+/X491fNitGRjExcQQEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADW6VegVFVVyeVyqayszNlnjFFFRYX8fr8SExNVUFCgQ4cORTwuHA6rtLRUY8eOVVJSkkpKSnT48OH+HAoAABhBzjlQGhoatGnTJk2ePDli/+rVq7VmzRpt2LBBDQ0N8vl8mj59ujo7O52ZsrIy1dTUqLq6Wvv371dXV5eKi4t17Nixcz8TAAAwYpxToHR1dWnevHnavHmzUlNTnf3GGK1bt04rVqzQ7NmzlZ2dre3bt+uLL77Qrl27JEnBYFBbtmzRY489psLCQl199dXauXOnmpqatG/fvticFQAAGNbOKVDuu+8+zZo1S4WFhRH7W1paFAgEVFRU5Oxzu92aOnWq6uvrJUmNjY06evRoxIzf71d2drYz01s4HFYoFIrYAADAyBUX7QOqq6v1+uuvq6Ghoc99gUBAkuT1eiP2e71effDBB85MQkJCxJWXEzMnHt9bVVWVfvGLX0R7qAAAYJiK6gpKa2urHnjgAe3cuVOjR48+5ZzL5Yq4bYzps6+3082Ul5crGAw6W2trazSHDQAAhpmoAqWxsVHt7e3Kzc1VXFyc4uLiVFdXp9/+9reKi4tzrpz0vhLS3t7u3Ofz+dTT06OOjo5TzvTmdruVkpISsQEAgJErqkCZNm2ampqadPDgQWe79tprNW/ePB08eFDf/OY35fP5VFtb6zymp6dHdXV1ys/PlyTl5uYqPj4+YqatrU3Nzc3ODAAAOL9F9R6U5ORkZWdnR+xLSkpSenq6s7+srEyVlZXKyspSVlaWKisrNWbMGM2dO1eS5PF4NH/+fC1ZskTp6elKS0vT0qVLlZOT0+dNtwAA4PwU9Ztkz2TZsmXq7u7WwoUL1dHRoby8PO3du1fJycnOzNq1axUXF6c5c+aou7tb06ZN07Zt2zRq1KhYHw4AABiG+h0oL774YsRtl8uliooKVVRUnPIxo0eP1vr167V+/fr+/ngAADAC8V08AADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsE5UgbJx40ZNnjxZKSkpSklJ0ZQpU/Tss8869xtjVFFRIb/fr8TERBUUFOjQoUMRzxEOh1VaWqqxY8cqKSlJJSUlOnz4cGzOBgAAjAhRBcqECRO0atUqvfbaa3rttdd088036/vf/74TIatXr9aaNWu0YcMGNTQ0yOfzafr06ers7HSeo6ysTDU1Naqurtb+/fvV1dWl4uJiHTt2LLZnBgAAhq2oAuXWW2/V9773PV166aW69NJL9cgjj+jCCy/UgQMHZIzRunXrtGLFCs2ePVvZ2dnavn27vvjiC+3atUuSFAwGtWXLFj322GMqLCzU1VdfrZ07d6qpqUn79u0bkBMEAADDzzm/B+XYsWOqrq7W559/rilTpqilpUWBQEBFRUXOjNvt1tSpU1VfXy9Jamxs1NGjRyNm/H6/srOznRkAAIC4aB/Q1NSkKVOm6Msvv9SFF16ompoaXX755U5geL3eiHmv16sPPvhAkhQIBJSQkKDU1NQ+M4FA4JQ/MxwOKxwOO7dDoVC0hw0AAIaRqK+gXHbZZTp48KAOHDige++9V3fffbfeeust536XyxUxb4zps6+3M81UVVXJ4/E4W0ZGRrSHDQAAhpGor6AkJCToW9/6liTp2muvVUNDg37zm9/ooYcekvT1VZLx48c78+3t7c5VFZ/Pp56eHnV0dERcRWlvb1d+fv4pf2Z5ebkWL17s3A6FQkQKACBqlyx/+pwf+/6qWTE8EpxJv/8OijFG4XBYmZmZ8vl8qq2tde7r6elRXV2dEx+5ubmKj4+PmGlra1Nzc/NpA8XtdjsfbT6xAQCAkSuqKyg///nPNXPmTGVkZKizs1PV1dV68cUXtWfPHrlcLpWVlamyslJZWVnKyspSZWWlxowZo7lz50qSPB6P5s+fryVLlig9PV1paWlaunSpcnJyVFhYOCAnCAAAhp+oAuWTTz7RXXfdpba2Nnk8Hk2ePFl79uzR9OnTJUnLli1Td3e3Fi5cqI6ODuXl5Wnv3r1KTk52nmPt2rWKi4vTnDlz1N3drWnTpmnbtm0aNWpUbM8MAAAMW1EFypYtW057v8vlUkVFhSoqKk45M3r0aK1fv17r16+P5kcDAIDzCN/FAwAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDpRBUpVVZWuu+46JScna9y4cbrtttv09ttvR8wYY1RRUSG/36/ExEQVFBTo0KFDETPhcFilpaUaO3askpKSVFJSosOHD/f/bAAAwIgQVaDU1dXpvvvu04EDB1RbW6uvvvpKRUVF+vzzz52Z1atXa82aNdqwYYMaGhrk8/k0ffp0dXZ2OjNlZWWqqalRdXW19u/fr66uLhUXF+vYsWOxOzMAADBsxUUzvGfPnojbW7du1bhx49TY2KibbrpJxhitW7dOK1as0OzZsyVJ27dvl9fr1a5du7RgwQIFg0Ft2bJFO3bsUGFhoSRp586dysjI0L59+zRjxowYnRoAABiu+vUelGAwKElKS0uTJLW0tCgQCKioqMiZcbvdmjp1qurr6yVJjY2NOnr0aMSM3+9Xdna2M9NbOBxWKBSK2AAAwMh1zoFijNHixYt14403Kjs7W5IUCAQkSV6vN2LW6/U69wUCASUkJCg1NfWUM71VVVXJ4/E4W0ZGxrkeNgAAGAbOOVAWLVqkN998U3/84x/73OdyuSJuG2P67OvtdDPl5eUKBoPO1traeq6HDQAAhoFzCpTS0lLt3r1bL7zwgiZMmODs9/l8ktTnSkh7e7tzVcXn86mnp0cdHR2nnOnN7XYrJSUlYgMAACNXVIFijNGiRYv01FNP6fnnn1dmZmbE/ZmZmfL5fKqtrXX29fT0qK6uTvn5+ZKk3NxcxcfHR8y0tbWpubnZmQEAAOe3qD7Fc99992nXrl3661//quTkZOdKicfjUWJiolwul8rKylRZWamsrCxlZWWpsrJSY8aM0dy5c53Z+fPna8mSJUpPT1daWpqWLl2qnJwc51M9AADg/BZVoGzcuFGSVFBQELF/69at+slPfiJJWrZsmbq7u7Vw4UJ1dHQoLy9Pe/fuVXJysjO/du1axcXFac6cOeru7ta0adO0bds2jRo1qn9nAwAARoSoAsUYc8YZl8uliooKVVRUnHJm9OjRWr9+vdavXx/NjwcAAOcJvosHAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgnai+LBAAgMF0yfKn+/X491fNitGRYLBxBQUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdfg7KACAmOHvliBWuIICAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrRB0oL730km699Vb5/X65XC795S9/ibjfGKOKigr5/X4lJiaqoKBAhw4dipgJh8MqLS3V2LFjlZSUpJKSEh0+fLhfJwIAAEaOqAPl888/15VXXqkNGzac9P7Vq1drzZo12rBhgxoaGuTz+TR9+nR1dnY6M2VlZaqpqVF1dbX279+vrq4uFRcX69ixY+d+JgAAYMSIi/YBM2fO1MyZM096nzFG69at04oVKzR79mxJ0vbt2+X1erVr1y4tWLBAwWBQW7Zs0Y4dO1RYWChJ2rlzpzIyMrRv3z7NmDGjH6cDAABGgpi+B6WlpUWBQEBFRUXOPrfbralTp6q+vl6S1NjYqKNHj0bM+P1+ZWdnOzO9hcNhhUKhiA0AAIxcMQ2UQCAgSfJ6vRH7vV6vc18gEFBCQoJSU1NPOdNbVVWVPB6Ps2VkZMTysAEAgGUG5FM8Lpcr4rYxps++3k43U15ermAw6Gytra0xO1YAAGCfmAaKz+eTpD5XQtrb252rKj6fTz09Pero6DjlTG9ut1spKSkRGwAAGLliGiiZmZny+Xyqra119vX09Kiurk75+fmSpNzcXMXHx0fMtLW1qbm52ZkBAADnt6g/xdPV1aV3333Xud3S0qKDBw8qLS1NEydOVFlZmSorK5WVlaWsrCxVVlZqzJgxmjt3riTJ4/Fo/vz5WrJkidLT05WWlqalS5cqJyfH+VQPAAA4v0UdKK+99pq++93vOrcXL14sSbr77ru1bds2LVu2TN3d3Vq4cKE6OjqUl5envXv3Kjk52XnM2rVrFRcXpzlz5qi7u1vTpk3Ttm3bNGrUqBicEgAAGO6iDpSCggIZY055v8vlUkVFhSoqKk45M3r0aK1fv17r16+P9scDAIDzAN/FAwAArEOgAAAA6xAoAADAOgQKAACwTtRvkgUAjByXLH+6X49/f9WsGB0JEIkrKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsE7cUB8AACA6lyx/+pwf+/6qWTE8EmDgcAUFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh28zBoAB1p9vH5b4BmKcn7iCAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOvwp+4BS/Dn0AHg/xEoANALsQgMPX7FAwAArDOkV1Aef/xx/frXv1ZbW5uuuOIKrVu3Tt/5zneG8pAADAKuUAA4kyELlCeffFJlZWV6/PHHdcMNN+j3v/+9Zs6cqbfeeksTJ04cqsNCP51P//CcT+dqO9YCGHmGLFDWrFmj+fPn66c//akkad26dXruuee0ceNGVVVVDdVhwTL8w2OP/qwF6wAgWkMSKD09PWpsbNTy5csj9hcVFam+vr7PfDgcVjgcdm4Hg0FJUigUGpDjy175XL8e3/yLGTE6kuHnePiLfj2+95rG+vn6s7a913Ukn6sU2/Md6HPl+Ybmuc6357P52Abj+WLhxHMaY848bIbARx99ZCSZl19+OWL/I488Yi699NI+8ytXrjSS2NjY2NjY2EbA1traesZWGNI3ybpcrojbxpg++ySpvLxcixcvdm4fP35cn376qdLT0086/79CoZAyMjLU2tqqlJSU2Bw4zglrYQ/Wwh6shT1Yi4FnjFFnZ6f8fv8ZZ4ckUMaOHatRo0YpEAhE7G9vb5fX6+0z73a75Xa7I/ZddNFFUf3MlJQU/gtnCdbCHqyFPVgLe7AWA8vj8ZzV3JD8HZSEhATl5uaqtrY2Yn9tba3y8/OH4pAAAIBFhuxXPIsXL9Zdd92la6+9VlOmTNGmTZv04Ycf6p577hmqQwIAAJYYskC54447dOTIET388MNqa2tTdna2nnnmGU2aNCmmP8ftdmvlypV9fkWEwcda2IO1sAdrYQ/Wwi4uY87msz4AAACDh+/iAQAA1iFQAACAdQgUAABgHQIFAABYx/pAqaqq0nXXXafk5GSNGzdOt912m95+++2IGWOMKioq5Pf7lZiYqIKCAh06dChiJhwOq7S0VGPHjlVSUpJKSkp0+PDhiJmOjg7ddddd8ng88ng8uuuuu/TZZ58N9CkOG4O5FpdccolcLlfE1vu7m85nsVqLTZs2qaCgQCkpKXK5XCf97zuvi9MbzLXgdXF6sViLTz/9VKWlpbrssss0ZswYTZw4Uffff7/zHXAn8LoYBP39Xp2BNmPGDLN161bT3NxsDh48aGbNmmUmTpxourq6nJlVq1aZ5ORk8+c//9k0NTWZO+64w4wfP96EQiFn5p577jHf+MY3TG1trXn99dfNd7/7XXPllVear776ypm55ZZbTHZ2tqmvrzf19fUmOzvbFBcXD+r52mww12LSpEnm4YcfNm1tbc7W2dk5qOdrs1itxdq1a01VVZWpqqoykkxHR0efn8Xr4vQGcy14XZxeLNaiqanJzJ492+zevdu8++675m9/+5vJysoyt99+e8TP4nUx8KwPlN7a29uNJFNXV2eMMeb48ePG5/OZVatWOTNffvml8Xg85ne/+50xxpjPPvvMxMfHm+rqamfmo48+MhdccIHZs2ePMcaYt956y0gyBw4ccGZeeeUVI8n861//GoxTG3YGai2M+fp/iNeuXTs4JzICnMta/K8XXnjhpP8o8rqI3kCthTG8LqLV37U44U9/+pNJSEgwR48eNcbwuhgs1v+Kp7cTl9nS0tIkSS0tLQoEAioqKnJm3G63pk6dqvr6eklSY2Ojjh49GjHj9/uVnZ3tzLzyyivyeDzKy8tzZq6//np5PB5nBpEGai1OePTRR5Wenq6rrrpKjzzyiHp6egb6lIatc1mLs8HrInoDtRYn8Lo4e7Fai2AwqJSUFMXFff23TXldDI4h/TbjaBljtHjxYt14443Kzs6WJOcLB3t/yaDX69UHH3zgzCQkJCg1NbXPzInHBwIBjRs3rs/PHDduXJ8vNcTAroUkPfDAA7rmmmuUmpqqV199VeXl5WppadEf/vCHgTytYelc1+Js8LqIzkCuhcTrIhqxWosjR47ol7/8pRYsWODs43UxOIZVoCxatEhvvvmm9u/f3+c+l8sVcdsY02dfb71nTjZ/Ns9zPhrotXjwwQed/zx58mSlpqbqBz/4gfP/HvH/Yr0WZ3qOc32e88FArwWvi7MXi7UIhUKaNWuWLr/8cq1cufK0z3G658G5GTa/4iktLdXu3bv1wgsvaMKECc5+n88nSX2qtb293alkn8+nnp4edXR0nHbmk08+6fNz//Of//Sp7fPdQK/FyVx//fWSpHfffTcm5zBS9Gctzgavi7M30GtxMrwuTi4Wa9HZ2albbrlFF154oWpqahQfHx/xPLwuBp71gWKM0aJFi/TUU0/p+eefV2ZmZsT9mZmZ8vl8qq2tdfb19PSorq5O+fn5kqTc3FzFx8dHzLS1tam5udmZmTJlioLBoF599VVn5h//+IeCwaAzc74brLU4mTfeeEOSNH78+Fie0rAVi7U4G7wuzmyw1uJkeF1EitVahEIhFRUVKSEhQbt379bo0aMjnofXxSAZ3PfkRu/ee+81Ho/HvPjiixEfrfviiy+cmVWrVhmPx2Oeeuop09TUZO68886TfrR1woQJZt++feb11183N99880k/Zjx58mTzyiuvmFdeecXk5OTwsbH/MVhrUV9fb9asWWPeeOMN895775knn3zS+P1+U1JSMujnbKtYrUVbW5t54403zObNm40k89JLL5k33njDHDlyxJnhdXF6g7UWvC7OLBZrEQqFTF5ensnJyTHvvvtuxPPw78Xgsj5QJJ1027p1qzNz/Phxs3LlSuPz+Yzb7TY33XSTaWpqinie7u5us2jRIpOWlmYSExNNcXGx+fDDDyNmjhw5YubNm2eSk5NNcnKymTdv3kk/6ne+Gqy1aGxsNHl5ecbj8ZjRo0ebyy67zKxcudJ8/vnng3Wq1ovVWqxcufKMz8Pr4vQGay14XZxZLNbixMe8T7a1tLQ4c7wuBp7LGGNif10GAADg3Fn/HhQAAHD+IVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABY5/8AsqjC2EWostgAAAAASUVORK5CYII=",
|
323 |
-
"text/plain": [
|
324 |
-
"<Figure size 640x480 with 1 Axes>"
|
325 |
-
]
|
326 |
-
},
|
327 |
-
"metadata": {},
|
328 |
-
"output_type": "display_data"
|
329 |
-
},
|
330 |
-
{
|
331 |
-
"name": "stdout",
|
332 |
-
"output_type": "stream",
|
333 |
-
"text": [
|
334 |
-
"[1950 = 0] [1951 = 0] [1952 = 0] [1953 = 0] [1954 = 0] [1955 = 0] [1956 = 0] [1957 = 0] [1958 = 0] [1959 = 0] [1960 = 0] [1961 = 0] [1962 = 0] [1963 = 0] [1964 = 0] [1965 = 0] [1966 = 0] [1967 = 0] [1968 = 0] [1969 = 0] [1970 = 0] [1971 = 0] [1972 = 0] [1973 = 0] [1974 = 0] [1975 = 0] [1976 = 0] [1977 = 0] [1978 = 0] [1979 = 0] [1980 = 0] [1981 = 0] [1982 = 0] [1983 = 0] [1984 = 0] [1985 = 0] [1986 = 0] [1987 = 0] [1988 = 0] [1989 = 0] [1990 = 0] [1991 = 0] [1992 = 0] [1993 = 0] [1994 = 0] [1995 = 0] [1996 = 0] [1997 = 0] [1998 = 0] [1999 = 0] [2000 = 0] [2001 = 3] [2002 = 0] [2003 = 1] [2004 = 1] [2005 = 6] [2006 = 4] [2007 = 3] [2008 = 5] [2009 = 12] [2010 = 3] [2011 = 4] [2012 = 8] [2013 = 6] [2014 = 10] [2015 = 31] [2016 = 56] [2017 = 82] [2018 = 155] [2019 = 168] [2020 = 297] [2021 = 445] [2022 = 608] [2023 = 521] "
|
335 |
-
]
|
336 |
-
}
|
337 |
-
],
|
338 |
-
"source": [
|
339 |
-
"# df = pd.read_csv(\"index.csv\")\n",
|
340 |
-
"# df.head()\n",
|
341 |
-
"\n",
|
342 |
-
"\n",
|
343 |
-
"data = np.array(df)\n",
|
344 |
-
"years = data[:, 1]\n",
|
345 |
-
"\n",
|
346 |
-
"for i in range(len(years)):\n",
|
347 |
-
" try:\n",
|
348 |
-
" years[i] = int(years[i])\n",
|
349 |
-
" except ValueError:\n",
|
350 |
-
" continue\n",
|
351 |
-
"\n",
|
352 |
-
"years = [year for year in years if isinstance(year, int) and 2000 <= year <= 2024 ]\n",
|
353 |
-
"counters = Counter(years)\n",
|
354 |
-
"unique_years = sorted(list(counters.keys()))\n",
|
355 |
-
"print(f\"{unique_years = }\")\n",
|
356 |
-
"counts = [counters[year] for year in unique_years]\n",
|
357 |
-
"plt.bar(unique_years, counts, label=\"Total\")\n",
|
358 |
-
"plt.show()\n",
|
359 |
-
"with open(\"counts.csv\", \"w\") as f:\n",
|
360 |
-
" for year in range(1950, 2024):\n",
|
361 |
-
" count = counters.get(year, 0)\n",
|
362 |
-
" print(f\"[{year} = {count}]\", end=\" \")\n",
|
363 |
-
" f.write(f\"{year},{count}\\n\")\n"
|
364 |
-
]
|
365 |
-
},
|
366 |
-
{
|
367 |
-
"cell_type": "code",
|
368 |
-
"execution_count": null,
|
369 |
-
"metadata": {},
|
370 |
-
"outputs": [],
|
371 |
-
"source": []
|
372 |
-
}
|
373 |
-
],
|
374 |
-
"metadata": {
|
375 |
-
"interpreter": {
|
376 |
-
"hash": "607b7d84c7d8e26dbbffb4014e40424fe2faf80a09a85d717e93e42c2773dc40"
|
377 |
-
},
|
378 |
-
"kernelspec": {
|
379 |
-
"display_name": "Python 3.10.4 ('ml')",
|
380 |
-
"language": "python",
|
381 |
-
"name": "python3"
|
382 |
-
},
|
383 |
-
"language_info": {
|
384 |
-
"codemirror_mode": {
|
385 |
-
"name": "ipython",
|
386 |
-
"version": 3
|
387 |
-
},
|
388 |
-
"file_extension": ".py",
|
389 |
-
"mimetype": "text/x-python",
|
390 |
-
"name": "python",
|
391 |
-
"nbconvert_exporter": "python",
|
392 |
-
"pygments_lexer": "ipython3",
|
393 |
-
"version": "3.11.5"
|
394 |
-
},
|
395 |
-
"orig_nbformat": 4
|
396 |
-
},
|
397 |
-
"nbformat": 4,
|
398 |
-
"nbformat_minor": 2
|
399 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
counts.csv → default/train/0000.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b30f4a2abf20ca5b55459c7c253f7c3ac812527e28b415bc985599d5108fd33b
|
3 |
+
size 45439611
|
index.csv → default/train/0001.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b30f4a2abf20ca5b55459c7c253f7c3ac812527e28b415bc985599d5108fd33b
|
3 |
+
size 45439611
|
index.py
DELETED
@@ -1,123 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
# -*- coding: utf-8 -*-
|
3 |
-
|
4 |
-
"""
|
5 |
-
Simple script to generate metadata about corpus.
|
6 |
-
"""
|
7 |
-
|
8 |
-
__author__ = "Amittai Siavava"
|
9 |
-
__version__ = "0.0.1"
|
10 |
-
|
11 |
-
from os import mkdir
|
12 |
-
from collections import Counter
|
13 |
-
import csv
|
14 |
-
import pandas as pd
|
15 |
-
|
16 |
-
def count_words():
|
17 |
-
"""
|
18 |
-
This is a simple script to count the number of words in this directory.
|
19 |
-
|
20 |
-
It loops over all the lines in `.all` and counts the occurrence of each word,
|
21 |
-
then sums them up.
|
22 |
-
|
23 |
-
HACK:
|
24 |
-
This is a hacky way to count the number of words in the corpus.
|
25 |
-
>>> count_words()
|
26 |
-
"""
|
27 |
-
total = 0
|
28 |
-
with open("all", "r") as f:
|
29 |
-
for line in f:
|
30 |
-
try:
|
31 |
-
total += int(line.strip().split()[0])
|
32 |
-
except:
|
33 |
-
pass
|
34 |
-
f.close()
|
35 |
-
if total > 0:
|
36 |
-
with open (".total", "w") as f:
|
37 |
-
print(f"Total words = {total}")
|
38 |
-
f.write(f"Total words = {total}")
|
39 |
-
f.close()
|
40 |
-
|
41 |
-
def index_pages():
|
42 |
-
"""
|
43 |
-
Generate a friendly index of the pages.
|
44 |
-
|
45 |
-
We create a csv and a tsv (in case one proves more convenient than the other).
|
46 |
-
"""
|
47 |
-
docID = 0
|
48 |
-
|
49 |
-
with open("index.csv", "w") as csv_file, open("urls", "w") as urls:
|
50 |
-
writer = csv.writer(csv_file)
|
51 |
-
# csv.write("id,year,title,url\n")
|
52 |
-
writer.writerow(["id", "year", "title", "url", "text"])
|
53 |
-
while True:
|
54 |
-
try:
|
55 |
-
with open(f"../log/{docID}", "r") as meta, open(f"../log/{docID}.txt", "r") as data:
|
56 |
-
title = meta.readline().strip()
|
57 |
-
year = meta.readline().strip()
|
58 |
-
url = meta.readline().strip()
|
59 |
-
# read remaining text
|
60 |
-
text = data.read()
|
61 |
-
# print(f"{text = }")
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
meta.close()
|
66 |
-
data.close()
|
67 |
-
|
68 |
-
print(f"Indexing: {docID}")
|
69 |
-
# csv.write(f'{docID},{year},"{title}","{url}","{text}"\n')
|
70 |
-
|
71 |
-
writer.writerow([docID, year, f'"{title}"', f'"{url}"', f'"{text}"'])
|
72 |
-
# tsv.write(f"{docID}\t{year}\t{title}\t{url}\n")
|
73 |
-
urls.write(f"{url}\n")
|
74 |
-
docID += 1
|
75 |
-
except:
|
76 |
-
break
|
77 |
-
print("Done.")
|
78 |
-
|
79 |
-
def categorize():
|
80 |
-
"""
|
81 |
-
Categorize the pages by year.
|
82 |
-
"""
|
83 |
-
|
84 |
-
docID = 0
|
85 |
-
years = Counter()
|
86 |
-
while True:
|
87 |
-
try:
|
88 |
-
with open(f"../log/{docID}.txt", "r") as doc, open(f"../log/{docID}", "r") as meta:
|
89 |
-
title = meta.readline().strip()
|
90 |
-
year = meta.readline().strip()
|
91 |
-
url = meta.readline().strip()
|
92 |
-
text = doc.read()
|
93 |
-
doc.close()
|
94 |
-
meta.close()
|
95 |
-
|
96 |
-
if year == "":
|
97 |
-
year = "unknown"
|
98 |
-
|
99 |
-
try:
|
100 |
-
mkdir(f"../categorized/{year}")
|
101 |
-
except:
|
102 |
-
pass
|
103 |
-
|
104 |
-
id = years.get(year, 0)
|
105 |
-
with open(f"../categorized/{year}/{id}.txt", "w") as f:
|
106 |
-
f.write(f"old id = {docID}\n{title}\n{year}\n{url}\n\n{text}")
|
107 |
-
f.close()
|
108 |
-
years[year] = id + 1
|
109 |
-
docID += 1
|
110 |
-
|
111 |
-
except:
|
112 |
-
break
|
113 |
-
|
114 |
-
# def load_data():
|
115 |
-
# df = pd.read_csv("index.csv")
|
116 |
-
# df.head(5)
|
117 |
-
|
118 |
-
|
119 |
-
if __name__ == "__main__":
|
120 |
-
# count_words()
|
121 |
-
index_pages()
|
122 |
-
categorize()
|
123 |
-
# load_data()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
urls
DELETED
The diff for this file is too large to render.
See raw diff
|
|