|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""AfriSenti: A Twitter sentiment dataset for 14 African languages""" |
|
|
|
|
|
|
|
_HOMEPAGE = "https://github.com/afrisenti-semeval/afrisent-semeval-2023" |
|
|
|
_DESCRIPTION = """\ |
|
AfriSenti is the largest sentiment analysis benchmark dataset for under-represented African languages---covering 110,000+ annotated tweets in 14 African languages (Amharic, Algerian Arabic, Hausa, Igbo, Kinyarwanda, Moroccan Arabic, Mozambican Portuguese, Nigerian Pidgin, Oromo, Swahili, Tigrinya, Twi, Xitsonga, and yoruba). |
|
""" |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{muhammad-etal-2023-semeval, |
|
title="{S}em{E}val-2023 Task 12: Sentiment Analysis for African Languages ({A}fri{S}enti-{S}em{E}val)", |
|
author="Muhammad, Shamsuddeen Hassan and |
|
Yimam, Seid and |
|
Abdulmumin, Idris and |
|
Ahmad, Ibrahim Sa'id and |
|
Ousidhoum, Nedjma, and |
|
Ayele, Abinew, and |
|
Adelani, David and |
|
Ruder, Sebastian and |
|
Beloucif, Meriem and |
|
Bello, Shehu Bello and |
|
Mohammad, Saif M.", |
|
booktitle="Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)", |
|
month=jul, |
|
year="2023", |
|
} |
|
""" |
|
|
|
|
|
import csv |
|
import textwrap |
|
import pandas as pd |
|
|
|
import datasets |
|
|
|
LANGUAGES = ['amh', 'hau', 'ibo', 'arq', 'ary', 'yor', 'por', 'twi', 'tso', 'tir', 'orm', 'pcm', 'kin', 'swa'] |
|
|
|
class AfriSentiConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for AfriSenti""" |
|
|
|
def __init__( |
|
self, |
|
text_features, |
|
label_column, |
|
label_classes, |
|
train_url, |
|
valid_url, |
|
test_url, |
|
citation, |
|
**kwargs, |
|
): |
|
"""BuilderConfig for AfriSenti. |
|
|
|
Args: |
|
text_features: `dict[string]`, map from the name of the feature |
|
dict for each text field to the name of the column in the txt/csv/tsv file |
|
label_column: `string`, name of the column in the txt/csv/tsv file corresponding |
|
to the label |
|
label_classes: `list[string]`, the list of classes if the label is categorical |
|
train_url: `string`, url to train file from |
|
valid_url: `string`, url to valid file from |
|
test_url: `string`, url to test file from |
|
citation: `string`, citation for the data set |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(AfriSentiConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) |
|
self.text_features = text_features |
|
self.label_column = label_column |
|
self.label_classes = label_classes |
|
self.train_url = train_url |
|
self.valid_url = valid_url |
|
self.test_url = test_url |
|
self.citation = citation |
|
|
|
|
|
class AfriSenti(datasets.GeneratorBasedBuilder): |
|
"""AfriSenti benchmark""" |
|
|
|
BUILDER_CONFIGS = [] |
|
|
|
for lang in LANGUAGES: |
|
BUILDER_CONFIGS.append( |
|
AfriSentiConfig( |
|
name=lang, |
|
description=textwrap.dedent( |
|
f"""\ |
|
{lang} dataset.""" |
|
), |
|
text_features={"tweet": "tweet"}, |
|
label_classes=["positive", "neutral", "negative"], |
|
label_column="label", |
|
train_url=f"https://raw.githubusercontent.com/afrisenti-semeval/afrisent-semeval-2023/main/data/{lang}/train.tsv", |
|
valid_url=f"https://raw.githubusercontent.com/afrisenti-semeval/afrisent-semeval-2023/main/data/{lang}/dev.tsv", |
|
test_url=f"https://raw.githubusercontent.com/afrisenti-semeval/afrisent-semeval-2023/main/data/{lang}/test.tsv", |
|
citation=textwrap.dedent( |
|
f"""\ |
|
{lang} citation""" |
|
), |
|
), |
|
) |
|
|
|
def _info(self): |
|
features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features} |
|
features["label"] = datasets.features.ClassLabel(names=self.config.label_classes) |
|
|
|
return datasets.DatasetInfo( |
|
description=self.config.description, |
|
features=datasets.Features(features), |
|
citation=self.config.citation, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
train_path = dl_manager.download_and_extract(self.config.train_url) |
|
valid_path = dl_manager.download_and_extract(self.config.valid_url) |
|
test_path = dl_manager.download_and_extract(self.config.test_url) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": valid_path}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
df = pd.read_csv(filepath, sep='\t') |
|
|
|
print('-'*100) |
|
print(df.head()) |
|
print('-'*100) |
|
|
|
for id_, row in df.iterrows(): |
|
tweet = row["tweet"] |
|
label = row["label"] |
|
|
|
yield id_, {"tweet": tweet, "label": label} |
|
|