|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The Chinese Natural Language Inference (NLI-zh-all) Corpus. |
|
upload: https://github.com/shibing624 |
|
""" |
|
|
|
|
|
import csv |
|
import os |
|
import json |
|
import datasets |
|
|
|
|
|
_CITATION = """https://github.com/shibing624/text2vec""" |
|
|
|
_DESCRIPTION = """\ |
|
The SNLI corpus (version 1.0) is a merged chinese sentence similarity dataset, supporting the task of natural language |
|
inference (NLI), also known as recognizing textual entailment (RTE). |
|
""" |
|
|
|
_DATA_URL = "https://huggingface.co/datasets/shibing624/nli-zh-all/resolve/main/sampled_data" |
|
|
|
|
|
class Nli(datasets.GeneratorBasedBuilder): |
|
"""The Chinese Natural Language Inference (NLI-zh-all) Corpus.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="plain_text", |
|
version=datasets.Version("1.0.0", ""), |
|
description="Plain text import of NLI-zh-all", |
|
) |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"text1": datasets.Value("string"), |
|
"text2": datasets.Value("string"), |
|
"label": datasets.Value("int64"), |
|
} |
|
), |
|
|
|
supervised_keys=None, |
|
homepage="https://github.com/shibing624/text2vec", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
files = ['simclue-train-2k.jsonl', |
|
'nli_zh-train-25k.jsonl', |
|
'alpaca_gpt4-train-2k.jsonl', |
|
'cmrc2018-train-2k.jsonl', |
|
'snli_zh-train-5k.jsonl', |
|
'chatmed_consult-train-500.jsonl', |
|
'zhihu_kol-train-2k.jsonl', |
|
'cblue_chip_sts-train-2k.jsonl', |
|
'csl-train-500.jsonl', |
|
'webqa-train-500.jsonl', |
|
'xlsum-train-1k.jsonl',] |
|
data_files = [f"{_DATA_URL}/{i}" for i in files] |
|
return [ |
|
|
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"filepath": dl_manager.download_and_extract(data_files)} |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
id = 0 |
|
if isinstance(filepath, str): |
|
filepath = [filepath] |
|
for file in filepath: |
|
with open(file, encoding="utf-8") as f: |
|
for key, row in enumerate(f): |
|
data = json.loads(row) |
|
yield id, { |
|
"text1": data["text1"], |
|
"text2": data["text2"], |
|
"label": data["label"] |
|
} |
|
id += 1 |