Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
open-domain-qa
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Commit
·
a202432
1
Parent(s):
788845f
Delete loading script
Browse files- ambig_qa.py +0 -150
ambig_qa.py
DELETED
@@ -1,150 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
"""AmbigQA: Answering Ambiguous Open-domain Questions"""
|
17 |
-
|
18 |
-
|
19 |
-
import json
|
20 |
-
import os
|
21 |
-
|
22 |
-
import datasets
|
23 |
-
|
24 |
-
|
25 |
-
_CITATION = """\
|
26 |
-
@inproceedings{ min2020ambigqa,
|
27 |
-
title={ {A}mbig{QA}: Answering Ambiguous Open-domain Questions },
|
28 |
-
author={ Min, Sewon and Michael, Julian and Hajishirzi, Hannaneh and Zettlemoyer, Luke },
|
29 |
-
booktitle={ EMNLP },
|
30 |
-
year={2020}
|
31 |
-
}
|
32 |
-
"""
|
33 |
-
|
34 |
-
_DESCRIPTION = """\
|
35 |
-
AmbigNQ, a dataset covering 14,042 questions from NQ-open, an existing open-domain QA benchmark. We find that over half of the questions in NQ-open are ambiguous. The types of ambiguity are diverse and sometimes subtle, many of which are only apparent after examining evidence provided by a very large text corpus. AMBIGNQ, a dataset with
|
36 |
-
14,042 annotations on NQ-OPEN questions containing diverse types of ambiguity.
|
37 |
-
We provide two distributions of our new dataset AmbigNQ: a full version with all annotation metadata and a light version with only inputs and outputs.
|
38 |
-
"""
|
39 |
-
_HOMEPAGE = "https://nlp.cs.washington.edu/ambigqa/"
|
40 |
-
_LICENSE = "CC BY-SA 3.0"
|
41 |
-
|
42 |
-
_URL = "https://nlp.cs.washington.edu/ambigqa/data/"
|
43 |
-
_URLS = {
|
44 |
-
"light": _URL + "ambignq_light.zip",
|
45 |
-
"full": _URL + "ambignq.zip",
|
46 |
-
}
|
47 |
-
|
48 |
-
|
49 |
-
class AmbigQa(datasets.GeneratorBasedBuilder):
|
50 |
-
"""AmbigQA dataset"""
|
51 |
-
|
52 |
-
VERSION = datasets.Version("1.0.0")
|
53 |
-
BUILDER_CONFIGS = [
|
54 |
-
datasets.BuilderConfig(
|
55 |
-
name="light",
|
56 |
-
version=VERSION,
|
57 |
-
description="AmbigNQ light version with only inputs and outputs",
|
58 |
-
),
|
59 |
-
datasets.BuilderConfig(
|
60 |
-
name="full",
|
61 |
-
version=VERSION,
|
62 |
-
description="AmbigNQ full version with all annotation metadata",
|
63 |
-
),
|
64 |
-
]
|
65 |
-
DEFAULT_CONFIG_NAME = "full"
|
66 |
-
|
67 |
-
def _info(self):
|
68 |
-
features_dict = {
|
69 |
-
"id": datasets.Value("string"),
|
70 |
-
"question": datasets.Value("string"),
|
71 |
-
"annotations": datasets.features.Sequence(
|
72 |
-
{
|
73 |
-
"type": datasets.Value("string"), # datasets.ClassLabel(names = ["singleAnswer","multipleQAs"])
|
74 |
-
"answer": datasets.features.Sequence(datasets.Value("string")),
|
75 |
-
"qaPairs": datasets.features.Sequence(
|
76 |
-
{
|
77 |
-
"question": datasets.Value("string"),
|
78 |
-
"answer": datasets.features.Sequence(datasets.Value("string")),
|
79 |
-
}
|
80 |
-
),
|
81 |
-
}
|
82 |
-
),
|
83 |
-
}
|
84 |
-
if self.config.name == "full":
|
85 |
-
|
86 |
-
detail_features = {
|
87 |
-
"viewed_doc_titles": datasets.features.Sequence(datasets.Value("string")),
|
88 |
-
"used_queries": datasets.features.Sequence(
|
89 |
-
{
|
90 |
-
"query": datasets.Value("string"),
|
91 |
-
"results": datasets.features.Sequence(
|
92 |
-
{
|
93 |
-
"title": datasets.Value("string"),
|
94 |
-
"snippet": datasets.Value("string"),
|
95 |
-
}
|
96 |
-
),
|
97 |
-
}
|
98 |
-
),
|
99 |
-
"nq_answer": datasets.features.Sequence(datasets.Value("string")),
|
100 |
-
"nq_doc_title": datasets.Value("string"),
|
101 |
-
}
|
102 |
-
features_dict.update(detail_features)
|
103 |
-
|
104 |
-
features = datasets.Features(features_dict)
|
105 |
-
|
106 |
-
return datasets.DatasetInfo(
|
107 |
-
description=_DESCRIPTION,
|
108 |
-
features=features,
|
109 |
-
supervised_keys=None,
|
110 |
-
homepage=_HOMEPAGE,
|
111 |
-
license=_LICENSE,
|
112 |
-
citation=_CITATION,
|
113 |
-
)
|
114 |
-
|
115 |
-
def _split_generators(self, dl_manager):
|
116 |
-
"""Returns SplitGenerators."""
|
117 |
-
# download and extract URLs
|
118 |
-
urls_to_download = _URLS
|
119 |
-
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
120 |
-
|
121 |
-
train_file_name = "train.json" if self.config.name == "full" else "train_light.json"
|
122 |
-
dev_file_name = "dev.json" if self.config.name == "full" else "dev_light.json"
|
123 |
-
|
124 |
-
return [
|
125 |
-
datasets.SplitGenerator(
|
126 |
-
name=datasets.Split.TRAIN,
|
127 |
-
gen_kwargs={"filepath": os.path.join(downloaded_files[self.config.name], train_file_name)},
|
128 |
-
),
|
129 |
-
datasets.SplitGenerator(
|
130 |
-
name=datasets.Split.VALIDATION,
|
131 |
-
gen_kwargs={"filepath": os.path.join(downloaded_files[self.config.name], dev_file_name)},
|
132 |
-
),
|
133 |
-
]
|
134 |
-
|
135 |
-
def _generate_examples(self, filepath):
|
136 |
-
"""Yields examples."""
|
137 |
-
|
138 |
-
with open(filepath, encoding="utf-8") as f:
|
139 |
-
data = json.load(f)
|
140 |
-
for example in data:
|
141 |
-
id_ = example["id"]
|
142 |
-
annotations = example["annotations"]
|
143 |
-
# Add this because we cannot have None values (all keys in the schema should be present)
|
144 |
-
for an in annotations:
|
145 |
-
if "qaPairs" not in an:
|
146 |
-
an["qaPairs"] = []
|
147 |
-
if "answer" not in an:
|
148 |
-
an["answer"] = []
|
149 |
-
|
150 |
-
yield id_, example
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|