scottgeng00 commited on
Commit
1fbaa40
1 Parent(s): 81120e8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +117 -3
README.md CHANGED
@@ -1,3 +1,117 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ # Dataset Card for the RealTalk Video Dataset
6
+
7
+ Thank you for your interest in the RealTalk dataset! RealTalk consists of 692 in-the-wild videos of dyadic (i.e. two person) conversations, curated with the goal of advancing multimodal communication research in computer vision.
8
+ If you find our dataset useful, please cite
9
+ ```
10
+ @inproceedings{geng2023affective,
11
+ title={Affective Faces for Goal-Driven Dyadic Communication},
12
+ author={Geng, Scott and Teotia, Revant and Tendulkar, Purva and Menon, Sachit and Vondrick, Carl},
13
+ year={2023}
14
+ }
15
+ ```
16
+
17
+ ---------------------------------------------------------------------------------------------------------------------------------------
18
+
19
+ ## Dataset Details
20
+
21
+ The dataset contains 692 full-length videos scraped from [The Skin Deep](https://www.youtube.com/c/TheSkinDeep), a public YouTube channel that captures long-form, unscripted conversations between diverse indivudals about different facets of the human experience. We also include associated annotations; we detail all files present in the dataset below.
22
+
23
+ ### File Overview
24
+
25
+ General notes:
26
+ * All frame numbers are indexed from 0.
27
+ * We denote 'p0' as the person on the left side of the video, and 'p1' as the person on the right side.
28
+ * <video_id> denotes the unique 11 digit video ID assigned by YouTube to a specific video.
29
+
30
+ #### [0] videos/videos_{xx}.tar
31
+ Contains the full-length raw videos that the dataset is created from in shards of 50. Each video is stored at 25 fps in ```avi``` format.
32
+ Each video is stored with filename ```<video_id>.avi``` (e.g., ```5hxY5Svr2aM.avi```).
33
+
34
+ #### [1] audio.tar.gz
35
+ Contains audio files extracted from the videos, stored in ```mp3``` format.
36
+
37
+ #### [2] asr.tar.gz
38
+ Contains ASR outputs of [Whisper](https://github.com/openai/whisper) for each video. Subtitles for video ```<video_id>.avi``` are stored in the file ```<video_id>.json``` as the dictionary
39
+ ```
40
+ {
41
+ 'text': <full asr transcript of video>
42
+ 'segments': <time-stamped ASR segments>
43
+ 'language': <detected language of video>
44
+ }
45
+ ```
46
+
47
+ #### [3.0] benchmark/train_test_split.json
48
+ This json file describes the clips used as the benchmark train/test split in our paper. The file stores the dictionary
49
+ ```
50
+ {
51
+ 'train': [list of train samples],
52
+ 'test': [list of test samples]
53
+ }
54
+ ```
55
+ where each entry in the list is another dictionary with format
56
+ ```
57
+ {
58
+ 'id': [video_id, start_frame (inclusive), end_frame (exclusive)],
59
+ 'speaker': 'p0'|'p1'
60
+ 'listener': 'p0'|'p1'
61
+ 'asr': str
62
+ }
63
+ ```
64
+ The ASR of the clip is computed with [Whisper](https://github.com/openai/whisper).
65
+
66
+
67
+ #### [3.1] benchmark/embeddings.pkl
68
+ Pickle file containing visual embeddings of the listener frames in the training/testing clips, as computed by several pretrained face models implemented in [deepface](https://github.com/serengil/deepface). The file stores a dictionary with format
69
+ ```
70
+ {
71
+ f'{video_id}.{start_frame}.{end_frame}:{
72
+ {
73
+ <model_name_1>: <array of listener embeddings>,
74
+ <model_name_2>: <array of listener embeddings>,
75
+ ...
76
+ }
77
+ ...
78
+ }
79
+ ```
80
+
81
+ #### [4] annotations.tar.gz
82
+ Contains face bounding box and active speaker annotations for every frame of each video. Annotations for video ```<video_id>.avi``` are contained in file ```<video_id>.json```, which stores a nested dictionary structure:
83
+ ```
84
+ {str(frame_number):{
85
+ 'people':{
86
+ 'p0':{'score': float, 'bbox': array}
87
+ 'p1':{'score': float, 'bbox': array}
88
+ }
89
+ 'current_speaker': 'p0'|'p1'|None
90
+ }
91
+ ...
92
+ }
93
+ ```
94
+ The 'score' field stores the active speaker score as predicted by [TalkNet-ASD](https://github.com/TaoRuijie/TalkNet-ASD); larger positive values indicate a higher probability that the person is speaking. Note also that the 'people' subdictionary may or may not contain the keys 'p0', 'p1', depending on who is visible in the frame.
95
+
96
+ #### [5] emoca.tar.gz
97
+
98
+ Contains [EMOCA](https://emoca.is.tue.mpg.de/) embeddings for almost all frames in all the videos. The embeddings for```<video_id>.avi``` are contained in the pickle file ```<video_id>.pkl```, which has dictionary structure
99
+ ```
100
+ {
101
+ int(frame_number):{
102
+ 'p0': <embedding dict from EMOCA>,
103
+ 'p1': <embedding dict from EMOCA>
104
+ }
105
+ ...
106
+ }
107
+ ```
108
+
109
+ Note that some frames may be missing embeddings due to occlusions or failures in face detection.
110
+
111
+ ## Dataset Card Authors
112
+
113
+ Scott Geng
114
+
115
+ ## Dataset Card Contact
116
+
117
+ sgeng@cs.washington.edu