Upload train_with_fixes.py with huggingface_hub
Browse files- train_with_fixes.py +1700 -0
train_with_fixes.py
ADDED
@@ -0,0 +1,1700 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
|
16 |
+
import argparse
|
17 |
+
import gc
|
18 |
+
import itertools
|
19 |
+
import logging
|
20 |
+
import math
|
21 |
+
import os
|
22 |
+
import shutil
|
23 |
+
import warnings
|
24 |
+
from pathlib import Path
|
25 |
+
|
26 |
+
import numpy as np
|
27 |
+
import torch
|
28 |
+
import torch.nn.functional as F
|
29 |
+
import torch.utils.checkpoint
|
30 |
+
import transformers
|
31 |
+
from accelerate import Accelerator
|
32 |
+
from accelerate.logging import get_logger
|
33 |
+
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
|
34 |
+
from huggingface_hub import create_repo, upload_folder
|
35 |
+
from huggingface_hub.utils import insecure_hashlib
|
36 |
+
from packaging import version
|
37 |
+
from peft import LoraConfig
|
38 |
+
from peft.utils import get_peft_model_state_dict
|
39 |
+
from PIL import Image
|
40 |
+
from PIL.ImageOps import exif_transpose
|
41 |
+
from torch.utils.data import Dataset
|
42 |
+
from torchvision import transforms
|
43 |
+
from tqdm.auto import tqdm
|
44 |
+
from transformers import AutoTokenizer, PretrainedConfig
|
45 |
+
|
46 |
+
import diffusers
|
47 |
+
from diffusers import (
|
48 |
+
AutoencoderKL,
|
49 |
+
DDPMScheduler,
|
50 |
+
DPMSolverMultistepScheduler,
|
51 |
+
StableDiffusionXLPipeline,
|
52 |
+
UNet2DConditionModel,
|
53 |
+
)
|
54 |
+
from diffusers.loaders import LoraLoaderMixin
|
55 |
+
from diffusers.optimization import get_scheduler
|
56 |
+
from diffusers.training_utils import compute_snr
|
57 |
+
from diffusers.utils import check_min_version, is_wandb_available
|
58 |
+
from diffusers.utils.import_utils import is_xformers_available
|
59 |
+
|
60 |
+
|
61 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
62 |
+
check_min_version("0.25.0.dev0")
|
63 |
+
|
64 |
+
logger = get_logger(__name__)
|
65 |
+
|
66 |
+
|
67 |
+
def save_model_card(
|
68 |
+
repo_id: str,
|
69 |
+
images=None,
|
70 |
+
base_model=str,
|
71 |
+
train_text_encoder=False,
|
72 |
+
instance_prompt=str,
|
73 |
+
validation_prompt=str,
|
74 |
+
repo_folder=None,
|
75 |
+
vae_path=None,
|
76 |
+
):
|
77 |
+
img_str = "widget:\n" if images else ""
|
78 |
+
for i, image in enumerate(images):
|
79 |
+
image.save(os.path.join(repo_folder, f"image_{i}.png"))
|
80 |
+
img_str += f"""
|
81 |
+
- text: '{validation_prompt if validation_prompt else ' ' }'
|
82 |
+
output:
|
83 |
+
url:
|
84 |
+
"image_{i}.png"
|
85 |
+
"""
|
86 |
+
|
87 |
+
yaml = f"""
|
88 |
+
---
|
89 |
+
tags:
|
90 |
+
- stable-diffusion-xl
|
91 |
+
- stable-diffusion-xl-diffusers
|
92 |
+
- text-to-image
|
93 |
+
- diffusers
|
94 |
+
- lora
|
95 |
+
- template:sd-lora
|
96 |
+
{img_str}
|
97 |
+
base_model: {base_model}
|
98 |
+
instance_prompt: {instance_prompt}
|
99 |
+
license: openrail++
|
100 |
+
---
|
101 |
+
"""
|
102 |
+
|
103 |
+
model_card = f"""
|
104 |
+
# SDXL LoRA DreamBooth - {repo_id}
|
105 |
+
|
106 |
+
<Gallery />
|
107 |
+
|
108 |
+
## Model description
|
109 |
+
|
110 |
+
These are {repo_id} LoRA adaption weights for {base_model}.
|
111 |
+
|
112 |
+
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
|
113 |
+
|
114 |
+
LoRA for the text encoder was enabled: {train_text_encoder}.
|
115 |
+
|
116 |
+
Special VAE used for training: {vae_path}.
|
117 |
+
|
118 |
+
## Trigger words
|
119 |
+
|
120 |
+
You should use {instance_prompt} to trigger the image generation.
|
121 |
+
|
122 |
+
## Download model
|
123 |
+
|
124 |
+
Weights for this model are available in Safetensors format.
|
125 |
+
|
126 |
+
[Download]({repo_id}/tree/main) them in the Files & versions tab.
|
127 |
+
|
128 |
+
"""
|
129 |
+
with open(os.path.join(repo_folder, "README.md"), "w") as f:
|
130 |
+
f.write(yaml + model_card)
|
131 |
+
|
132 |
+
|
133 |
+
def import_model_class_from_model_name_or_path(
|
134 |
+
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
|
135 |
+
):
|
136 |
+
text_encoder_config = PretrainedConfig.from_pretrained(
|
137 |
+
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
|
138 |
+
)
|
139 |
+
model_class = text_encoder_config.architectures[0]
|
140 |
+
|
141 |
+
if model_class == "CLIPTextModel":
|
142 |
+
from transformers import CLIPTextModel
|
143 |
+
|
144 |
+
return CLIPTextModel
|
145 |
+
elif model_class == "CLIPTextModelWithProjection":
|
146 |
+
from transformers import CLIPTextModelWithProjection
|
147 |
+
|
148 |
+
return CLIPTextModelWithProjection
|
149 |
+
else:
|
150 |
+
raise ValueError(f"{model_class} is not supported.")
|
151 |
+
|
152 |
+
|
153 |
+
def parse_args(input_args=None):
|
154 |
+
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
155 |
+
parser.add_argument(
|
156 |
+
"--pretrained_model_name_or_path",
|
157 |
+
type=str,
|
158 |
+
default=None,
|
159 |
+
required=True,
|
160 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
161 |
+
)
|
162 |
+
parser.add_argument(
|
163 |
+
"--pretrained_vae_model_name_or_path",
|
164 |
+
type=str,
|
165 |
+
default=None,
|
166 |
+
help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.",
|
167 |
+
)
|
168 |
+
parser.add_argument(
|
169 |
+
"--revision",
|
170 |
+
type=str,
|
171 |
+
default=None,
|
172 |
+
required=False,
|
173 |
+
help="Revision of pretrained model identifier from huggingface.co/models.",
|
174 |
+
)
|
175 |
+
parser.add_argument(
|
176 |
+
"--variant",
|
177 |
+
type=str,
|
178 |
+
default=None,
|
179 |
+
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
|
180 |
+
)
|
181 |
+
parser.add_argument(
|
182 |
+
"--dataset_name",
|
183 |
+
type=str,
|
184 |
+
default=None,
|
185 |
+
help=(
|
186 |
+
"The name of the Dataset (from the HuggingFace hub) containing the training data of instance images (could be your own, possibly private,"
|
187 |
+
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
|
188 |
+
" or to a folder containing files that 🤗 Datasets can understand."
|
189 |
+
),
|
190 |
+
)
|
191 |
+
parser.add_argument(
|
192 |
+
"--dataset_config_name",
|
193 |
+
type=str,
|
194 |
+
default=None,
|
195 |
+
help="The config of the Dataset, leave as None if there's only one config.",
|
196 |
+
)
|
197 |
+
parser.add_argument(
|
198 |
+
"--instance_data_dir",
|
199 |
+
type=str,
|
200 |
+
default=None,
|
201 |
+
help=("A folder containing the training data. "),
|
202 |
+
)
|
203 |
+
|
204 |
+
parser.add_argument(
|
205 |
+
"--cache_dir",
|
206 |
+
type=str,
|
207 |
+
default=None,
|
208 |
+
help="The directory where the downloaded models and datasets will be stored.",
|
209 |
+
)
|
210 |
+
|
211 |
+
parser.add_argument(
|
212 |
+
"--image_column",
|
213 |
+
type=str,
|
214 |
+
default="image",
|
215 |
+
help="The column of the dataset containing the target image. By "
|
216 |
+
"default, the standard Image Dataset maps out 'file_name' "
|
217 |
+
"to 'image'.",
|
218 |
+
)
|
219 |
+
parser.add_argument(
|
220 |
+
"--caption_column",
|
221 |
+
type=str,
|
222 |
+
default=None,
|
223 |
+
help="The column of the dataset containing the instance prompt for each image",
|
224 |
+
)
|
225 |
+
|
226 |
+
parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.")
|
227 |
+
|
228 |
+
parser.add_argument(
|
229 |
+
"--class_data_dir",
|
230 |
+
type=str,
|
231 |
+
default=None,
|
232 |
+
required=False,
|
233 |
+
help="A folder containing the training data of class images.",
|
234 |
+
)
|
235 |
+
parser.add_argument(
|
236 |
+
"--instance_prompt",
|
237 |
+
type=str,
|
238 |
+
default=None,
|
239 |
+
required=True,
|
240 |
+
help="The prompt with identifier specifying the instance, e.g. 'photo of a TOK dog', 'in the style of TOK'",
|
241 |
+
)
|
242 |
+
parser.add_argument(
|
243 |
+
"--class_prompt",
|
244 |
+
type=str,
|
245 |
+
default=None,
|
246 |
+
help="The prompt to specify images in the same class as provided instance images.",
|
247 |
+
)
|
248 |
+
parser.add_argument(
|
249 |
+
"--validation_prompt",
|
250 |
+
type=str,
|
251 |
+
default=None,
|
252 |
+
help="A prompt that is used during validation to verify that the model is learning.",
|
253 |
+
)
|
254 |
+
parser.add_argument(
|
255 |
+
"--num_validation_images",
|
256 |
+
type=int,
|
257 |
+
default=4,
|
258 |
+
help="Number of images that should be generated during validation with `validation_prompt`.",
|
259 |
+
)
|
260 |
+
parser.add_argument(
|
261 |
+
"--validation_epochs",
|
262 |
+
type=int,
|
263 |
+
default=50,
|
264 |
+
help=(
|
265 |
+
"Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt"
|
266 |
+
" `args.validation_prompt` multiple times: `args.num_validation_images`."
|
267 |
+
),
|
268 |
+
)
|
269 |
+
parser.add_argument(
|
270 |
+
"--with_prior_preservation",
|
271 |
+
default=False,
|
272 |
+
action="store_true",
|
273 |
+
help="Flag to add prior preservation loss.",
|
274 |
+
)
|
275 |
+
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
|
276 |
+
parser.add_argument(
|
277 |
+
"--num_class_images",
|
278 |
+
type=int,
|
279 |
+
default=100,
|
280 |
+
help=(
|
281 |
+
"Minimal class images for prior preservation loss. If there are not enough images already present in"
|
282 |
+
" class_data_dir, additional images will be sampled with class_prompt."
|
283 |
+
),
|
284 |
+
)
|
285 |
+
parser.add_argument(
|
286 |
+
"--output_dir",
|
287 |
+
type=str,
|
288 |
+
default="lora-dreambooth-model",
|
289 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
290 |
+
)
|
291 |
+
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
292 |
+
parser.add_argument(
|
293 |
+
"--resolution",
|
294 |
+
type=int,
|
295 |
+
default=1024,
|
296 |
+
help=(
|
297 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
298 |
+
" resolution"
|
299 |
+
),
|
300 |
+
)
|
301 |
+
parser.add_argument(
|
302 |
+
"--crops_coords_top_left_h",
|
303 |
+
type=int,
|
304 |
+
default=0,
|
305 |
+
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."),
|
306 |
+
)
|
307 |
+
parser.add_argument(
|
308 |
+
"--crops_coords_top_left_w",
|
309 |
+
type=int,
|
310 |
+
default=0,
|
311 |
+
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."),
|
312 |
+
)
|
313 |
+
parser.add_argument(
|
314 |
+
"--center_crop",
|
315 |
+
default=False,
|
316 |
+
action="store_true",
|
317 |
+
help=(
|
318 |
+
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
|
319 |
+
" cropped. The images will be resized to the resolution first before cropping."
|
320 |
+
),
|
321 |
+
)
|
322 |
+
parser.add_argument(
|
323 |
+
"--train_text_encoder",
|
324 |
+
action="store_true",
|
325 |
+
help="Whether to train the text encoder. If set, the text encoder should be float32 precision.",
|
326 |
+
)
|
327 |
+
parser.add_argument(
|
328 |
+
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
|
329 |
+
)
|
330 |
+
parser.add_argument(
|
331 |
+
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
|
332 |
+
)
|
333 |
+
parser.add_argument("--num_train_epochs", type=int, default=1)
|
334 |
+
parser.add_argument(
|
335 |
+
"--max_train_steps",
|
336 |
+
type=int,
|
337 |
+
default=None,
|
338 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
339 |
+
)
|
340 |
+
parser.add_argument(
|
341 |
+
"--checkpointing_steps",
|
342 |
+
type=int,
|
343 |
+
default=500,
|
344 |
+
help=(
|
345 |
+
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
|
346 |
+
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
|
347 |
+
" training using `--resume_from_checkpoint`."
|
348 |
+
),
|
349 |
+
)
|
350 |
+
parser.add_argument(
|
351 |
+
"--checkpoints_total_limit",
|
352 |
+
type=int,
|
353 |
+
default=None,
|
354 |
+
help=("Max number of checkpoints to store."),
|
355 |
+
)
|
356 |
+
parser.add_argument(
|
357 |
+
"--resume_from_checkpoint",
|
358 |
+
type=str,
|
359 |
+
default=None,
|
360 |
+
help=(
|
361 |
+
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
362 |
+
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
363 |
+
),
|
364 |
+
)
|
365 |
+
parser.add_argument(
|
366 |
+
"--gradient_accumulation_steps",
|
367 |
+
type=int,
|
368 |
+
default=1,
|
369 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
370 |
+
)
|
371 |
+
parser.add_argument(
|
372 |
+
"--gradient_checkpointing",
|
373 |
+
action="store_true",
|
374 |
+
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
375 |
+
)
|
376 |
+
parser.add_argument(
|
377 |
+
"--learning_rate",
|
378 |
+
type=float,
|
379 |
+
default=1e-4,
|
380 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
381 |
+
)
|
382 |
+
|
383 |
+
parser.add_argument(
|
384 |
+
"--text_encoder_lr",
|
385 |
+
type=float,
|
386 |
+
default=5e-6,
|
387 |
+
help="Text encoder learning rate to use.",
|
388 |
+
)
|
389 |
+
parser.add_argument(
|
390 |
+
"--scale_lr",
|
391 |
+
action="store_true",
|
392 |
+
default=False,
|
393 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
394 |
+
)
|
395 |
+
parser.add_argument(
|
396 |
+
"--lr_scheduler",
|
397 |
+
type=str,
|
398 |
+
default="constant",
|
399 |
+
help=(
|
400 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
401 |
+
' "constant", "constant_with_warmup"]'
|
402 |
+
),
|
403 |
+
)
|
404 |
+
|
405 |
+
parser.add_argument(
|
406 |
+
"--snr_gamma",
|
407 |
+
type=float,
|
408 |
+
default=None,
|
409 |
+
help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
|
410 |
+
"More details here: https://arxiv.org/abs/2303.09556.",
|
411 |
+
)
|
412 |
+
parser.add_argument(
|
413 |
+
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
414 |
+
)
|
415 |
+
parser.add_argument(
|
416 |
+
"--lr_num_cycles",
|
417 |
+
type=int,
|
418 |
+
default=1,
|
419 |
+
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
|
420 |
+
)
|
421 |
+
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
|
422 |
+
parser.add_argument(
|
423 |
+
"--dataloader_num_workers",
|
424 |
+
type=int,
|
425 |
+
default=0,
|
426 |
+
help=(
|
427 |
+
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
|
428 |
+
),
|
429 |
+
)
|
430 |
+
|
431 |
+
parser.add_argument(
|
432 |
+
"--optimizer",
|
433 |
+
type=str,
|
434 |
+
default="AdamW",
|
435 |
+
help=('The optimizer type to use. Choose between ["AdamW", "prodigy"]'),
|
436 |
+
)
|
437 |
+
|
438 |
+
parser.add_argument(
|
439 |
+
"--use_8bit_adam",
|
440 |
+
action="store_true",
|
441 |
+
help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW",
|
442 |
+
)
|
443 |
+
|
444 |
+
parser.add_argument(
|
445 |
+
"--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam and Prodigy optimizers."
|
446 |
+
)
|
447 |
+
parser.add_argument(
|
448 |
+
"--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam and Prodigy optimizers."
|
449 |
+
)
|
450 |
+
parser.add_argument(
|
451 |
+
"--prodigy_beta3",
|
452 |
+
type=float,
|
453 |
+
default=None,
|
454 |
+
help="coefficients for computing the Prodidy stepsize using running averages. If set to None, "
|
455 |
+
"uses the value of square root of beta2. Ignored if optimizer is adamW",
|
456 |
+
)
|
457 |
+
parser.add_argument("--prodigy_decouple", type=bool, default=True, help="Use AdamW style decoupled weight decay")
|
458 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params")
|
459 |
+
parser.add_argument(
|
460 |
+
"--adam_weight_decay_text_encoder", type=float, default=1e-03, help="Weight decay to use for text_encoder"
|
461 |
+
)
|
462 |
+
|
463 |
+
parser.add_argument(
|
464 |
+
"--adam_epsilon",
|
465 |
+
type=float,
|
466 |
+
default=1e-08,
|
467 |
+
help="Epsilon value for the Adam optimizer and Prodigy optimizers.",
|
468 |
+
)
|
469 |
+
|
470 |
+
parser.add_argument(
|
471 |
+
"--prodigy_use_bias_correction",
|
472 |
+
type=bool,
|
473 |
+
default=True,
|
474 |
+
help="Turn on Adam's bias correction. True by default. Ignored if optimizer is adamW",
|
475 |
+
)
|
476 |
+
parser.add_argument(
|
477 |
+
"--prodigy_safeguard_warmup",
|
478 |
+
type=bool,
|
479 |
+
default=True,
|
480 |
+
help="Remove lr from the denominator of D estimate to avoid issues during warm-up stage. True by default. "
|
481 |
+
"Ignored if optimizer is adamW",
|
482 |
+
)
|
483 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
484 |
+
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
485 |
+
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
486 |
+
parser.add_argument(
|
487 |
+
"--hub_model_id",
|
488 |
+
type=str,
|
489 |
+
default=None,
|
490 |
+
help="The name of the repository to keep in sync with the local `output_dir`.",
|
491 |
+
)
|
492 |
+
parser.add_argument(
|
493 |
+
"--logging_dir",
|
494 |
+
type=str,
|
495 |
+
default="logs",
|
496 |
+
help=(
|
497 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
498 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
499 |
+
),
|
500 |
+
)
|
501 |
+
parser.add_argument(
|
502 |
+
"--allow_tf32",
|
503 |
+
action="store_true",
|
504 |
+
help=(
|
505 |
+
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
506 |
+
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
507 |
+
),
|
508 |
+
)
|
509 |
+
parser.add_argument(
|
510 |
+
"--report_to",
|
511 |
+
type=str,
|
512 |
+
default="tensorboard",
|
513 |
+
help=(
|
514 |
+
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
515 |
+
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
516 |
+
),
|
517 |
+
)
|
518 |
+
parser.add_argument(
|
519 |
+
"--mixed_precision",
|
520 |
+
type=str,
|
521 |
+
default=None,
|
522 |
+
choices=["no", "fp16", "bf16"],
|
523 |
+
help=(
|
524 |
+
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
525 |
+
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
526 |
+
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
527 |
+
),
|
528 |
+
)
|
529 |
+
parser.add_argument(
|
530 |
+
"--prior_generation_precision",
|
531 |
+
type=str,
|
532 |
+
default=None,
|
533 |
+
choices=["no", "fp32", "fp16", "bf16"],
|
534 |
+
help=(
|
535 |
+
"Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
536 |
+
" 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32."
|
537 |
+
),
|
538 |
+
)
|
539 |
+
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
540 |
+
parser.add_argument(
|
541 |
+
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
|
542 |
+
)
|
543 |
+
parser.add_argument(
|
544 |
+
"--rank",
|
545 |
+
type=int,
|
546 |
+
default=4,
|
547 |
+
help=("The dimension of the LoRA update matrices."),
|
548 |
+
)
|
549 |
+
|
550 |
+
if input_args is not None:
|
551 |
+
args = parser.parse_args(input_args)
|
552 |
+
else:
|
553 |
+
args = parser.parse_args()
|
554 |
+
|
555 |
+
if args.dataset_name is None and args.instance_data_dir is None:
|
556 |
+
raise ValueError("Specify either `--dataset_name` or `--instance_data_dir`")
|
557 |
+
|
558 |
+
if args.dataset_name is not None and args.instance_data_dir is not None:
|
559 |
+
raise ValueError("Specify only one of `--dataset_name` or `--instance_data_dir`")
|
560 |
+
|
561 |
+
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
562 |
+
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
563 |
+
args.local_rank = env_local_rank
|
564 |
+
|
565 |
+
if args.with_prior_preservation:
|
566 |
+
if args.class_data_dir is None:
|
567 |
+
raise ValueError("You must specify a data directory for class images.")
|
568 |
+
if args.class_prompt is None:
|
569 |
+
raise ValueError("You must specify prompt for class images.")
|
570 |
+
else:
|
571 |
+
# logger is not available yet
|
572 |
+
if args.class_data_dir is not None:
|
573 |
+
warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
|
574 |
+
if args.class_prompt is not None:
|
575 |
+
warnings.warn("You need not use --class_prompt without --with_prior_preservation.")
|
576 |
+
|
577 |
+
return args
|
578 |
+
|
579 |
+
|
580 |
+
class DreamBoothDataset(Dataset):
|
581 |
+
"""
|
582 |
+
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
|
583 |
+
It pre-processes the images.
|
584 |
+
"""
|
585 |
+
|
586 |
+
def __init__(
|
587 |
+
self,
|
588 |
+
instance_data_root,
|
589 |
+
instance_prompt,
|
590 |
+
class_prompt,
|
591 |
+
class_data_root=None,
|
592 |
+
class_num=None,
|
593 |
+
size=1024,
|
594 |
+
repeats=1,
|
595 |
+
center_crop=False,
|
596 |
+
):
|
597 |
+
self.size = size
|
598 |
+
self.center_crop = center_crop
|
599 |
+
|
600 |
+
self.instance_prompt = instance_prompt
|
601 |
+
self.custom_instance_prompts = None
|
602 |
+
self.class_prompt = class_prompt
|
603 |
+
|
604 |
+
# if --dataset_name is provided or a metadata jsonl file is provided in the local --instance_data directory,
|
605 |
+
# we load the training data using load_dataset
|
606 |
+
if args.dataset_name is not None:
|
607 |
+
try:
|
608 |
+
from datasets import load_dataset
|
609 |
+
except ImportError:
|
610 |
+
raise ImportError(
|
611 |
+
"You are trying to load your data using the datasets library. If you wish to train using custom "
|
612 |
+
"captions please install the datasets library: `pip install datasets`. If you wish to load a "
|
613 |
+
"local folder containing images only, specify --instance_data_dir instead."
|
614 |
+
)
|
615 |
+
# Downloading and loading a dataset from the hub.
|
616 |
+
# See more about loading custom images at
|
617 |
+
# https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script
|
618 |
+
dataset = load_dataset(
|
619 |
+
args.dataset_name,
|
620 |
+
args.dataset_config_name,
|
621 |
+
cache_dir=args.cache_dir,
|
622 |
+
)
|
623 |
+
# Preprocessing the datasets.
|
624 |
+
column_names = dataset["train"].column_names
|
625 |
+
|
626 |
+
# 6. Get the column names for input/target.
|
627 |
+
if args.image_column is None:
|
628 |
+
image_column = column_names[0]
|
629 |
+
logger.info(f"image column defaulting to {image_column}")
|
630 |
+
else:
|
631 |
+
image_column = args.image_column
|
632 |
+
if image_column not in column_names:
|
633 |
+
raise ValueError(
|
634 |
+
f"`--image_column` value '{args.image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
|
635 |
+
)
|
636 |
+
instance_images = dataset["train"][image_column]
|
637 |
+
|
638 |
+
if args.caption_column is None:
|
639 |
+
logger.info(
|
640 |
+
"No caption column provided, defaulting to instance_prompt for all images. If your dataset "
|
641 |
+
"contains captions/prompts for the images, make sure to specify the "
|
642 |
+
"column as --caption_column"
|
643 |
+
)
|
644 |
+
self.custom_instance_prompts = None
|
645 |
+
else:
|
646 |
+
if args.caption_column not in column_names:
|
647 |
+
raise ValueError(
|
648 |
+
f"`--caption_column` value '{args.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
|
649 |
+
)
|
650 |
+
custom_instance_prompts = dataset["train"][args.caption_column]
|
651 |
+
# create final list of captions according to --repeats
|
652 |
+
self.custom_instance_prompts = []
|
653 |
+
for caption in custom_instance_prompts:
|
654 |
+
self.custom_instance_prompts.extend(itertools.repeat(caption, repeats))
|
655 |
+
else:
|
656 |
+
self.instance_data_root = Path(instance_data_root)
|
657 |
+
if not self.instance_data_root.exists():
|
658 |
+
raise ValueError("Instance images root doesn't exists.")
|
659 |
+
|
660 |
+
instance_images = [Image.open(path) for path in list(Path(instance_data_root).iterdir())]
|
661 |
+
self.custom_instance_prompts = None
|
662 |
+
|
663 |
+
self.instance_images = []
|
664 |
+
for img in instance_images:
|
665 |
+
self.instance_images.extend(itertools.repeat(img, repeats))
|
666 |
+
self.num_instance_images = len(self.instance_images)
|
667 |
+
self._length = self.num_instance_images
|
668 |
+
|
669 |
+
if class_data_root is not None:
|
670 |
+
self.class_data_root = Path(class_data_root)
|
671 |
+
self.class_data_root.mkdir(parents=True, exist_ok=True)
|
672 |
+
self.class_images_path = list(self.class_data_root.iterdir())
|
673 |
+
if class_num is not None:
|
674 |
+
self.num_class_images = min(len(self.class_images_path), class_num)
|
675 |
+
else:
|
676 |
+
self.num_class_images = len(self.class_images_path)
|
677 |
+
self._length = max(self.num_class_images, self.num_instance_images)
|
678 |
+
else:
|
679 |
+
self.class_data_root = None
|
680 |
+
|
681 |
+
self.image_transforms = transforms.Compose(
|
682 |
+
[
|
683 |
+
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
|
684 |
+
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
|
685 |
+
transforms.ToTensor(),
|
686 |
+
transforms.Normalize([0.5], [0.5]),
|
687 |
+
]
|
688 |
+
)
|
689 |
+
|
690 |
+
def __len__(self):
|
691 |
+
return self._length
|
692 |
+
|
693 |
+
def __getitem__(self, index):
|
694 |
+
example = {}
|
695 |
+
instance_image = self.instance_images[index % self.num_instance_images]
|
696 |
+
instance_image = exif_transpose(instance_image)
|
697 |
+
|
698 |
+
if not instance_image.mode == "RGB":
|
699 |
+
instance_image = instance_image.convert("RGB")
|
700 |
+
example["instance_images"] = self.image_transforms(instance_image)
|
701 |
+
|
702 |
+
if self.custom_instance_prompts:
|
703 |
+
caption = self.custom_instance_prompts[index % self.num_instance_images]
|
704 |
+
if caption:
|
705 |
+
example["instance_prompt"] = caption
|
706 |
+
else:
|
707 |
+
example["instance_prompt"] = self.instance_prompt
|
708 |
+
|
709 |
+
else: # costum prompts were provided, but length does not match size of image dataset
|
710 |
+
example["instance_prompt"] = self.instance_prompt
|
711 |
+
|
712 |
+
if self.class_data_root:
|
713 |
+
class_image = Image.open(self.class_images_path[index % self.num_class_images])
|
714 |
+
class_image = exif_transpose(class_image)
|
715 |
+
|
716 |
+
if not class_image.mode == "RGB":
|
717 |
+
class_image = class_image.convert("RGB")
|
718 |
+
example["class_images"] = self.image_transforms(class_image)
|
719 |
+
example["class_prompt"] = self.class_prompt
|
720 |
+
|
721 |
+
return example
|
722 |
+
|
723 |
+
|
724 |
+
def collate_fn(examples, with_prior_preservation=False):
|
725 |
+
pixel_values = [example["instance_images"] for example in examples]
|
726 |
+
prompts = [example["instance_prompt"] for example in examples]
|
727 |
+
|
728 |
+
# Concat class and instance examples for prior preservation.
|
729 |
+
# We do this to avoid doing two forward passes.
|
730 |
+
if with_prior_preservation:
|
731 |
+
pixel_values += [example["class_images"] for example in examples]
|
732 |
+
prompts += [example["class_prompt"] for example in examples]
|
733 |
+
|
734 |
+
pixel_values = torch.stack(pixel_values)
|
735 |
+
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
|
736 |
+
|
737 |
+
batch = {"pixel_values": pixel_values, "prompts": prompts}
|
738 |
+
return batch
|
739 |
+
|
740 |
+
|
741 |
+
class PromptDataset(Dataset):
|
742 |
+
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
|
743 |
+
|
744 |
+
def __init__(self, prompt, num_samples):
|
745 |
+
self.prompt = prompt
|
746 |
+
self.num_samples = num_samples
|
747 |
+
|
748 |
+
def __len__(self):
|
749 |
+
return self.num_samples
|
750 |
+
|
751 |
+
def __getitem__(self, index):
|
752 |
+
example = {}
|
753 |
+
example["prompt"] = self.prompt
|
754 |
+
example["index"] = index
|
755 |
+
return example
|
756 |
+
|
757 |
+
|
758 |
+
def tokenize_prompt(tokenizer, prompt):
|
759 |
+
text_inputs = tokenizer(
|
760 |
+
prompt,
|
761 |
+
padding="max_length",
|
762 |
+
max_length=tokenizer.model_max_length,
|
763 |
+
truncation=True,
|
764 |
+
return_tensors="pt",
|
765 |
+
)
|
766 |
+
text_input_ids = text_inputs.input_ids
|
767 |
+
return text_input_ids
|
768 |
+
|
769 |
+
|
770 |
+
# Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt
|
771 |
+
def encode_prompt(text_encoders, tokenizers, prompt, text_input_ids_list=None):
|
772 |
+
prompt_embeds_list = []
|
773 |
+
|
774 |
+
for i, text_encoder in enumerate(text_encoders):
|
775 |
+
if tokenizers is not None:
|
776 |
+
tokenizer = tokenizers[i]
|
777 |
+
text_input_ids = tokenize_prompt(tokenizer, prompt)
|
778 |
+
else:
|
779 |
+
assert text_input_ids_list is not None
|
780 |
+
text_input_ids = text_input_ids_list[i]
|
781 |
+
|
782 |
+
prompt_embeds = text_encoder(
|
783 |
+
text_input_ids.to(text_encoder.device),
|
784 |
+
output_hidden_states=True,
|
785 |
+
)
|
786 |
+
|
787 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
788 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
789 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
790 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
791 |
+
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
|
792 |
+
prompt_embeds_list.append(prompt_embeds)
|
793 |
+
|
794 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
795 |
+
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
|
796 |
+
return prompt_embeds, pooled_prompt_embeds
|
797 |
+
|
798 |
+
|
799 |
+
def main(args):
|
800 |
+
logging_dir = Path(args.output_dir, args.logging_dir)
|
801 |
+
|
802 |
+
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
|
803 |
+
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
804 |
+
accelerator = Accelerator(
|
805 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
806 |
+
mixed_precision=args.mixed_precision,
|
807 |
+
log_with=args.report_to,
|
808 |
+
project_config=accelerator_project_config,
|
809 |
+
kwargs_handlers=[kwargs],
|
810 |
+
)
|
811 |
+
|
812 |
+
if args.report_to == "wandb":
|
813 |
+
if not is_wandb_available():
|
814 |
+
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
|
815 |
+
import wandb
|
816 |
+
|
817 |
+
# Make one log on every process with the configuration for debugging.
|
818 |
+
logging.basicConfig(
|
819 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
820 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
821 |
+
level=logging.INFO,
|
822 |
+
)
|
823 |
+
logger.info(accelerator.state, main_process_only=False)
|
824 |
+
if accelerator.is_local_main_process:
|
825 |
+
transformers.utils.logging.set_verbosity_warning()
|
826 |
+
diffusers.utils.logging.set_verbosity_info()
|
827 |
+
else:
|
828 |
+
transformers.utils.logging.set_verbosity_error()
|
829 |
+
diffusers.utils.logging.set_verbosity_error()
|
830 |
+
|
831 |
+
# If passed along, set the training seed now.
|
832 |
+
if args.seed is not None:
|
833 |
+
set_seed(args.seed)
|
834 |
+
|
835 |
+
# Generate class images if prior preservation is enabled.
|
836 |
+
if args.with_prior_preservation:
|
837 |
+
class_images_dir = Path(args.class_data_dir)
|
838 |
+
if not class_images_dir.exists():
|
839 |
+
class_images_dir.mkdir(parents=True)
|
840 |
+
cur_class_images = len(list(class_images_dir.iterdir()))
|
841 |
+
|
842 |
+
if cur_class_images < args.num_class_images:
|
843 |
+
torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
|
844 |
+
if args.prior_generation_precision == "fp32":
|
845 |
+
torch_dtype = torch.float32
|
846 |
+
elif args.prior_generation_precision == "fp16":
|
847 |
+
torch_dtype = torch.float16
|
848 |
+
elif args.prior_generation_precision == "bf16":
|
849 |
+
torch_dtype = torch.bfloat16
|
850 |
+
pipeline = StableDiffusionXLPipeline.from_pretrained(
|
851 |
+
args.pretrained_model_name_or_path,
|
852 |
+
torch_dtype=torch_dtype,
|
853 |
+
revision=args.revision,
|
854 |
+
variant=args.variant,
|
855 |
+
)
|
856 |
+
pipeline.set_progress_bar_config(disable=True)
|
857 |
+
|
858 |
+
num_new_images = args.num_class_images - cur_class_images
|
859 |
+
logger.info(f"Number of class images to sample: {num_new_images}.")
|
860 |
+
|
861 |
+
sample_dataset = PromptDataset(args.class_prompt, num_new_images)
|
862 |
+
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)
|
863 |
+
|
864 |
+
sample_dataloader = accelerator.prepare(sample_dataloader)
|
865 |
+
pipeline.to(accelerator.device)
|
866 |
+
|
867 |
+
for example in tqdm(
|
868 |
+
sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
|
869 |
+
):
|
870 |
+
images = pipeline(example["prompt"]).images
|
871 |
+
|
872 |
+
for i, image in enumerate(images):
|
873 |
+
hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest()
|
874 |
+
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
|
875 |
+
image.save(image_filename)
|
876 |
+
|
877 |
+
del pipeline
|
878 |
+
if torch.cuda.is_available():
|
879 |
+
torch.cuda.empty_cache()
|
880 |
+
|
881 |
+
# Handle the repository creation
|
882 |
+
if accelerator.is_main_process:
|
883 |
+
if args.output_dir is not None:
|
884 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
885 |
+
|
886 |
+
if args.push_to_hub:
|
887 |
+
repo_id = create_repo(
|
888 |
+
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
|
889 |
+
).repo_id
|
890 |
+
|
891 |
+
# Load the tokenizers
|
892 |
+
tokenizer_one = AutoTokenizer.from_pretrained(
|
893 |
+
args.pretrained_model_name_or_path,
|
894 |
+
subfolder="tokenizer",
|
895 |
+
revision=args.revision,
|
896 |
+
use_fast=False,
|
897 |
+
)
|
898 |
+
tokenizer_two = AutoTokenizer.from_pretrained(
|
899 |
+
args.pretrained_model_name_or_path,
|
900 |
+
subfolder="tokenizer_2",
|
901 |
+
revision=args.revision,
|
902 |
+
use_fast=False,
|
903 |
+
)
|
904 |
+
|
905 |
+
# import correct text encoder classes
|
906 |
+
text_encoder_cls_one = import_model_class_from_model_name_or_path(
|
907 |
+
args.pretrained_model_name_or_path, args.revision
|
908 |
+
)
|
909 |
+
text_encoder_cls_two = import_model_class_from_model_name_or_path(
|
910 |
+
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2"
|
911 |
+
)
|
912 |
+
|
913 |
+
# Load scheduler and models
|
914 |
+
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
|
915 |
+
text_encoder_one = text_encoder_cls_one.from_pretrained(
|
916 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
|
917 |
+
)
|
918 |
+
text_encoder_two = text_encoder_cls_two.from_pretrained(
|
919 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant
|
920 |
+
)
|
921 |
+
vae_path = (
|
922 |
+
args.pretrained_model_name_or_path
|
923 |
+
if args.pretrained_vae_model_name_or_path is None
|
924 |
+
else args.pretrained_vae_model_name_or_path
|
925 |
+
)
|
926 |
+
vae = AutoencoderKL.from_pretrained(
|
927 |
+
vae_path,
|
928 |
+
subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None,
|
929 |
+
revision=args.revision,
|
930 |
+
variant=args.variant,
|
931 |
+
)
|
932 |
+
unet = UNet2DConditionModel.from_pretrained(
|
933 |
+
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant
|
934 |
+
)
|
935 |
+
|
936 |
+
# We only train the additional adapter LoRA layers
|
937 |
+
vae.requires_grad_(False)
|
938 |
+
text_encoder_one.requires_grad_(False)
|
939 |
+
text_encoder_two.requires_grad_(False)
|
940 |
+
unet.requires_grad_(False)
|
941 |
+
|
942 |
+
# For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision
|
943 |
+
# as these weights are only used for inference, keeping weights in full precision is not required.
|
944 |
+
weight_dtype = torch.float32
|
945 |
+
if accelerator.mixed_precision == "fp16":
|
946 |
+
weight_dtype = torch.float16
|
947 |
+
elif accelerator.mixed_precision == "bf16":
|
948 |
+
weight_dtype = torch.bfloat16
|
949 |
+
|
950 |
+
# Move unet, vae and text_encoder to device and cast to weight_dtype
|
951 |
+
unet.to(accelerator.device, dtype=weight_dtype)
|
952 |
+
|
953 |
+
# The VAE is always in float32 to avoid NaN losses.
|
954 |
+
vae.to(accelerator.device, dtype=torch.float32)
|
955 |
+
|
956 |
+
text_encoder_one.to(accelerator.device, dtype=weight_dtype)
|
957 |
+
text_encoder_two.to(accelerator.device, dtype=weight_dtype)
|
958 |
+
|
959 |
+
if args.enable_xformers_memory_efficient_attention:
|
960 |
+
if is_xformers_available():
|
961 |
+
import xformers
|
962 |
+
|
963 |
+
xformers_version = version.parse(xformers.__version__)
|
964 |
+
if xformers_version == version.parse("0.0.16"):
|
965 |
+
logger.warn(
|
966 |
+
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, "
|
967 |
+
"please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
|
968 |
+
)
|
969 |
+
unet.enable_xformers_memory_efficient_attention()
|
970 |
+
else:
|
971 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
972 |
+
|
973 |
+
if args.gradient_checkpointing:
|
974 |
+
unet.enable_gradient_checkpointing()
|
975 |
+
if args.train_text_encoder:
|
976 |
+
text_encoder_one.gradient_checkpointing_enable()
|
977 |
+
text_encoder_two.gradient_checkpointing_enable()
|
978 |
+
|
979 |
+
# now we will add new LoRA weights to the attention layers
|
980 |
+
unet_lora_config = LoraConfig(
|
981 |
+
r=args.rank,
|
982 |
+
lora_alpha=args.rank,
|
983 |
+
init_lora_weights="gaussian",
|
984 |
+
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
|
985 |
+
)
|
986 |
+
unet.add_adapter(unet_lora_config)
|
987 |
+
|
988 |
+
# The text encoder comes from 🤗 transformers, so we cannot directly modify it.
|
989 |
+
# So, instead, we monkey-patch the forward calls of its attention-blocks.
|
990 |
+
if args.train_text_encoder:
|
991 |
+
text_lora_config = LoraConfig(
|
992 |
+
r=args.rank,
|
993 |
+
lora_alpha=args.rank,
|
994 |
+
init_lora_weights="gaussian",
|
995 |
+
target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
|
996 |
+
)
|
997 |
+
text_encoder_one.add_adapter(text_lora_config)
|
998 |
+
text_encoder_two.add_adapter(text_lora_config)
|
999 |
+
|
1000 |
+
# Make sure the trainable params are in float32.
|
1001 |
+
if args.mixed_precision == "fp16":
|
1002 |
+
models = [unet]
|
1003 |
+
if args.train_text_encoder:
|
1004 |
+
models.extend([text_encoder_one, text_encoder_two])
|
1005 |
+
for model in models:
|
1006 |
+
for param in model.parameters():
|
1007 |
+
# only upcast trainable parameters (LoRA) into fp32
|
1008 |
+
if param.requires_grad:
|
1009 |
+
param.data = param.to(torch.float32)
|
1010 |
+
|
1011 |
+
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
|
1012 |
+
def save_model_hook(models, weights, output_dir):
|
1013 |
+
if accelerator.is_main_process:
|
1014 |
+
# there are only two options here. Either are just the unet attn processor layers
|
1015 |
+
# or there are the unet and text encoder atten layers
|
1016 |
+
unet_lora_layers_to_save = None
|
1017 |
+
text_encoder_one_lora_layers_to_save = None
|
1018 |
+
text_encoder_two_lora_layers_to_save = None
|
1019 |
+
|
1020 |
+
for model in models:
|
1021 |
+
if isinstance(model, type(accelerator.unwrap_model(unet))):
|
1022 |
+
unet_lora_layers_to_save = get_peft_model_state_dict(model)
|
1023 |
+
elif isinstance(model, type(accelerator.unwrap_model(text_encoder_one))):
|
1024 |
+
text_encoder_one_lora_layers_to_save = get_peft_model_state_dict(model)
|
1025 |
+
elif isinstance(model, type(accelerator.unwrap_model(text_encoder_two))):
|
1026 |
+
text_encoder_two_lora_layers_to_save = get_peft_model_state_dict(model)
|
1027 |
+
else:
|
1028 |
+
raise ValueError(f"unexpected save model: {model.__class__}")
|
1029 |
+
|
1030 |
+
# make sure to pop weight so that corresponding model is not saved again
|
1031 |
+
weights.pop()
|
1032 |
+
|
1033 |
+
StableDiffusionXLPipeline.save_lora_weights(
|
1034 |
+
output_dir,
|
1035 |
+
unet_lora_layers=unet_lora_layers_to_save,
|
1036 |
+
text_encoder_lora_layers=text_encoder_one_lora_layers_to_save,
|
1037 |
+
text_encoder_2_lora_layers=text_encoder_two_lora_layers_to_save,
|
1038 |
+
)
|
1039 |
+
|
1040 |
+
def load_model_hook(models, input_dir):
|
1041 |
+
unet_ = None
|
1042 |
+
text_encoder_one_ = None
|
1043 |
+
text_encoder_two_ = None
|
1044 |
+
|
1045 |
+
while len(models) > 0:
|
1046 |
+
model = models.pop()
|
1047 |
+
|
1048 |
+
if isinstance(model, type(accelerator.unwrap_model(unet))):
|
1049 |
+
unet_ = model
|
1050 |
+
elif isinstance(model, type(accelerator.unwrap_model(text_encoder_one))):
|
1051 |
+
text_encoder_one_ = model
|
1052 |
+
elif isinstance(model, type(accelerator.unwrap_model(text_encoder_two))):
|
1053 |
+
text_encoder_two_ = model
|
1054 |
+
else:
|
1055 |
+
raise ValueError(f"unexpected save model: {model.__class__}")
|
1056 |
+
|
1057 |
+
lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir)
|
1058 |
+
LoraLoaderMixin.load_lora_into_unet(lora_state_dict, network_alphas=network_alphas, unet=unet_)
|
1059 |
+
|
1060 |
+
text_encoder_state_dict = {k: v for k, v in lora_state_dict.items() if "text_encoder." in k}
|
1061 |
+
LoraLoaderMixin.load_lora_into_text_encoder(
|
1062 |
+
text_encoder_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_one_
|
1063 |
+
)
|
1064 |
+
|
1065 |
+
text_encoder_2_state_dict = {k: v for k, v in lora_state_dict.items() if "text_encoder_2." in k}
|
1066 |
+
LoraLoaderMixin.load_lora_into_text_encoder(
|
1067 |
+
text_encoder_2_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_two_
|
1068 |
+
)
|
1069 |
+
|
1070 |
+
accelerator.register_save_state_pre_hook(save_model_hook)
|
1071 |
+
accelerator.register_load_state_pre_hook(load_model_hook)
|
1072 |
+
|
1073 |
+
# Enable TF32 for faster training on Ampere GPUs,
|
1074 |
+
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
|
1075 |
+
if args.allow_tf32:
|
1076 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
1077 |
+
|
1078 |
+
if args.scale_lr:
|
1079 |
+
args.learning_rate = (
|
1080 |
+
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
1081 |
+
)
|
1082 |
+
|
1083 |
+
unet_lora_parameters = list(filter(lambda p: p.requires_grad, unet.parameters()))
|
1084 |
+
|
1085 |
+
if args.train_text_encoder:
|
1086 |
+
text_lora_parameters_one = list(filter(lambda p: p.requires_grad, text_encoder_one.parameters()))
|
1087 |
+
text_lora_parameters_two = list(filter(lambda p: p.requires_grad, text_encoder_two.parameters()))
|
1088 |
+
|
1089 |
+
# Optimization parameters
|
1090 |
+
unet_lora_parameters_with_lr = {"params": unet_lora_parameters, "lr": args.learning_rate}
|
1091 |
+
if args.train_text_encoder:
|
1092 |
+
# different learning rate for text encoder and unet
|
1093 |
+
text_lora_parameters_one_with_lr = {
|
1094 |
+
"params": text_lora_parameters_one,
|
1095 |
+
"weight_decay": args.adam_weight_decay_text_encoder,
|
1096 |
+
"lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate,
|
1097 |
+
}
|
1098 |
+
text_lora_parameters_two_with_lr = {
|
1099 |
+
"params": text_lora_parameters_two,
|
1100 |
+
"weight_decay": args.adam_weight_decay_text_encoder,
|
1101 |
+
"lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate,
|
1102 |
+
}
|
1103 |
+
params_to_optimize = [
|
1104 |
+
unet_lora_parameters_with_lr,
|
1105 |
+
text_lora_parameters_one_with_lr,
|
1106 |
+
text_lora_parameters_two_with_lr,
|
1107 |
+
]
|
1108 |
+
else:
|
1109 |
+
params_to_optimize = [unet_lora_parameters_with_lr]
|
1110 |
+
|
1111 |
+
# Optimizer creation
|
1112 |
+
if not (args.optimizer.lower() == "prodigy" or args.optimizer.lower() == "adamw"):
|
1113 |
+
logger.warn(
|
1114 |
+
f"Unsupported choice of optimizer: {args.optimizer}.Supported optimizers include [adamW, prodigy]."
|
1115 |
+
"Defaulting to adamW"
|
1116 |
+
)
|
1117 |
+
args.optimizer = "adamw"
|
1118 |
+
|
1119 |
+
if args.use_8bit_adam and not args.optimizer.lower() == "adamw":
|
1120 |
+
logger.warn(
|
1121 |
+
f"use_8bit_adam is ignored when optimizer is not set to 'AdamW'. Optimizer was "
|
1122 |
+
f"set to {args.optimizer.lower()}"
|
1123 |
+
)
|
1124 |
+
|
1125 |
+
if args.optimizer.lower() == "adamw":
|
1126 |
+
if args.use_8bit_adam:
|
1127 |
+
try:
|
1128 |
+
import bitsandbytes as bnb
|
1129 |
+
except ImportError:
|
1130 |
+
raise ImportError(
|
1131 |
+
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
|
1132 |
+
)
|
1133 |
+
|
1134 |
+
optimizer_class = bnb.optim.AdamW8bit
|
1135 |
+
else:
|
1136 |
+
optimizer_class = torch.optim.AdamW
|
1137 |
+
|
1138 |
+
optimizer = optimizer_class(
|
1139 |
+
params_to_optimize,
|
1140 |
+
betas=(args.adam_beta1, args.adam_beta2),
|
1141 |
+
weight_decay=args.adam_weight_decay,
|
1142 |
+
eps=args.adam_epsilon,
|
1143 |
+
)
|
1144 |
+
|
1145 |
+
if args.optimizer.lower() == "prodigy":
|
1146 |
+
try:
|
1147 |
+
import prodigyopt
|
1148 |
+
except ImportError:
|
1149 |
+
raise ImportError("To use Prodigy, please install the prodigyopt library: `pip install prodigyopt`")
|
1150 |
+
|
1151 |
+
optimizer_class = prodigyopt.Prodigy
|
1152 |
+
|
1153 |
+
optimizer = optimizer_class(
|
1154 |
+
params_to_optimize,
|
1155 |
+
lr=args.learning_rate,
|
1156 |
+
betas=(args.adam_beta1, args.adam_beta2),
|
1157 |
+
weight_decay=args.adam_weight_decay,
|
1158 |
+
eps=args.adam_epsilon,
|
1159 |
+
decouple=args.prodigy_decouple,
|
1160 |
+
use_bias_correction=args.prodigy_use_bias_correction,
|
1161 |
+
safeguard_warmup=args.prodigy_safeguard_warmup,
|
1162 |
+
)
|
1163 |
+
|
1164 |
+
# Dataset and DataLoaders creation:
|
1165 |
+
train_dataset = DreamBoothDataset(
|
1166 |
+
instance_data_root=args.instance_data_dir,
|
1167 |
+
instance_prompt=args.instance_prompt,
|
1168 |
+
class_prompt=args.class_prompt,
|
1169 |
+
class_data_root=args.class_data_dir if args.with_prior_preservation else None,
|
1170 |
+
class_num=args.num_class_images,
|
1171 |
+
size=args.resolution,
|
1172 |
+
repeats=args.repeats,
|
1173 |
+
center_crop=args.center_crop,
|
1174 |
+
)
|
1175 |
+
|
1176 |
+
train_dataloader = torch.utils.data.DataLoader(
|
1177 |
+
train_dataset,
|
1178 |
+
batch_size=args.train_batch_size,
|
1179 |
+
shuffle=True,
|
1180 |
+
collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
|
1181 |
+
num_workers=args.dataloader_num_workers,
|
1182 |
+
)
|
1183 |
+
|
1184 |
+
# Computes additional embeddings/ids required by the SDXL UNet.
|
1185 |
+
# regular text embeddings (when `train_text_encoder` is not True)
|
1186 |
+
# pooled text embeddings
|
1187 |
+
# time ids
|
1188 |
+
|
1189 |
+
def compute_time_ids():
|
1190 |
+
# Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids
|
1191 |
+
original_size = (args.resolution, args.resolution)
|
1192 |
+
target_size = (args.resolution, args.resolution)
|
1193 |
+
crops_coords_top_left = (args.crops_coords_top_left_h, args.crops_coords_top_left_w)
|
1194 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
1195 |
+
add_time_ids = torch.tensor([add_time_ids])
|
1196 |
+
add_time_ids = add_time_ids.to(accelerator.device, dtype=weight_dtype)
|
1197 |
+
return add_time_ids
|
1198 |
+
|
1199 |
+
if not args.train_text_encoder:
|
1200 |
+
tokenizers = [tokenizer_one, tokenizer_two]
|
1201 |
+
text_encoders = [text_encoder_one, text_encoder_two]
|
1202 |
+
|
1203 |
+
def compute_text_embeddings(prompt, text_encoders, tokenizers):
|
1204 |
+
with torch.no_grad():
|
1205 |
+
prompt_embeds, pooled_prompt_embeds = encode_prompt(text_encoders, tokenizers, prompt)
|
1206 |
+
prompt_embeds = prompt_embeds.to(accelerator.device)
|
1207 |
+
pooled_prompt_embeds = pooled_prompt_embeds.to(accelerator.device)
|
1208 |
+
return prompt_embeds, pooled_prompt_embeds
|
1209 |
+
|
1210 |
+
# Handle instance prompt.
|
1211 |
+
instance_time_ids = compute_time_ids()
|
1212 |
+
|
1213 |
+
# If no type of tuning is done on the text_encoder and custom instance prompts are NOT
|
1214 |
+
# provided (i.e. the --instance_prompt is used for all images), we encode the instance prompt once to avoid
|
1215 |
+
# the redundant encoding.
|
1216 |
+
if not args.train_text_encoder and not train_dataset.custom_instance_prompts:
|
1217 |
+
instance_prompt_hidden_states, instance_pooled_prompt_embeds = compute_text_embeddings(
|
1218 |
+
args.instance_prompt, text_encoders, tokenizers
|
1219 |
+
)
|
1220 |
+
|
1221 |
+
# Handle class prompt for prior-preservation.
|
1222 |
+
if args.with_prior_preservation:
|
1223 |
+
class_time_ids = compute_time_ids()
|
1224 |
+
if not args.train_text_encoder:
|
1225 |
+
class_prompt_hidden_states, class_pooled_prompt_embeds = compute_text_embeddings(
|
1226 |
+
args.class_prompt, text_encoders, tokenizers
|
1227 |
+
)
|
1228 |
+
|
1229 |
+
# Clear the memory here
|
1230 |
+
if not args.train_text_encoder and not train_dataset.custom_instance_prompts:
|
1231 |
+
del tokenizers, text_encoders
|
1232 |
+
gc.collect()
|
1233 |
+
torch.cuda.empty_cache()
|
1234 |
+
|
1235 |
+
# If custom instance prompts are NOT provided (i.e. the instance prompt is used for all images),
|
1236 |
+
# pack the statically computed variables appropriately here. This is so that we don't
|
1237 |
+
# have to pass them to the dataloader.
|
1238 |
+
add_time_ids = instance_time_ids
|
1239 |
+
if args.with_prior_preservation:
|
1240 |
+
add_time_ids = torch.cat([add_time_ids, class_time_ids], dim=0)
|
1241 |
+
|
1242 |
+
if not train_dataset.custom_instance_prompts:
|
1243 |
+
if not args.train_text_encoder:
|
1244 |
+
prompt_embeds = instance_prompt_hidden_states
|
1245 |
+
unet_add_text_embeds = instance_pooled_prompt_embeds
|
1246 |
+
if args.with_prior_preservation:
|
1247 |
+
prompt_embeds = torch.cat([prompt_embeds, class_prompt_hidden_states], dim=0)
|
1248 |
+
unet_add_text_embeds = torch.cat([unet_add_text_embeds, class_pooled_prompt_embeds], dim=0)
|
1249 |
+
# if we're optmizing the text encoder (both if instance prompt is used for all images or custom prompts) we need to tokenize and encode the
|
1250 |
+
# batch prompts on all training steps
|
1251 |
+
else:
|
1252 |
+
tokens_one = tokenize_prompt(tokenizer_one, args.instance_prompt)
|
1253 |
+
tokens_two = tokenize_prompt(tokenizer_two, args.instance_prompt)
|
1254 |
+
if args.with_prior_preservation:
|
1255 |
+
class_tokens_one = tokenize_prompt(tokenizer_one, args.class_prompt)
|
1256 |
+
class_tokens_two = tokenize_prompt(tokenizer_two, args.class_prompt)
|
1257 |
+
tokens_one = torch.cat([tokens_one, class_tokens_one], dim=0)
|
1258 |
+
tokens_two = torch.cat([tokens_two, class_tokens_two], dim=0)
|
1259 |
+
|
1260 |
+
# Scheduler and math around the number of training steps.
|
1261 |
+
overrode_max_train_steps = False
|
1262 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
1263 |
+
if args.max_train_steps is None:
|
1264 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
1265 |
+
overrode_max_train_steps = True
|
1266 |
+
|
1267 |
+
lr_scheduler = get_scheduler(
|
1268 |
+
args.lr_scheduler,
|
1269 |
+
optimizer=optimizer,
|
1270 |
+
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
|
1271 |
+
num_training_steps=args.max_train_steps * accelerator.num_processes,
|
1272 |
+
num_cycles=args.lr_num_cycles,
|
1273 |
+
power=args.lr_power,
|
1274 |
+
)
|
1275 |
+
|
1276 |
+
# Prepare everything with our `accelerator`.
|
1277 |
+
if args.train_text_encoder:
|
1278 |
+
unet, text_encoder_one, text_encoder_two, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
1279 |
+
unet, text_encoder_one, text_encoder_two, optimizer, train_dataloader, lr_scheduler
|
1280 |
+
)
|
1281 |
+
else:
|
1282 |
+
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
1283 |
+
unet, optimizer, train_dataloader, lr_scheduler
|
1284 |
+
)
|
1285 |
+
|
1286 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
1287 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
1288 |
+
if overrode_max_train_steps:
|
1289 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
1290 |
+
# Afterwards we recalculate our number of training epochs
|
1291 |
+
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
1292 |
+
|
1293 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
1294 |
+
# The trackers initializes automatically on the main process.
|
1295 |
+
if accelerator.is_main_process:
|
1296 |
+
accelerator.init_trackers("dreambooth-lora-sd-xl", config=vars(args))
|
1297 |
+
|
1298 |
+
# Train!
|
1299 |
+
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
1300 |
+
|
1301 |
+
logger.info("***** Running training *****")
|
1302 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
1303 |
+
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
|
1304 |
+
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
1305 |
+
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
1306 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
1307 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
1308 |
+
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
1309 |
+
global_step = 0
|
1310 |
+
first_epoch = 0
|
1311 |
+
|
1312 |
+
# Potentially load in the weights and states from a previous save
|
1313 |
+
if args.resume_from_checkpoint:
|
1314 |
+
if args.resume_from_checkpoint != "latest":
|
1315 |
+
path = os.path.basename(args.resume_from_checkpoint)
|
1316 |
+
else:
|
1317 |
+
# Get the mos recent checkpoint
|
1318 |
+
dirs = os.listdir(args.output_dir)
|
1319 |
+
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
1320 |
+
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
1321 |
+
path = dirs[-1] if len(dirs) > 0 else None
|
1322 |
+
|
1323 |
+
if path is None:
|
1324 |
+
accelerator.print(
|
1325 |
+
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
1326 |
+
)
|
1327 |
+
args.resume_from_checkpoint = None
|
1328 |
+
initial_global_step = 0
|
1329 |
+
else:
|
1330 |
+
accelerator.print(f"Resuming from checkpoint {path}")
|
1331 |
+
accelerator.load_state(os.path.join(args.output_dir, path))
|
1332 |
+
global_step = int(path.split("-")[1])
|
1333 |
+
|
1334 |
+
initial_global_step = global_step
|
1335 |
+
first_epoch = global_step // num_update_steps_per_epoch
|
1336 |
+
|
1337 |
+
else:
|
1338 |
+
initial_global_step = 0
|
1339 |
+
|
1340 |
+
progress_bar = tqdm(
|
1341 |
+
range(0, args.max_train_steps),
|
1342 |
+
initial=initial_global_step,
|
1343 |
+
desc="Steps",
|
1344 |
+
# Only show the progress bar once on each machine.
|
1345 |
+
disable=not accelerator.is_local_main_process,
|
1346 |
+
)
|
1347 |
+
|
1348 |
+
for epoch in range(first_epoch, args.num_train_epochs):
|
1349 |
+
unet.train()
|
1350 |
+
if args.train_text_encoder:
|
1351 |
+
text_encoder_one.train()
|
1352 |
+
text_encoder_two.train()
|
1353 |
+
|
1354 |
+
# set top parameter requires_grad = True for gradient checkpointing works
|
1355 |
+
text_encoder_one.text_model.embeddings.requires_grad_(True)
|
1356 |
+
text_encoder_two.text_model.embeddings.requires_grad_(True)
|
1357 |
+
|
1358 |
+
for step, batch in enumerate(train_dataloader):
|
1359 |
+
with accelerator.accumulate(unet):
|
1360 |
+
pixel_values = batch["pixel_values"].to(dtype=vae.dtype)
|
1361 |
+
prompts = batch["prompts"]
|
1362 |
+
|
1363 |
+
# encode batch prompts when custom prompts are provided for each image -
|
1364 |
+
if train_dataset.custom_instance_prompts:
|
1365 |
+
if not args.train_text_encoder:
|
1366 |
+
prompt_embeds, unet_add_text_embeds = compute_text_embeddings(
|
1367 |
+
prompts, text_encoders, tokenizers
|
1368 |
+
)
|
1369 |
+
else:
|
1370 |
+
tokens_one = tokenize_prompt(tokenizer_one, prompts)
|
1371 |
+
tokens_two = tokenize_prompt(tokenizer_two, prompts)
|
1372 |
+
|
1373 |
+
# Convert images to latent space
|
1374 |
+
model_input = vae.encode(pixel_values).latent_dist.sample()
|
1375 |
+
model_input = model_input * vae.config.scaling_factor
|
1376 |
+
if args.pretrained_vae_model_name_or_path is None:
|
1377 |
+
model_input = model_input.to(weight_dtype)
|
1378 |
+
|
1379 |
+
# Sample noise that we'll add to the latents
|
1380 |
+
noise = torch.randn_like(model_input)
|
1381 |
+
bsz = model_input.shape[0]
|
1382 |
+
# Sample a random timestep for each image
|
1383 |
+
timesteps = torch.randint(
|
1384 |
+
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
|
1385 |
+
)
|
1386 |
+
timesteps = timesteps.long()
|
1387 |
+
|
1388 |
+
# Add noise to the model input according to the noise magnitude at each timestep
|
1389 |
+
# (this is the forward diffusion process)
|
1390 |
+
noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
|
1391 |
+
|
1392 |
+
# Calculate the elements to repeat depending on the use of prior-preservation and custom captions.
|
1393 |
+
if not train_dataset.custom_instance_prompts:
|
1394 |
+
elems_to_repeat_text_embeds = bsz // 2 if args.with_prior_preservation else bsz
|
1395 |
+
elems_to_repeat_time_ids = bsz // 2 if args.with_prior_preservation else bsz
|
1396 |
+
else:
|
1397 |
+
elems_to_repeat_text_embeds = 1
|
1398 |
+
elems_to_repeat_time_ids = bsz // 2 if args.with_prior_preservation else bsz
|
1399 |
+
|
1400 |
+
# Predict the noise residual
|
1401 |
+
if not args.train_text_encoder:
|
1402 |
+
unet_added_conditions = {
|
1403 |
+
"time_ids": add_time_ids.repeat(elems_to_repeat_time_ids, 1),
|
1404 |
+
"text_embeds": unet_add_text_embeds.repeat(elems_to_repeat_text_embeds, 1),
|
1405 |
+
}
|
1406 |
+
prompt_embeds_input = prompt_embeds.repeat(elems_to_repeat_text_embeds, 1, 1)
|
1407 |
+
model_pred = unet(
|
1408 |
+
noisy_model_input,
|
1409 |
+
timesteps,
|
1410 |
+
prompt_embeds_input,
|
1411 |
+
added_cond_kwargs=unet_added_conditions,
|
1412 |
+
).sample
|
1413 |
+
else:
|
1414 |
+
unet_added_conditions = {"time_ids": add_time_ids.repeat(elems_to_repeat_time_ids, 1)}
|
1415 |
+
prompt_embeds, pooled_prompt_embeds = encode_prompt(
|
1416 |
+
text_encoders=[text_encoder_one, text_encoder_two],
|
1417 |
+
tokenizers=None,
|
1418 |
+
prompt=None,
|
1419 |
+
text_input_ids_list=[tokens_one, tokens_two],
|
1420 |
+
)
|
1421 |
+
unet_added_conditions.update(
|
1422 |
+
{"text_embeds": pooled_prompt_embeds.repeat(elems_to_repeat_text_embeds, 1)}
|
1423 |
+
)
|
1424 |
+
prompt_embeds_input = prompt_embeds.repeat(elems_to_repeat_text_embeds, 1, 1)
|
1425 |
+
model_pred = unet(
|
1426 |
+
noisy_model_input, timesteps, prompt_embeds_input, added_cond_kwargs=unet_added_conditions
|
1427 |
+
).sample
|
1428 |
+
|
1429 |
+
# Get the target for loss depending on the prediction type
|
1430 |
+
if noise_scheduler.config.prediction_type == "epsilon":
|
1431 |
+
target = noise
|
1432 |
+
elif noise_scheduler.config.prediction_type == "v_prediction":
|
1433 |
+
target = noise_scheduler.get_velocity(model_input, noise, timesteps)
|
1434 |
+
else:
|
1435 |
+
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
|
1436 |
+
|
1437 |
+
if args.with_prior_preservation:
|
1438 |
+
# Chunk the noise and model_pred into two parts and compute the loss on each part separately.
|
1439 |
+
model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
|
1440 |
+
target, target_prior = torch.chunk(target, 2, dim=0)
|
1441 |
+
|
1442 |
+
# Compute prior loss
|
1443 |
+
prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
|
1444 |
+
|
1445 |
+
if args.snr_gamma is None:
|
1446 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
1447 |
+
else:
|
1448 |
+
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
|
1449 |
+
# Since we predict the noise instead of x_0, the original formulation is slightly changed.
|
1450 |
+
# This is discussed in Section 4.2 of the same paper.
|
1451 |
+
snr = compute_snr(noise_scheduler, timesteps)
|
1452 |
+
base_weight = (
|
1453 |
+
torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
|
1454 |
+
)
|
1455 |
+
|
1456 |
+
if noise_scheduler.config.prediction_type == "v_prediction":
|
1457 |
+
# Velocity objective needs to be floored to an SNR weight of one.
|
1458 |
+
mse_loss_weights = base_weight + 1
|
1459 |
+
else:
|
1460 |
+
# Epsilon and sample both use the same loss weights.
|
1461 |
+
mse_loss_weights = base_weight
|
1462 |
+
|
1463 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
|
1464 |
+
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
|
1465 |
+
loss = loss.mean()
|
1466 |
+
|
1467 |
+
if args.with_prior_preservation:
|
1468 |
+
# Add the prior loss to the instance loss.
|
1469 |
+
loss = loss + args.prior_loss_weight * prior_loss
|
1470 |
+
|
1471 |
+
accelerator.backward(loss)
|
1472 |
+
if accelerator.sync_gradients:
|
1473 |
+
params_to_clip = (
|
1474 |
+
itertools.chain(unet_lora_parameters, text_lora_parameters_one, text_lora_parameters_two)
|
1475 |
+
if args.train_text_encoder
|
1476 |
+
else unet_lora_parameters
|
1477 |
+
)
|
1478 |
+
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
1479 |
+
optimizer.step()
|
1480 |
+
lr_scheduler.step()
|
1481 |
+
optimizer.zero_grad()
|
1482 |
+
|
1483 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
1484 |
+
if accelerator.sync_gradients:
|
1485 |
+
progress_bar.update(1)
|
1486 |
+
global_step += 1
|
1487 |
+
|
1488 |
+
if accelerator.is_main_process:
|
1489 |
+
if global_step % args.checkpointing_steps == 0:
|
1490 |
+
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
|
1491 |
+
if args.checkpoints_total_limit is not None:
|
1492 |
+
checkpoints = os.listdir(args.output_dir)
|
1493 |
+
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
|
1494 |
+
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
|
1495 |
+
|
1496 |
+
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
|
1497 |
+
if len(checkpoints) >= args.checkpoints_total_limit:
|
1498 |
+
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
|
1499 |
+
removing_checkpoints = checkpoints[0:num_to_remove]
|
1500 |
+
|
1501 |
+
logger.info(
|
1502 |
+
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
|
1503 |
+
)
|
1504 |
+
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
|
1505 |
+
|
1506 |
+
for removing_checkpoint in removing_checkpoints:
|
1507 |
+
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
|
1508 |
+
shutil.rmtree(removing_checkpoint)
|
1509 |
+
|
1510 |
+
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
|
1511 |
+
accelerator.save_state(save_path)
|
1512 |
+
logger.info(f"Saved state to {save_path}")
|
1513 |
+
|
1514 |
+
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
1515 |
+
progress_bar.set_postfix(**logs)
|
1516 |
+
accelerator.log(logs, step=global_step)
|
1517 |
+
|
1518 |
+
if global_step >= args.max_train_steps:
|
1519 |
+
break
|
1520 |
+
|
1521 |
+
if accelerator.is_main_process:
|
1522 |
+
if args.validation_prompt is not None and epoch % args.validation_epochs == 0:
|
1523 |
+
logger.info(
|
1524 |
+
f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
|
1525 |
+
f" {args.validation_prompt}."
|
1526 |
+
)
|
1527 |
+
# create pipeline
|
1528 |
+
if not args.train_text_encoder:
|
1529 |
+
text_encoder_one = text_encoder_cls_one.from_pretrained(
|
1530 |
+
args.pretrained_model_name_or_path,
|
1531 |
+
subfolder="text_encoder",
|
1532 |
+
revision=args.revision,
|
1533 |
+
variant=args.variant,
|
1534 |
+
)
|
1535 |
+
text_encoder_two = text_encoder_cls_two.from_pretrained(
|
1536 |
+
args.pretrained_model_name_or_path,
|
1537 |
+
subfolder="text_encoder_2",
|
1538 |
+
revision=args.revision,
|
1539 |
+
variant=args.variant,
|
1540 |
+
)
|
1541 |
+
pipeline = StableDiffusionXLPipeline.from_pretrained(
|
1542 |
+
args.pretrained_model_name_or_path,
|
1543 |
+
vae=vae,
|
1544 |
+
text_encoder=accelerator.unwrap_model(text_encoder_one),
|
1545 |
+
text_encoder_2=accelerator.unwrap_model(text_encoder_two),
|
1546 |
+
unet=accelerator.unwrap_model(unet),
|
1547 |
+
revision=args.revision,
|
1548 |
+
variant=args.variant,
|
1549 |
+
torch_dtype=weight_dtype,
|
1550 |
+
)
|
1551 |
+
|
1552 |
+
# We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
|
1553 |
+
scheduler_args = {}
|
1554 |
+
|
1555 |
+
if "variance_type" in pipeline.scheduler.config:
|
1556 |
+
variance_type = pipeline.scheduler.config.variance_type
|
1557 |
+
|
1558 |
+
if variance_type in ["learned", "learned_range"]:
|
1559 |
+
variance_type = "fixed_small"
|
1560 |
+
|
1561 |
+
scheduler_args["variance_type"] = variance_type
|
1562 |
+
|
1563 |
+
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(
|
1564 |
+
pipeline.scheduler.config, **scheduler_args
|
1565 |
+
)
|
1566 |
+
|
1567 |
+
pipeline = pipeline.to(accelerator.device)
|
1568 |
+
pipeline.set_progress_bar_config(disable=True)
|
1569 |
+
|
1570 |
+
# run inference
|
1571 |
+
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
|
1572 |
+
pipeline_args = {"prompt": args.validation_prompt}
|
1573 |
+
|
1574 |
+
with torch.cuda.amp.autocast():
|
1575 |
+
images = [
|
1576 |
+
pipeline(**pipeline_args, generator=generator).images[0]
|
1577 |
+
for _ in range(args.num_validation_images)
|
1578 |
+
]
|
1579 |
+
|
1580 |
+
for tracker in accelerator.trackers:
|
1581 |
+
if tracker.name == "tensorboard":
|
1582 |
+
np_images = np.stack([np.asarray(img) for img in images])
|
1583 |
+
tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
|
1584 |
+
if tracker.name == "wandb":
|
1585 |
+
tracker.log(
|
1586 |
+
{
|
1587 |
+
"validation": [
|
1588 |
+
wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
|
1589 |
+
for i, image in enumerate(images)
|
1590 |
+
]
|
1591 |
+
}
|
1592 |
+
)
|
1593 |
+
|
1594 |
+
del pipeline
|
1595 |
+
torch.cuda.empty_cache()
|
1596 |
+
|
1597 |
+
# Save the lora layers
|
1598 |
+
accelerator.wait_for_everyone()
|
1599 |
+
if accelerator.is_main_process:
|
1600 |
+
unet = accelerator.unwrap_model(unet)
|
1601 |
+
unet = unet.to(torch.float32)
|
1602 |
+
unet_lora_layers = get_peft_model_state_dict(unet)
|
1603 |
+
|
1604 |
+
if args.train_text_encoder:
|
1605 |
+
text_encoder_one = accelerator.unwrap_model(text_encoder_one)
|
1606 |
+
text_encoder_lora_layers = get_peft_model_state_dict(text_encoder_one.to(torch.float32))
|
1607 |
+
text_encoder_two = accelerator.unwrap_model(text_encoder_two)
|
1608 |
+
text_encoder_2_lora_layers = get_peft_model_state_dict(text_encoder_two.to(torch.float32))
|
1609 |
+
else:
|
1610 |
+
text_encoder_lora_layers = None
|
1611 |
+
text_encoder_2_lora_layers = None
|
1612 |
+
|
1613 |
+
StableDiffusionXLPipeline.save_lora_weights(
|
1614 |
+
save_directory=args.output_dir,
|
1615 |
+
unet_lora_layers=unet_lora_layers,
|
1616 |
+
text_encoder_lora_layers=text_encoder_lora_layers,
|
1617 |
+
text_encoder_2_lora_layers=text_encoder_2_lora_layers,
|
1618 |
+
)
|
1619 |
+
|
1620 |
+
# Final inference
|
1621 |
+
# Load previous pipeline
|
1622 |
+
vae = AutoencoderKL.from_pretrained(
|
1623 |
+
vae_path,
|
1624 |
+
subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None,
|
1625 |
+
revision=args.revision,
|
1626 |
+
variant=args.variant,
|
1627 |
+
torch_dtype=weight_dtype,
|
1628 |
+
)
|
1629 |
+
pipeline = StableDiffusionXLPipeline.from_pretrained(
|
1630 |
+
args.pretrained_model_name_or_path,
|
1631 |
+
vae=vae,
|
1632 |
+
revision=args.revision,
|
1633 |
+
variant=args.variant,
|
1634 |
+
torch_dtype=weight_dtype,
|
1635 |
+
)
|
1636 |
+
|
1637 |
+
# We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
|
1638 |
+
scheduler_args = {}
|
1639 |
+
|
1640 |
+
if "variance_type" in pipeline.scheduler.config:
|
1641 |
+
variance_type = pipeline.scheduler.config.variance_type
|
1642 |
+
|
1643 |
+
if variance_type in ["learned", "learned_range"]:
|
1644 |
+
variance_type = "fixed_small"
|
1645 |
+
|
1646 |
+
scheduler_args["variance_type"] = variance_type
|
1647 |
+
|
1648 |
+
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, **scheduler_args)
|
1649 |
+
|
1650 |
+
# load attention processors
|
1651 |
+
pipeline.load_lora_weights(args.output_dir)
|
1652 |
+
|
1653 |
+
# run inference
|
1654 |
+
images = []
|
1655 |
+
if args.validation_prompt and args.num_validation_images > 0:
|
1656 |
+
pipeline = pipeline.to(accelerator.device)
|
1657 |
+
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
|
1658 |
+
images = [
|
1659 |
+
pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0]
|
1660 |
+
for _ in range(args.num_validation_images)
|
1661 |
+
]
|
1662 |
+
|
1663 |
+
for tracker in accelerator.trackers:
|
1664 |
+
if tracker.name == "tensorboard":
|
1665 |
+
np_images = np.stack([np.asarray(img) for img in images])
|
1666 |
+
tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC")
|
1667 |
+
if tracker.name == "wandb":
|
1668 |
+
tracker.log(
|
1669 |
+
{
|
1670 |
+
"test": [
|
1671 |
+
wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
|
1672 |
+
for i, image in enumerate(images)
|
1673 |
+
]
|
1674 |
+
}
|
1675 |
+
)
|
1676 |
+
|
1677 |
+
if args.push_to_hub:
|
1678 |
+
save_model_card(
|
1679 |
+
repo_id,
|
1680 |
+
images=images,
|
1681 |
+
base_model=args.pretrained_model_name_or_path,
|
1682 |
+
train_text_encoder=args.train_text_encoder,
|
1683 |
+
instance_prompt=args.instance_prompt,
|
1684 |
+
validation_prompt=args.validation_prompt,
|
1685 |
+
repo_folder=args.output_dir,
|
1686 |
+
vae_path=args.pretrained_vae_model_name_or_path,
|
1687 |
+
)
|
1688 |
+
upload_folder(
|
1689 |
+
repo_id=repo_id,
|
1690 |
+
folder_path=args.output_dir,
|
1691 |
+
commit_message="End of training",
|
1692 |
+
ignore_patterns=["step_*", "epoch_*"],
|
1693 |
+
)
|
1694 |
+
|
1695 |
+
accelerator.end_training()
|
1696 |
+
|
1697 |
+
|
1698 |
+
if __name__ == "__main__":
|
1699 |
+
args = parse_args()
|
1700 |
+
main(args)
|