|
import argparse |
|
from optimum.quanto import freeze, qfloat8, qint4, qint8, quantize |
|
import torch |
|
import json |
|
import torch.utils.benchmark as benchmark |
|
from diffusers import DiffusionPipeline |
|
import gc |
|
|
|
|
|
WARM_UP_ITERS = 5 |
|
PROMPT = "ghibli style, a fantasy landscape with castles" |
|
|
|
TORCH_DTYPES = {"fp32": torch.float32, "fp16": torch.float16, "bf16": torch.bfloat16} |
|
|
|
QTYPES = {"fp8": qfloat8, "int8": qint8, "none": None} |
|
|
|
PREFIXES = { |
|
"stabilityai/stable-diffusion-3-medium-diffusers": "sd3", |
|
"PixArt-alpha/PixArt-Sigma-XL-2-1024-MS": "pixart", |
|
"fal/AuraFlow": "auraflow", |
|
} |
|
|
|
def flush(): |
|
"""Wipes off memory.""" |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
def load_pipeline(ckpt_id, torch_dtype, qtype=None, exclude_layers=None, qte=False, fuse=False): |
|
pipe = DiffusionPipeline.from_pretrained(ckpt_id, torch_dtype=torch_dtype).to("cuda") |
|
if fuse: |
|
pipe.transformer.fuse_qkv_projections() |
|
|
|
if qtype: |
|
quantize(pipe.transformer, weights=qtype, exclude=exclude_layers) |
|
freeze(pipe.transformer) |
|
|
|
if qte: |
|
quantize(pipe.text_encoder, weights=qtype) |
|
freeze(pipe.text_encoder) |
|
if hasattr(pipe, "text_encoder_2"): |
|
quantize(pipe.text_encoder_2, weights=qtype) |
|
freeze(pipe.text_encoder_2) |
|
if hasattr(pipe, "text_encoder_3"): |
|
quantize(pipe.text_encoder_3, weights=qtype) |
|
freeze(pipe.text_encoder_3) |
|
|
|
pipe.set_progress_bar_config(disable=True) |
|
return pipe |
|
|
|
|
|
def run_inference(pipe, batch_size=1): |
|
_ = pipe( |
|
prompt=PROMPT, |
|
num_images_per_prompt=batch_size, |
|
generator=torch.manual_seed(0), |
|
) |
|
|
|
|
|
def benchmark_fn(f, *args, **kwargs): |
|
t0 = benchmark.Timer(stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f}) |
|
return f"{(t0.blocked_autorange().mean):.3f}" |
|
|
|
|
|
def bytes_to_giga_bytes(bytes): |
|
return f"{(bytes / 1024 / 1024 / 1024):.3f}" |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--ckpt_id", |
|
type=str, |
|
default="stabilityai/stable-diffusion-3-medium-diffusers", |
|
choices=list(PREFIXES.keys()), |
|
) |
|
parser.add_argument("--batch_size", type=int, default=1) |
|
parser.add_argument("--torch_dtype", type=str, default="fp16", choices=list(TORCH_DTYPES.keys())) |
|
parser.add_argument("--qtype", type=str, default="none", choices=list(QTYPES.keys())) |
|
parser.add_argument("--qte", type=int, default=0, help="Quantize text encoder") |
|
parser.add_argument("--fuse", type=int, default=0) |
|
parser.add_argument("--exclude_layers", metavar="N", type=str, nargs="*", default=None) |
|
args = parser.parse_args() |
|
|
|
flush() |
|
|
|
print( |
|
f"Running with ckpt_id: {args.ckpt_id}, batch_size: {args.batch_size}, torch_dtype: {args.torch_dtype}, qtype: {args.qtype}, qte: {bool(args.qte)}, {args.exclude_layers=}, {args.fuse=}" |
|
) |
|
pipeline = load_pipeline( |
|
ckpt_id=args.ckpt_id, |
|
torch_dtype=TORCH_DTYPES[args.torch_dtype], |
|
qtype=QTYPES[args.qtype], |
|
exclude_layers=args.exclude_layers, |
|
qte=args.qte, |
|
fuse=bool(args.fuse), |
|
) |
|
|
|
for _ in range(WARM_UP_ITERS): |
|
run_inference(pipeline, args.batch_size) |
|
|
|
time = benchmark_fn(run_inference, pipeline, args.batch_size) |
|
torch.cuda.empty_cache() |
|
memory = bytes_to_giga_bytes(torch.cuda.memory_allocated()) |
|
print( |
|
f"ckpt: {args.ckpt_id} batch_size: {args.batch_size}, qte: {args.qte}, {args.exclude_layers=} " |
|
f"torch_dtype: {args.torch_dtype}, qtype: {args.qtype} in {time} seconds and {memory} GBs." |
|
) |
|
|
|
ckpt_id = PREFIXES[args.ckpt_id] |
|
img_name = f"ckpt@{ckpt_id}-bs@{args.batch_size}-dtype@{args.torch_dtype}-qtype@{args.qtype}-qte@{args.qte}-fuse@{args.fuse}" |
|
if args.exclude_layers: |
|
exclude_layers = "_".join(args.exclude_layers) |
|
img_name += f"-exclude@{exclude_layers}" |
|
image = pipeline( |
|
prompt=PROMPT, |
|
num_images_per_prompt=args.batch_size, |
|
generator=torch.manual_seed(0), |
|
).images[0] |
|
image.save(f"{img_name}.png") |
|
|
|
info = dict( |
|
batch_size=args.batch_size, |
|
memory=memory, |
|
time=time, |
|
dtype=args.torch_dtype, |
|
qtype=args.qtype, |
|
qte=args.qte, |
|
exclude_layers=args.exclude_layers, |
|
|
|
) |
|
info_file = f"{img_name}_info.json" |
|
with open(info_file, "w") as f: |
|
json.dump(info, f) |
|
|