sample-datasets / quanto-exps /benchmark_2.py
sayakpaul's picture
sayakpaul HF staff
Upload folder using huggingface_hub
024bdb1 verified
raw
history blame
4.89 kB
import argparse
from optimum.quanto import freeze, qfloat8, qint4, qint8, quantize
import torch
import json
import torch.utils.benchmark as benchmark
from diffusers import DiffusionPipeline
import gc
WARM_UP_ITERS = 5
PROMPT = "ghibli style, a fantasy landscape with castles"
TORCH_DTYPES = {"fp32": torch.float32, "fp16": torch.float16, "bf16": torch.bfloat16}
QTYPES = {"fp8": qfloat8, "int8": qint8, "int4": qint4, "none": None}
PREFIXES = {
"stabilityai/stable-diffusion-3-medium-diffusers": "sd3",
}
def flush():
"""Wipes off memory."""
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
def load_pipeline(
ckpt_id, torch_dtype, qtype=None, exclude_layers=None, qte=False, first=False, second=False, third=False
):
pipe = DiffusionPipeline.from_pretrained(ckpt_id, torch_dtype=torch_dtype).to("cuda")
if qtype:
quantize(pipe.transformer, weights=qtype, exclude=exclude_layers)
freeze(pipe.transformer)
if qte:
if first:
quantize(pipe.text_encoder, weights=qtype)
freeze(pipe.text_encoder)
if second:
quantize(pipe.text_encoder_2, weights=qtype)
freeze(pipe.text_encoder)
if third:
quantize(pipe.text_encoder_3, weights=qtype)
freeze(pipe.text_encoder_3)
pipe.set_progress_bar_config(disable=True)
return pipe
def run_inference(pipe, batch_size=1):
_ = pipe(
prompt=PROMPT,
num_images_per_prompt=batch_size,
generator=torch.manual_seed(0),
)
def benchmark_fn(f, *args, **kwargs):
t0 = benchmark.Timer(stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f})
return f"{(t0.blocked_autorange().mean):.3f}"
def bytes_to_giga_bytes(bytes):
return f"{(bytes / 1024 / 1024 / 1024):.3f}"
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--ckpt_id",
type=str,
default="stabilityai/stable-diffusion-3-medium-diffusers",
choices=list(PREFIXES.keys()),
)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--torch_dtype", type=str, default="fp16", choices=list(TORCH_DTYPES.keys()))
parser.add_argument("--qtype", type=str, default="none", choices=list(QTYPES.keys()))
parser.add_argument("--qte", type=int, default=0, help="Quantize text encoder")
parser.add_argument("--first", type=int, default=0, help="Quantize first text encoder")
parser.add_argument("--second", type=int, default=0, help="Quantize second text encoder")
parser.add_argument("--third", type=int, default=0, help="Quantize third text encoder")
parser.add_argument("--exclude_layers", metavar="N", type=str, nargs="*", default=None)
args = parser.parse_args()
flush()
print(
f"Running with ckpt_id: {args.ckpt_id}, batch_size: {args.batch_size}, torch_dtype: {args.torch_dtype}, qtype: {args.qtype}, qte: {bool(args.qte)}"
)
pipeline = load_pipeline(
ckpt_id=args.ckpt_id,
torch_dtype=TORCH_DTYPES[args.torch_dtype],
qtype=QTYPES[args.qtype],
exclude_layers=args.exclude_layers,
qte=args.qte,
first=args.first,
second=args.second,
third=args.third,
)
for _ in range(WARM_UP_ITERS):
run_inference(pipeline, args.batch_size)
time = benchmark_fn(run_inference, pipeline, args.batch_size)
memory = bytes_to_giga_bytes(torch.cuda.max_memory_allocated()) # in GBs.
print(
f"ckpt: {args.ckpt_id} batch_size: {args.batch_size}, qte: {args.qte}, "
f"torch_dtype: {args.torch_dtype}, qtype: {args.qtype} in {time} seconds and {memory} GBs."
)
ckpt_id = PREFIXES[args.ckpt_id]
img_name = f"ckpt@{ckpt_id}-bs@{args.batch_size}-dtype@{args.torch_dtype}-qtype@{args.qtype}-qte@{args.qte}"
if args.exclude_layers:
exclude_layers = "_".join(args.exclude_layers)
img_name += f"-exclude@{exclude_layers}"
if args.first:
img_name += f"-first@{args.first}"
if args.second:
img_name += f"-second@{args.second}"
if args.third:
img_name += f"-third@{args.third}"
image = pipeline(
prompt=PROMPT,
num_images_per_prompt=args.batch_size,
generator=torch.manual_seed(0),
).images[0]
image.save(f"{img_name}.png")
info = dict(
batch_size=args.batch_size,
memory=memory,
time=time,
dtype=args.torch_dtype,
qtype=args.qtype,
qte=args.qte,
exclude_layers=args.exclude_layers,
first=args.first,
second=args.second,
third=args.third,
)
info_file = f"{img_name}_info.json"
with open(info_file, "w") as f:
json.dump(info, f)