|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""TTC4900: A Benchmark Data for Turkish Text Categorization""" |
|
|
|
|
|
import csv |
|
|
|
import datasets |
|
from datasets.tasks import TextClassification |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_DESCRIPTION = """\ |
|
The data set is taken from kemik group |
|
http://www.kemik.yildiz.edu.tr/ |
|
The data are pre-processed for the text categorization, collocations are found, character set is corrected, and so forth. |
|
We named TTC4900 by mimicking the name convention of TTC 3600 dataset shared by the study http://journals.sagepub.com/doi/abs/10.1177/0165551515620551 |
|
|
|
If you use the dataset in a paper, please refer https://www.kaggle.com/savasy/ttc4900 as footnote and cite one of the papers as follows: |
|
|
|
- A Comparison of Different Approaches to Document Representation in Turkish Language, SDU Journal of Natural and Applied Science, Vol 22, Issue 2, 2018 |
|
- A comparative analysis of text classification for Turkish language, Pamukkale University Journal of Engineering Science Volume 25 Issue 5, 2018 |
|
- A Knowledge-poor Approach to Turkish Text Categorization with a Comparative Analysis, Proceedings of CICLING 2014, Springer LNCS, Nepal, 2014. |
|
""" |
|
|
|
_CITATION = """\ |
|
@article{doi:10.5505/pajes.2018.15931, |
|
author = {Yıldırım, Savaş and Yıldız, Tuğba}, |
|
title = {A comparative analysis of text classification for Turkish language}, |
|
journal = {Pamukkale Univ Muh Bilim Derg}, |
|
volume = {24}, |
|
number = {5}, |
|
pages = {879-886}, |
|
year = {2018}, |
|
doi = {10.5505/pajes.2018.15931}, |
|
note ={doi: 10.5505/pajes.2018.15931}, |
|
|
|
URL = {https://dx.doi.org/10.5505/pajes.2018.15931}, |
|
eprint = {https://dx.doi.org/10.5505/pajes.2018.15931} |
|
} |
|
""" |
|
|
|
_LICENSE = "CC0: Public Domain" |
|
_HOMEPAGE = "https://www.kaggle.com/savasy/ttc4900" |
|
_DOWNLOAD_URL = "https://raw.githubusercontent.com/savasy/TurkishTextClassification/master" |
|
_FILENAME = "7allV03.csv" |
|
|
|
|
|
class TTC4900Config(datasets.BuilderConfig): |
|
"""BuilderConfig for TTC4900""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for TTC4900. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(TTC4900Config, self).__init__(**kwargs) |
|
|
|
|
|
class TTC4900(datasets.GeneratorBasedBuilder): |
|
"""TTC4900: A Benchmark Data for Turkish Text Categorization""" |
|
|
|
BUILDER_CONFIGS = [ |
|
TTC4900Config( |
|
name="ttc4900", |
|
version=datasets.Version("1.0.0"), |
|
description="A Benchmark Data for Turkish Text Categorization", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"category": datasets.features.ClassLabel( |
|
names=["siyaset", "dunya", "ekonomi", "kultur", "saglik", "spor", "teknoloji"] |
|
), |
|
"text": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
task_templates=[TextClassification(text_column="text", label_column="category")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
urls_to_download = { |
|
"train": _DOWNLOAD_URL + "/" + _FILENAME, |
|
} |
|
downloaded_files = dl_manager.download(urls_to_download) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Generate TTC4900 examples.""" |
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
rdr = csv.reader(f, delimiter=",") |
|
next(rdr) |
|
rownum = 0 |
|
for row in rdr: |
|
rownum += 1 |
|
yield rownum, { |
|
"category": row[0], |
|
"text": row[1], |
|
} |
|
|