Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
json
Sub-tasks:
multi-class-classification
Languages:
English
Size:
100K - 1M
ArXiv:
License:
add basic dataest card info
Browse files
README.md
CHANGED
@@ -52,3 +52,106 @@ dataset_info:
|
|
52 |
dataset_size: 460874306
|
53 |
---
|
54 |
# Dataset Card for unarXive IMRaD classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
dataset_size: 460874306
|
53 |
---
|
54 |
# Dataset Card for unarXive IMRaD classification
|
55 |
+
|
56 |
+
## Dataset Description
|
57 |
+
|
58 |
+
* **Homepage:** [https://github.com/IllDepence/unarXive](https://github.com/IllDepence/unarXive)
|
59 |
+
* **Paper:** [unarXive 2022: All arXiv Publications Pre-Processed for NLP, Including Structured Full-Text and Citation Network](https://arxiv.org/abs/2303.14957)
|
60 |
+
|
61 |
+
### Dataset Summary
|
62 |
+
|
63 |
+
The unarXive IMRaD classification dataset contains 530k paragraphs from computer science papers and the IMRaD section they originate from. The paragraphs are derived from [unarXive](https://github.com/IllDepence/unarXive).
|
64 |
+
|
65 |
+
The dataset can be used as follows.
|
66 |
+
|
67 |
+
```
|
68 |
+
from datasets import load_dataset
|
69 |
+
|
70 |
+
citrec_data = load_dataset('saier/unarxive_citrec')
|
71 |
+
citrec_data = citrec_data.class_encode_column('label') # assign target label column
|
72 |
+
citrec_data = citrec_data.remove_columns('_id') # remove sample ID column
|
73 |
+
```
|
74 |
+
|
75 |
+
## Dataset Structure
|
76 |
+
|
77 |
+
### Data Instances
|
78 |
+
|
79 |
+
Each data instance contains the paragraph’s text as well as one of the labels ('i', 'm', 'r', 'd', 'w' — for Introduction, Methods, Results, Discussion and Related Work). An example is shown below.
|
80 |
+
|
81 |
+
```
|
82 |
+
{'_id': '789f68e7-a1cc-4072-b07d-ecffc3e7ca38',
|
83 |
+
'label': 'm',
|
84 |
+
'text': 'To link the mentions encoded by BERT to the KGE entities, we define '
|
85 |
+
'an entity linking loss as cross-entropy between self-supervised '
|
86 |
+
'entity labels and similarities obtained from the linker in KGE '
|
87 |
+
'space:\n'
|
88 |
+
'\\(\\mathcal {L}_{EL}=\\sum -\\log \\dfrac{\\exp (h_m^{proj}\\cdot '
|
89 |
+
'\\textbf {e})}{\\sum _{\\textbf {e}_j\\in \\mathcal {E}} \\exp '
|
90 |
+
'(h_m^{proj}\\cdot \\textbf {e}_j)}\\) \n'}
|
91 |
+
```
|
92 |
+
|
93 |
+
### Data Splits
|
94 |
+
|
95 |
+
The data is split into training, development, and testing data as follows.
|
96 |
+
|
97 |
+
* Training: 520,053 instances
|
98 |
+
* Development: 5000 instances
|
99 |
+
* Testing: 5001 instances
|
100 |
+
|
101 |
+
## Dataset Creation
|
102 |
+
|
103 |
+
### Source Data
|
104 |
+
|
105 |
+
The paragraph texts are extracted from the data set [unarXive](https://github.com/IllDepence/unarXive).
|
106 |
+
|
107 |
+
#### Who are the source language producers?
|
108 |
+
|
109 |
+
The paragraphs were written by the authors of the arXiv papers. In file `license_info.jsonl` author and text licensing information can be found for all samples, An example is given below.
|
110 |
+
|
111 |
+
```
|
112 |
+
|
113 |
+
{'authors': 'Yusuke Sekikawa, Teppei Suzuki',
|
114 |
+
'license': 'http://creativecommons.org/licenses/by/4.0/',
|
115 |
+
'paper_arxiv_id': '2011.09852',
|
116 |
+
'sample_ids': ['cc375518-347c-43d0-bfb2-f88564d66df8',
|
117 |
+
'18dc073e-a48e-488e-b34c-e5fc3cb8a4ca',
|
118 |
+
'0c2e89b3-d863-4bc2-9e11-8f6c48d867cb',
|
119 |
+
'd85e46cf-b11d-49b6-801b-089aa2dd037d',
|
120 |
+
'92915cea-17ab-4a98-aad2-417f6cdd53d2',
|
121 |
+
'e88cb422-47b7-4f69-9b0b-fbddf8140d98',
|
122 |
+
'4f5094a4-0e6e-46ae-a34d-e15ce0b9803c',
|
123 |
+
'59003494-096f-4a7c-ad65-342b74eed561',
|
124 |
+
'6a99b3f5-217e-4d3d-a770-693483ef8670']}
|
125 |
+
```
|
126 |
+
|
127 |
+
### Annotations
|
128 |
+
|
129 |
+
Class labels were automatically determined ([see implementation](https://github.com/IllDepence/src/utility_scripts/ml_tasks_prep_data.py).
|
130 |
+
|
131 |
+
## Considerations for Using the Data
|
132 |
+
|
133 |
+
### Discussion and Biases
|
134 |
+
|
135 |
+
Because only paragraphs unambiguously assignable to one of the IMRaD classeswere used, a certain selection bias is to be expected in the data.
|
136 |
+
|
137 |
+
### Other Known Limitations
|
138 |
+
|
139 |
+
Depending on authors’ writing styles as well LaTeX processing quirks, paragraphs can vary in length a significantly.
|
140 |
+
|
141 |
+
## Additional Information
|
142 |
+
|
143 |
+
### Licensing information
|
144 |
+
|
145 |
+
The dataset is released under the Creating Commons Attribution Share Alike license 4.0
|
146 |
+
|
147 |
+
### Citation Information
|
148 |
+
|
149 |
+
```
|
150 |
+
@inproceedings{Saier2023unarXive,
|
151 |
+
author = {Saier, Tarek and Krause, Johan and F\"{a}rber, Michael},
|
152 |
+
title = {{unarXive 2022: All arXiv Publications Pre-Processed for NLP, Including Structured Full-Text and Citation Network}},
|
153 |
+
booktitle = {Proceedings of the 23rd ACM/IEEE Joint Conference on Digital Libraries},
|
154 |
+
year = {2023},
|
155 |
+
series = {JCDL '23}
|
156 |
+
}
|
157 |
+
```
|