saier commited on
Commit
8332ed3
1 Parent(s): a89c30a

add basic dataest card info

Browse files
Files changed (1) hide show
  1. README.md +103 -0
README.md CHANGED
@@ -52,3 +52,106 @@ dataset_info:
52
  dataset_size: 460874306
53
  ---
54
  # Dataset Card for unarXive IMRaD classification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  dataset_size: 460874306
53
  ---
54
  # Dataset Card for unarXive IMRaD classification
55
+
56
+ ## Dataset Description
57
+
58
+ * **Homepage:** [https://github.com/IllDepence/unarXive](https://github.com/IllDepence/unarXive)
59
+ * **Paper:** [unarXive 2022: All arXiv Publications Pre-Processed for NLP, Including Structured Full-Text and Citation Network](https://arxiv.org/abs/2303.14957)
60
+
61
+ ### Dataset Summary
62
+
63
+ The unarXive IMRaD classification dataset contains 530k paragraphs from computer science papers and the IMRaD section they originate from. The paragraphs are derived from [unarXive](https://github.com/IllDepence/unarXive).
64
+
65
+ The dataset can be used as follows.
66
+
67
+ ```
68
+ from datasets import load_dataset
69
+
70
+ citrec_data = load_dataset('saier/unarxive_citrec')
71
+ citrec_data = citrec_data.class_encode_column('label') # assign target label column
72
+ citrec_data = citrec_data.remove_columns('_id') # remove sample ID column
73
+ ```
74
+
75
+ ## Dataset Structure
76
+
77
+ ### Data Instances
78
+
79
+ Each data instance contains the paragraph’s text as well as one of the labels ('i', 'm', 'r', 'd', 'w' — for Introduction, Methods, Results, Discussion and Related Work). An example is shown below.
80
+
81
+ ```
82
+ {'_id': '789f68e7-a1cc-4072-b07d-ecffc3e7ca38',
83
+ 'label': 'm',
84
+ 'text': 'To link the mentions encoded by BERT to the KGE entities, we define '
85
+ 'an entity linking loss as cross-entropy between self-supervised '
86
+ 'entity labels and similarities obtained from the linker in KGE '
87
+ 'space:\n'
88
+ '\\(\\mathcal {L}_{EL}=\\sum -\\log \\dfrac{\\exp (h_m^{proj}\\cdot '
89
+ '\\textbf {e})}{\\sum _{\\textbf {e}_j\\in \\mathcal {E}} \\exp '
90
+ '(h_m^{proj}\\cdot \\textbf {e}_j)}\\) \n'}
91
+ ```
92
+
93
+ ### Data Splits
94
+
95
+ The data is split into training, development, and testing data as follows.
96
+
97
+ * Training: 520,053 instances
98
+ * Development: 5000 instances
99
+ * Testing: 5001 instances
100
+
101
+ ## Dataset Creation
102
+
103
+ ### Source Data
104
+
105
+ The paragraph texts are extracted from the data set [unarXive](https://github.com/IllDepence/unarXive).
106
+
107
+ #### Who are the source language producers?
108
+
109
+ The paragraphs were written by the authors of the arXiv papers. In file `license_info.jsonl` author and text licensing information can be found for all samples, An example is given below.
110
+
111
+ ```
112
+
113
+ {'authors': 'Yusuke Sekikawa, Teppei Suzuki',
114
+ 'license': 'http://creativecommons.org/licenses/by/4.0/',
115
+ 'paper_arxiv_id': '2011.09852',
116
+ 'sample_ids': ['cc375518-347c-43d0-bfb2-f88564d66df8',
117
+ '18dc073e-a48e-488e-b34c-e5fc3cb8a4ca',
118
+ '0c2e89b3-d863-4bc2-9e11-8f6c48d867cb',
119
+ 'd85e46cf-b11d-49b6-801b-089aa2dd037d',
120
+ '92915cea-17ab-4a98-aad2-417f6cdd53d2',
121
+ 'e88cb422-47b7-4f69-9b0b-fbddf8140d98',
122
+ '4f5094a4-0e6e-46ae-a34d-e15ce0b9803c',
123
+ '59003494-096f-4a7c-ad65-342b74eed561',
124
+ '6a99b3f5-217e-4d3d-a770-693483ef8670']}
125
+ ```
126
+
127
+ ### Annotations
128
+
129
+ Class labels were automatically determined ([see implementation](https://github.com/IllDepence/src/utility_scripts/ml_tasks_prep_data.py).
130
+
131
+ ## Considerations for Using the Data
132
+
133
+ ### Discussion and Biases
134
+
135
+ Because only paragraphs unambiguously assignable to one of the IMRaD classeswere used, a certain selection bias is to be expected in the data.
136
+
137
+ ### Other Known Limitations
138
+
139
+ Depending on authors’ writing styles as well LaTeX processing quirks, paragraphs can vary in length a significantly.
140
+
141
+ ## Additional Information
142
+
143
+ ### Licensing information
144
+
145
+ The dataset is released under the Creating Commons Attribution Share Alike license 4.0
146
+
147
+ ### Citation Information
148
+
149
+ ```
150
+ @inproceedings{Saier2023unarXive,
151
+ author = {Saier, Tarek and Krause, Johan and F\"{a}rber, Michael},
152
+ title = {{unarXive 2022: All arXiv Publications Pre-Processed for NLP, Including Structured Full-Text and Citation Network}},
153
+ booktitle = {Proceedings of the 23rd ACM/IEEE Joint Conference on Digital Libraries},
154
+ year = {2023},
155
+ series = {JCDL '23}
156
+ }
157
+ ```