picocreator
commited on
Commit
•
d5d3533
1
Parent(s):
29c75a9
more evals
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- compile-results.ipynb +79 -501
- lm-eval-output/RWKV/v6-Finch-7B-HF/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +30 -30
- lm-eval-output/RWKV/v6-Finch-7B-HF/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +2 -2
- lm-eval-output/m8than/Finch-14B-Continued-10/ai2_arc/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/ai2_arc/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +132 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/ai2_arc/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +161 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/blimp/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/blimp/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +2249 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/blimp/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/cmmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/cmmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +0 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/cmmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/copa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/copa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +58 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/copa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/glue/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/glue/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +374 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/glue/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +67 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/lambada/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/lambada/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +126 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/lambada/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +252 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/logiqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/logiqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +66 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/logiqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +2594 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/openbookqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/openbookqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +66 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/openbookqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +283 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/piqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/piqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +64 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/piqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/pythia/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/pythia/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +0 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/pythia/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/record/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Continued-10/record/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +67 -0
compile-results.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [
|
8 |
{
|
@@ -11,12 +11,12 @@
|
|
11 |
"text": [
|
12 |
"Defaulting to user installation because normal site-packages is not writeable\n",
|
13 |
"Requirement already satisfied: pandas in /Users/picocreator/Library/Python/3.9/lib/python/site-packages (2.2.0)\n",
|
14 |
-
"Requirement already satisfied: numpy<2,>=1.22.4 in /Users/picocreator/Library/Python/3.9/lib/python/site-packages (from pandas) (1.26.1)\n",
|
15 |
-
"Requirement already satisfied: python-dateutil>=2.8.2 in /Users/picocreator/Library/Python/3.9/lib/python/site-packages (from pandas) (2.8.2)\n",
|
16 |
"Requirement already satisfied: pytz>=2020.1 in /Users/picocreator/Library/Python/3.9/lib/python/site-packages (from pandas) (2024.1)\n",
|
|
|
17 |
"Requirement already satisfied: tzdata>=2022.7 in /Users/picocreator/Library/Python/3.9/lib/python/site-packages (from pandas) (2024.1)\n",
|
|
|
18 |
"Requirement already satisfied: six>=1.5 in /Library/Developer/CommandLineTools/Library/Frameworks/Python3.framework/Versions/3.9/lib/python3.9/site-packages (from python-dateutil>=2.8.2->pandas) (1.15.0)\n",
|
19 |
-
"\u001b[33mWARNING: You are using pip version 21.2.4; however, version 24.
|
20 |
"You should consider upgrading via the '/Library/Developer/CommandLineTools/usr/bin/python3 -m pip install --upgrade pip' command.\u001b[0m\n"
|
21 |
]
|
22 |
}
|
@@ -36,14 +36,14 @@
|
|
36 |
},
|
37 |
{
|
38 |
"cell_type": "code",
|
39 |
-
"execution_count":
|
40 |
"metadata": {},
|
41 |
"outputs": [
|
42 |
{
|
43 |
"name": "stdout",
|
44 |
"output_type": "stream",
|
45 |
"text": [
|
46 |
-
"Found
|
47 |
]
|
48 |
}
|
49 |
],
|
@@ -71,7 +71,7 @@
|
|
71 |
},
|
72 |
{
|
73 |
"cell_type": "code",
|
74 |
-
"execution_count":
|
75 |
"metadata": {},
|
76 |
"outputs": [
|
77 |
{
|
@@ -156,16 +156,16 @@
|
|
156 |
},
|
157 |
{
|
158 |
"cell_type": "code",
|
159 |
-
"execution_count":
|
160 |
"metadata": {},
|
161 |
"outputs": [
|
162 |
{
|
163 |
"name": "stdout",
|
164 |
"output_type": "stream",
|
165 |
"text": [
|
166 |
-
"Found
|
167 |
"Models: \n",
|
168 |
-
"['mistralai/Mistral-7B-Instruct-v0.2', 'mistralai/Mistral-7B-v0.1', 'mosaicml/mpt-7b-instruct', 'mosaicml/mpt-7b', 'mosaicml/mpt-7b-chat', 'bigscience/bloom-7b1', 'bigscience/bloomz-7b1-mt', 'bigscience/bloomz-7b1', 'EleutherAI/pythia-2.8b', 'EleutherAI/pythia-1.4b', 'EleutherAI/gpt-j-6b', 'EleutherAI/pythia-6.9b', 'google/flan-t5-base', 'google/gemma-2b', 'google/gemma-2b-it', 'google/gemma-7b', 'google/gemma-7b-it', 'google/flan-t5-large', 'microsoft/phi-1_5', 'microsoft/phi-2', 'microsoft/phi-1', 'allenai/OLMo-7B', 'TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T', 'TinyLlama/TinyLlama-1.1B-Chat-v1.0', 'RWKV/rwkv-5-world-1b5', 'RWKV/rwkv-5-world-3b', 'RWKV/rwkv-4-world-3b', 'RWKV/rwkv-6-world-1b6', 'RWKV/rwkv-4-world-1b5', 'RWKV/v5-Eagle-7B-HF', 'RWKV/rwkv-4-world-7b', 'RWKV/rwkv-raven-7b', 'RWKV/rwkv-6-world-3b', 'aisingapore/sealion7b', 'aisingapore/sealion3b', './rwkv-x-dev/1_3-C5-rwkv-270_pth', './rwkv-x-dev/225-EagleX-PreFT-C', './rwkv-x-dev/225-EagleX-PreFT-D', './rwkv-x-dev/1_0_pth', './rwkv-x-dev/chunk4-0_85_pth', './rwkv-x-dev/1_3-C1-rwkv-340_pth', './rwkv-x-dev/chunk1-0_8_pth', './rwkv-x-dev/chunk0-0_8_pth', './rwkv-x-dev/225-EagleX-PreFT-E', './rwkv-x-dev/225-EagleX-PreFT-B', './rwkv-x-dev/blink4-final_pth', './rwkv-x-dev/chunk2-0_8_pth', './rwkv-x-dev/chunk3-0_8_pth', './rwkv-x-dev/r3-4k-test2-fix3-blink-final_pth', './rwkv-x-dev/R4-7B-15t-With-Mask_pth', './rwkv-x-dev/r3-testchunk-1-8_pth', './rwkv-x-dev/R4-with-shuffle-rwkv-53_pth', './rwkv-x-dev/chunk7-2-0_85_pth', './rwkv-x-dev/EagleX-1_7T_pth', './rwkv-x-dev/r3-testchunk2-blink-fixed_pth', './rwkv-x-dev/r3-testchunk2-blink_pth', './rwkv-x-dev/rwkv-230_pth', './rwkv-x-dev/1_3-C0-rwkv-60_pth', './rwkv-x-dev/chunk5-0_85_pth', './rwkv-x-dev/R4-7B-Base-No-Mask_pth', './rwkv-x-dev/RWKV-5-World-1B5-v2-20231025-ctx4096', './rwkv-x-dev/R4-1B5-No-Mask_pth', './rwkv-x-dev/RWKV-32K-5B-RW_pth', './rwkv-x-dev/R4-7B-15t-32k-No-Mask_pth', './rwkv-x-dev/1_3-C0-PRERUN-rwkv-60_pth', './rwkv-x-dev/EagleX_1-7T_Chat_pth', './rwkv-x-dev/1_3-C1-rwkv-390_pth', './rwkv-x-dev/1_3-C1-rwkv-20_pth', './rwkv-x-dev/chunk8-1-0_85_pth', './rwkv-x-dev/R4-7B-Base-32k-No-Mask_pth', './rwkv-x-dev/R4-no-shuffle-rwkv-53_pth', './rwkv-x-dev/1_3-C2-rwkv-648_pth', './rwkv-x-dev/1_3-C2-rwkv-250_pth', './rwkv-x-dev/r3-testchunk-1-8-no-cuda-with-warmup_pth', './rwkv-x-dev/1_3-C0-rwkv-140_pth', './rwkv-x-dev/Eagle-225-1FT', './rwkv-x-dev/225-EagleX-PreFT-A', './rwkv-x-dev/225-EagleX-PreFT-F', './rwkv-x-dev/r3-c1-8_pth', './rwkv-x-dev/1_3-C0-PRERUN-rwkv-450_pth', './rwkv-x-dev/RWKV-5-World-3B-v2-20231118-ctx16k', './rwkv-x-dev/1_3-C0-PREPRERUN-rwkv-40_pth', './rwkv-x-dev/RWKV-5-World-7B-v2-20240128-ctx4096', './rwkv-x-dev/R4-7B-15t-No-Mask_pth', './rwkv-x-dev/1_0-c1-290_pth', './rwkv-x-dev/R4-1B5-With-Mask_pth', './rwkv-x-dev/Quetzal-N8-1', './rwkv-x-dev/1_3-C0-PREPRERUN-rwkv-30_pth', './rwkv-x-dev/1_3-C0-rwkv-70_pth', './rwkv-x-dev/chunk6-0_85_pth', './rwkv-x-dev/R4-7B-Base-With-Mask_pth', 'rwkv-x-dev/v5-Eagle-7B-1_0T-HF', './rwkv-x-dev/1_3-C0-PRERUN-rwkv-30_pth', './rwkv-x-dev/chunk7-1-0_85_pth', './rwkv-x-dev/1_3-C1-rwkv-190_pth', './rwkv-x-dev/R4-7B-15t-extd-e3_pth', './rwkv-x-dev/r3-testchunk2_pth', './rwkv-x-dev/Hermes-RWKV-v5-7B_pth', './rwkv-x-dev/1_3-C0-rwkv-153_pth', './rwkv-x-dev/R4-7B-15t-extd-e2_pth', './rwkv-x-dev/r3-testchunk-blink_pth', 'SmerkyG/rwkv-5-world-1b5', 'SmerkyG/rwkv6-world-1b6', 'SmerkyG/rwkv6-world-3b', 'SmerkyG/rwkv-5-world-3b', 'SmerkyG/rwkv-5-world-7b', 'SmerkyG/rwkv5-world-7b', 'togethercomputer/RedPajama-INCITE-7B-Base', 'togethercomputer/RedPajama-INCITE-7B-Instruct', 'togethercomputer/RedPajama-INCITE-7B-Chat', 'facebook/opt-2.7b', 'facebook/opt-6.7b', 'facebook/opt-1.3b', 'tiiuae/falcon-7b-instruct', 'tiiuae/falcon-rw-1b', 'tiiuae/falcon-rw-7b', 'tiiuae/falcon-7b', 'TimeMobius/Mobius-RWKV-Chat-12B-128k-v4-HF', 'huggyllama/llama-7b', 'meta-llama/Llama-2-7b-chat-hf', 'meta-llama/Llama-2-7b-hf', 'state-spaces/mamba-2.8b-hf', 'state-spaces/mamba-1.4b-hf']\n",
|
169 |
"Saved to compiled-lm-eval-results.json\n"
|
170 |
]
|
171 |
}
|
@@ -199,7 +199,7 @@
|
|
199 |
},
|
200 |
{
|
201 |
"cell_type": "code",
|
202 |
-
"execution_count":
|
203 |
"metadata": {},
|
204 |
"outputs": [
|
205 |
{
|
@@ -272,359 +272,15 @@
|
|
272 |
" <td>0.047059</td>\n",
|
273 |
" </tr>\n",
|
274 |
" <tr>\n",
|
275 |
-
" <th
|
276 |
-
" <td
|
277 |
-
" <td
|
278 |
-
" <td
|
279 |
-
" <td
|
280 |
-
" <td
|
281 |
-
" </tr>\n",
|
282 |
-
" <tr>\n",
|
283 |
-
" <th>6</th>\n",
|
284 |
-
" <td>bigscience/bloomz-7b1-mt</td>\n",
|
285 |
-
" <td>0.546000</td>\n",
|
286 |
-
" <td>0.038321</td>\n",
|
287 |
-
" <td>0.546000</td>\n",
|
288 |
-
" <td>0.038321</td>\n",
|
289 |
-
" </tr>\n",
|
290 |
-
" <tr>\n",
|
291 |
-
" <th>7</th>\n",
|
292 |
-
" <td>bigscience/bloomz-7b1</td>\n",
|
293 |
-
" <td>0.547818</td>\n",
|
294 |
-
" <td>0.038920</td>\n",
|
295 |
-
" <td>0.547818</td>\n",
|
296 |
-
" <td>0.038920</td>\n",
|
297 |
-
" </tr>\n",
|
298 |
-
" <tr>\n",
|
299 |
-
" <th>8</th>\n",
|
300 |
-
" <td>EleutherAI/pythia-2.8b</td>\n",
|
301 |
-
" <td>0.537455</td>\n",
|
302 |
-
" <td>0.026941</td>\n",
|
303 |
-
" <td>0.537455</td>\n",
|
304 |
-
" <td>0.026941</td>\n",
|
305 |
-
" </tr>\n",
|
306 |
-
" <tr>\n",
|
307 |
-
" <th>9</th>\n",
|
308 |
-
" <td>EleutherAI/pythia-1.4b</td>\n",
|
309 |
-
" <td>0.526545</td>\n",
|
310 |
-
" <td>0.027441</td>\n",
|
311 |
-
" <td>0.526545</td>\n",
|
312 |
-
" <td>0.027441</td>\n",
|
313 |
-
" </tr>\n",
|
314 |
-
" <tr>\n",
|
315 |
-
" <th>10</th>\n",
|
316 |
-
" <td>EleutherAI/gpt-j-6b</td>\n",
|
317 |
-
" <td>0.544182</td>\n",
|
318 |
-
" <td>0.034404</td>\n",
|
319 |
-
" <td>0.544182</td>\n",
|
320 |
-
" <td>0.034404</td>\n",
|
321 |
-
" </tr>\n",
|
322 |
-
" <tr>\n",
|
323 |
-
" <th>11</th>\n",
|
324 |
-
" <td>EleutherAI/pythia-6.9b</td>\n",
|
325 |
-
" <td>0.540545</td>\n",
|
326 |
-
" <td>0.029689</td>\n",
|
327 |
-
" <td>0.540545</td>\n",
|
328 |
-
" <td>0.029689</td>\n",
|
329 |
-
" </tr>\n",
|
330 |
-
" <tr>\n",
|
331 |
-
" <th>12</th>\n",
|
332 |
-
" <td>google/flan-t5-base</td>\n",
|
333 |
-
" <td>0.510909</td>\n",
|
334 |
-
" <td>0.006743</td>\n",
|
335 |
-
" <td>0.510909</td>\n",
|
336 |
-
" <td>0.006743</td>\n",
|
337 |
-
" </tr>\n",
|
338 |
-
" <tr>\n",
|
339 |
-
" <th>13</th>\n",
|
340 |
-
" <td>google/gemma-2b</td>\n",
|
341 |
-
" <td>0.000000</td>\n",
|
342 |
-
" <td>0.000000</td>\n",
|
343 |
-
" <td>NaN</td>\n",
|
344 |
-
" <td>NaN</td>\n",
|
345 |
" </tr>\n",
|
346 |
" <tr>\n",
|
347 |
-
" <th>
|
348 |
-
" <td>google/gemma-2b-it</td>\n",
|
349 |
-
" <td>0.000000</td>\n",
|
350 |
-
" <td>0.000000</td>\n",
|
351 |
-
" <td>NaN</td>\n",
|
352 |
-
" <td>NaN</td>\n",
|
353 |
-
" </tr>\n",
|
354 |
-
" <tr>\n",
|
355 |
-
" <th>15</th>\n",
|
356 |
-
" <td>google/gemma-7b</td>\n",
|
357 |
-
" <td>0.517636</td>\n",
|
358 |
-
" <td>0.006740</td>\n",
|
359 |
-
" <td>0.517636</td>\n",
|
360 |
-
" <td>0.006740</td>\n",
|
361 |
-
" </tr>\n",
|
362 |
-
" <tr>\n",
|
363 |
-
" <th>16</th>\n",
|
364 |
-
" <td>google/gemma-7b-it</td>\n",
|
365 |
-
" <td>0.517455</td>\n",
|
366 |
-
" <td>0.006742</td>\n",
|
367 |
-
" <td>0.517455</td>\n",
|
368 |
-
" <td>0.006742</td>\n",
|
369 |
-
" </tr>\n",
|
370 |
-
" <tr>\n",
|
371 |
-
" <th>17</th>\n",
|
372 |
-
" <td>google/flan-t5-large</td>\n",
|
373 |
-
" <td>0.510545</td>\n",
|
374 |
-
" <td>0.006743</td>\n",
|
375 |
-
" <td>0.510545</td>\n",
|
376 |
-
" <td>0.006743</td>\n",
|
377 |
-
" </tr>\n",
|
378 |
-
" <tr>\n",
|
379 |
-
" <th>18</th>\n",
|
380 |
-
" <td>microsoft/phi-1_5</td>\n",
|
381 |
-
" <td>0.521636</td>\n",
|
382 |
-
" <td>0.026198</td>\n",
|
383 |
-
" <td>0.521636</td>\n",
|
384 |
-
" <td>0.026198</td>\n",
|
385 |
-
" </tr>\n",
|
386 |
-
" <tr>\n",
|
387 |
-
" <th>19</th>\n",
|
388 |
-
" <td>microsoft/phi-2</td>\n",
|
389 |
-
" <td>0.512182</td>\n",
|
390 |
-
" <td>0.029742</td>\n",
|
391 |
-
" <td>0.512182</td>\n",
|
392 |
-
" <td>0.029742</td>\n",
|
393 |
-
" </tr>\n",
|
394 |
-
" <tr>\n",
|
395 |
-
" <th>20</th>\n",
|
396 |
-
" <td>microsoft/phi-1</td>\n",
|
397 |
-
" <td>0.517636</td>\n",
|
398 |
-
" <td>0.029612</td>\n",
|
399 |
-
" <td>0.517636</td>\n",
|
400 |
-
" <td>0.029612</td>\n",
|
401 |
-
" </tr>\n",
|
402 |
-
" <tr>\n",
|
403 |
-
" <th>21</th>\n",
|
404 |
-
" <td>allenai/OLMo-7B</td>\n",
|
405 |
-
" <td>0.537818</td>\n",
|
406 |
-
" <td>0.034147</td>\n",
|
407 |
-
" <td>0.537818</td>\n",
|
408 |
-
" <td>0.034147</td>\n",
|
409 |
-
" </tr>\n",
|
410 |
-
" <tr>\n",
|
411 |
-
" <th>22</th>\n",
|
412 |
-
" <td>TinyLlama/TinyLlama-1.1B-intermediate-step-143...</td>\n",
|
413 |
-
" <td>0.529273</td>\n",
|
414 |
-
" <td>0.029316</td>\n",
|
415 |
-
" <td>0.529273</td>\n",
|
416 |
-
" <td>0.029316</td>\n",
|
417 |
-
" </tr>\n",
|
418 |
-
" <tr>\n",
|
419 |
-
" <th>23</th>\n",
|
420 |
-
" <td>TinyLlama/TinyLlama-1.1B-Chat-v1.0</td>\n",
|
421 |
-
" <td>0.528909</td>\n",
|
422 |
-
" <td>0.031702</td>\n",
|
423 |
-
" <td>0.528909</td>\n",
|
424 |
-
" <td>0.031702</td>\n",
|
425 |
-
" </tr>\n",
|
426 |
-
" <tr>\n",
|
427 |
-
" <th>24</th>\n",
|
428 |
-
" <td>RWKV/rwkv-5-world-1b5</td>\n",
|
429 |
-
" <td>0.578909</td>\n",
|
430 |
-
" <td>0.044635</td>\n",
|
431 |
-
" <td>0.578909</td>\n",
|
432 |
-
" <td>0.044635</td>\n",
|
433 |
-
" </tr>\n",
|
434 |
-
" <tr>\n",
|
435 |
-
" <th>25</th>\n",
|
436 |
-
" <td>RWKV/rwkv-5-world-3b</td>\n",
|
437 |
-
" <td>0.590000</td>\n",
|
438 |
-
" <td>0.057252</td>\n",
|
439 |
-
" <td>0.590000</td>\n",
|
440 |
-
" <td>0.057252</td>\n",
|
441 |
-
" </tr>\n",
|
442 |
-
" <tr>\n",
|
443 |
-
" <th>26</th>\n",
|
444 |
-
" <td>RWKV/rwkv-4-world-3b</td>\n",
|
445 |
-
" <td>0.575455</td>\n",
|
446 |
-
" <td>0.040977</td>\n",
|
447 |
-
" <td>0.575455</td>\n",
|
448 |
-
" <td>0.040977</td>\n",
|
449 |
-
" </tr>\n",
|
450 |
-
" <tr>\n",
|
451 |
-
" <th>27</th>\n",
|
452 |
-
" <td>RWKV/rwkv-4-world-1b5</td>\n",
|
453 |
-
" <td>0.554000</td>\n",
|
454 |
-
" <td>0.039406</td>\n",
|
455 |
-
" <td>0.554000</td>\n",
|
456 |
-
" <td>0.039406</td>\n",
|
457 |
-
" </tr>\n",
|
458 |
-
" <tr>\n",
|
459 |
-
" <th>28</th>\n",
|
460 |
-
" <td>RWKV/v5-Eagle-7B-HF</td>\n",
|
461 |
-
" <td>0.622364</td>\n",
|
462 |
-
" <td>0.070563</td>\n",
|
463 |
-
" <td>0.622364</td>\n",
|
464 |
-
" <td>0.070563</td>\n",
|
465 |
-
" </tr>\n",
|
466 |
-
" <tr>\n",
|
467 |
-
" <th>29</th>\n",
|
468 |
-
" <td>RWKV/rwkv-4-world-7b</td>\n",
|
469 |
-
" <td>0.601455</td>\n",
|
470 |
-
" <td>0.053116</td>\n",
|
471 |
-
" <td>0.601455</td>\n",
|
472 |
-
" <td>0.053116</td>\n",
|
473 |
-
" </tr>\n",
|
474 |
-
" <tr>\n",
|
475 |
-
" <th>30</th>\n",
|
476 |
-
" <td>aisingapore/sealion7b</td>\n",
|
477 |
-
" <td>0.559818</td>\n",
|
478 |
-
" <td>0.060680</td>\n",
|
479 |
-
" <td>0.559818</td>\n",
|
480 |
-
" <td>0.060680</td>\n",
|
481 |
-
" </tr>\n",
|
482 |
-
" <tr>\n",
|
483 |
-
" <th>31</th>\n",
|
484 |
-
" <td>aisingapore/sealion3b</td>\n",
|
485 |
-
" <td>0.559273</td>\n",
|
486 |
-
" <td>0.054490</td>\n",
|
487 |
-
" <td>0.559273</td>\n",
|
488 |
-
" <td>0.054490</td>\n",
|
489 |
-
" </tr>\n",
|
490 |
-
" <tr>\n",
|
491 |
-
" <th>32</th>\n",
|
492 |
-
" <td>rwkv-x-dev/v5-Eagle-7B-1_0T-HF</td>\n",
|
493 |
-
" <td>0.622364</td>\n",
|
494 |
-
" <td>0.072168</td>\n",
|
495 |
-
" <td>0.622364</td>\n",
|
496 |
-
" <td>0.072168</td>\n",
|
497 |
-
" </tr>\n",
|
498 |
-
" <tr>\n",
|
499 |
-
" <th>33</th>\n",
|
500 |
-
" <td>SmerkyG/rwkv-5-world-1b5</td>\n",
|
501 |
-
" <td>0.578727</td>\n",
|
502 |
-
" <td>0.044247</td>\n",
|
503 |
-
" <td>0.578727</td>\n",
|
504 |
-
" <td>0.044247</td>\n",
|
505 |
-
" </tr>\n",
|
506 |
-
" <tr>\n",
|
507 |
-
" <th>34</th>\n",
|
508 |
-
" <td>SmerkyG/rwkv6-world-1b6</td>\n",
|
509 |
-
" <td>0.579636</td>\n",
|
510 |
-
" <td>0.052056</td>\n",
|
511 |
-
" <td>0.579636</td>\n",
|
512 |
-
" <td>0.052056</td>\n",
|
513 |
-
" </tr>\n",
|
514 |
-
" <tr>\n",
|
515 |
-
" <th>35</th>\n",
|
516 |
-
" <td>SmerkyG/rwkv6-world-3b</td>\n",
|
517 |
-
" <td>0.595273</td>\n",
|
518 |
-
" <td>0.061039</td>\n",
|
519 |
-
" <td>0.595273</td>\n",
|
520 |
-
" <td>0.061039</td>\n",
|
521 |
-
" </tr>\n",
|
522 |
-
" <tr>\n",
|
523 |
-
" <th>36</th>\n",
|
524 |
-
" <td>SmerkyG/rwkv-5-world-3b</td>\n",
|
525 |
-
" <td>0.590182</td>\n",
|
526 |
-
" <td>0.059748</td>\n",
|
527 |
-
" <td>0.590182</td>\n",
|
528 |
-
" <td>0.059748</td>\n",
|
529 |
-
" </tr>\n",
|
530 |
-
" <tr>\n",
|
531 |
-
" <th>37</th>\n",
|
532 |
-
" <td>SmerkyG/rwkv-5-world-7b</td>\n",
|
533 |
-
" <td>0.621818</td>\n",
|
534 |
-
" <td>0.071125</td>\n",
|
535 |
-
" <td>0.621818</td>\n",
|
536 |
-
" <td>0.071125</td>\n",
|
537 |
-
" </tr>\n",
|
538 |
-
" <tr>\n",
|
539 |
-
" <th>38</th>\n",
|
540 |
-
" <td>SmerkyG/rwkv5-world-7b</td>\n",
|
541 |
-
" <td>0.000000</td>\n",
|
542 |
-
" <td>0.000000</td>\n",
|
543 |
-
" <td>NaN</td>\n",
|
544 |
-
" <td>NaN</td>\n",
|
545 |
-
" </tr>\n",
|
546 |
-
" <tr>\n",
|
547 |
-
" <th>39</th>\n",
|
548 |
-
" <td>togethercomputer/RedPajama-INCITE-7B-Base</td>\n",
|
549 |
-
" <td>0.525455</td>\n",
|
550 |
-
" <td>0.036407</td>\n",
|
551 |
-
" <td>0.525455</td>\n",
|
552 |
-
" <td>0.036407</td>\n",
|
553 |
-
" </tr>\n",
|
554 |
-
" <tr>\n",
|
555 |
-
" <th>40</th>\n",
|
556 |
-
" <td>togethercomputer/RedPajama-INCITE-7B-Instruct</td>\n",
|
557 |
-
" <td>0.528545</td>\n",
|
558 |
-
" <td>0.036470</td>\n",
|
559 |
-
" <td>0.528545</td>\n",
|
560 |
-
" <td>0.036470</td>\n",
|
561 |
-
" </tr>\n",
|
562 |
-
" <tr>\n",
|
563 |
-
" <th>41</th>\n",
|
564 |
-
" <td>togethercomputer/RedPajama-INCITE-7B-Chat</td>\n",
|
565 |
-
" <td>0.535455</td>\n",
|
566 |
-
" <td>0.038723</td>\n",
|
567 |
-
" <td>0.535455</td>\n",
|
568 |
-
" <td>0.038723</td>\n",
|
569 |
-
" </tr>\n",
|
570 |
-
" <tr>\n",
|
571 |
-
" <th>42</th>\n",
|
572 |
-
" <td>facebook/opt-2.7b</td>\n",
|
573 |
-
" <td>0.521818</td>\n",
|
574 |
-
" <td>0.029821</td>\n",
|
575 |
-
" <td>0.521818</td>\n",
|
576 |
-
" <td>0.029821</td>\n",
|
577 |
-
" </tr>\n",
|
578 |
-
" <tr>\n",
|
579 |
-
" <th>43</th>\n",
|
580 |
-
" <td>facebook/opt-6.7b</td>\n",
|
581 |
-
" <td>0.522909</td>\n",
|
582 |
-
" <td>0.027216</td>\n",
|
583 |
-
" <td>0.522909</td>\n",
|
584 |
-
" <td>0.027216</td>\n",
|
585 |
-
" </tr>\n",
|
586 |
-
" <tr>\n",
|
587 |
-
" <th>44</th>\n",
|
588 |
-
" <td>facebook/opt-1.3b</td>\n",
|
589 |
-
" <td>0.521818</td>\n",
|
590 |
-
" <td>0.029112</td>\n",
|
591 |
-
" <td>0.521818</td>\n",
|
592 |
-
" <td>0.029112</td>\n",
|
593 |
-
" </tr>\n",
|
594 |
-
" <tr>\n",
|
595 |
-
" <th>45</th>\n",
|
596 |
-
" <td>tiiuae/falcon-7b-instruct</td>\n",
|
597 |
-
" <td>0.536727</td>\n",
|
598 |
-
" <td>0.053430</td>\n",
|
599 |
-
" <td>0.536727</td>\n",
|
600 |
-
" <td>0.053430</td>\n",
|
601 |
-
" </tr>\n",
|
602 |
-
" <tr>\n",
|
603 |
-
" <th>46</th>\n",
|
604 |
-
" <td>tiiuae/falcon-rw-1b</td>\n",
|
605 |
-
" <td>0.522545</td>\n",
|
606 |
-
" <td>0.029446</td>\n",
|
607 |
-
" <td>0.522545</td>\n",
|
608 |
-
" <td>0.029446</td>\n",
|
609 |
-
" </tr>\n",
|
610 |
-
" <tr>\n",
|
611 |
-
" <th>47</th>\n",
|
612 |
-
" <td>tiiuae/falcon-rw-7b</td>\n",
|
613 |
-
" <td>0.535818</td>\n",
|
614 |
-
" <td>0.033185</td>\n",
|
615 |
-
" <td>0.535818</td>\n",
|
616 |
-
" <td>0.033185</td>\n",
|
617 |
-
" </tr>\n",
|
618 |
-
" <tr>\n",
|
619 |
-
" <th>48</th>\n",
|
620 |
-
" <td>tiiuae/falcon-7b</td>\n",
|
621 |
-
" <td>0.559636</td>\n",
|
622 |
-
" <td>0.071650</td>\n",
|
623 |
-
" <td>0.559636</td>\n",
|
624 |
-
" <td>0.071650</td>\n",
|
625 |
-
" </tr>\n",
|
626 |
-
" <tr>\n",
|
627 |
-
" <th>49</th>\n",
|
628 |
" <td>huggyllama/llama-7b</td>\n",
|
629 |
" <td>0.541818</td>\n",
|
630 |
" <td>0.040718</td>\n",
|
@@ -632,7 +288,7 @@
|
|
632 |
" <td>0.040718</td>\n",
|
633 |
" </tr>\n",
|
634 |
" <tr>\n",
|
635 |
-
" <th>
|
636 |
" <td>meta-llama/Llama-2-7b-chat-hf</td>\n",
|
637 |
" <td>0.559818</td>\n",
|
638 |
" <td>0.054954</td>\n",
|
@@ -640,7 +296,7 @@
|
|
640 |
" <td>0.054954</td>\n",
|
641 |
" </tr>\n",
|
642 |
" <tr>\n",
|
643 |
-
" <th>
|
644 |
" <td>meta-llama/Llama-2-7b-hf</td>\n",
|
645 |
" <td>0.566727</td>\n",
|
646 |
" <td>0.052515</td>\n",
|
@@ -648,7 +304,7 @@
|
|
648 |
" <td>0.052515</td>\n",
|
649 |
" </tr>\n",
|
650 |
" <tr>\n",
|
651 |
-
" <th>
|
652 |
" <td>state-spaces/mamba-2.8b-hf</td>\n",
|
653 |
" <td>0.552909</td>\n",
|
654 |
" <td>0.035570</td>\n",
|
@@ -656,7 +312,7 @@
|
|
656 |
" <td>0.035570</td>\n",
|
657 |
" </tr>\n",
|
658 |
" <tr>\n",
|
659 |
-
" <th>
|
660 |
" <td>state-spaces/mamba-1.4b-hf</td>\n",
|
661 |
" <td>0.544182</td>\n",
|
662 |
" <td>0.031390</td>\n",
|
@@ -665,123 +321,40 @@
|
|
665 |
" </tr>\n",
|
666 |
" </tbody>\n",
|
667 |
"</table>\n",
|
|
|
668 |
"</div>"
|
669 |
],
|
670 |
"text/plain": [
|
671 |
-
"
|
672 |
-
"0
|
673 |
-
"1
|
674 |
-
"2
|
675 |
-
"3
|
676 |
-
"4
|
677 |
-
"
|
678 |
-
"
|
679 |
-
"
|
680 |
-
"
|
681 |
-
"
|
682 |
-
"
|
683 |
-
"11 EleutherAI/pythia-6.9b 0.540545 \n",
|
684 |
-
"12 google/flan-t5-base 0.510909 \n",
|
685 |
-
"13 google/gemma-2b 0.000000 \n",
|
686 |
-
"14 google/gemma-2b-it 0.000000 \n",
|
687 |
-
"15 google/gemma-7b 0.517636 \n",
|
688 |
-
"16 google/gemma-7b-it 0.517455 \n",
|
689 |
-
"17 google/flan-t5-large 0.510545 \n",
|
690 |
-
"18 microsoft/phi-1_5 0.521636 \n",
|
691 |
-
"19 microsoft/phi-2 0.512182 \n",
|
692 |
-
"20 microsoft/phi-1 0.517636 \n",
|
693 |
-
"21 allenai/OLMo-7B 0.537818 \n",
|
694 |
-
"22 TinyLlama/TinyLlama-1.1B-intermediate-step-143... 0.529273 \n",
|
695 |
-
"23 TinyLlama/TinyLlama-1.1B-Chat-v1.0 0.528909 \n",
|
696 |
-
"24 RWKV/rwkv-5-world-1b5 0.578909 \n",
|
697 |
-
"25 RWKV/rwkv-5-world-3b 0.590000 \n",
|
698 |
-
"26 RWKV/rwkv-4-world-3b 0.575455 \n",
|
699 |
-
"27 RWKV/rwkv-4-world-1b5 0.554000 \n",
|
700 |
-
"28 RWKV/v5-Eagle-7B-HF 0.622364 \n",
|
701 |
-
"29 RWKV/rwkv-4-world-7b 0.601455 \n",
|
702 |
-
"30 aisingapore/sealion7b 0.559818 \n",
|
703 |
-
"31 aisingapore/sealion3b 0.559273 \n",
|
704 |
-
"32 rwkv-x-dev/v5-Eagle-7B-1_0T-HF 0.622364 \n",
|
705 |
-
"33 SmerkyG/rwkv-5-world-1b5 0.578727 \n",
|
706 |
-
"34 SmerkyG/rwkv6-world-1b6 0.579636 \n",
|
707 |
-
"35 SmerkyG/rwkv6-world-3b 0.595273 \n",
|
708 |
-
"36 SmerkyG/rwkv-5-world-3b 0.590182 \n",
|
709 |
-
"37 SmerkyG/rwkv-5-world-7b 0.621818 \n",
|
710 |
-
"38 SmerkyG/rwkv5-world-7b 0.000000 \n",
|
711 |
-
"39 togethercomputer/RedPajama-INCITE-7B-Base 0.525455 \n",
|
712 |
-
"40 togethercomputer/RedPajama-INCITE-7B-Instruct 0.528545 \n",
|
713 |
-
"41 togethercomputer/RedPajama-INCITE-7B-Chat 0.535455 \n",
|
714 |
-
"42 facebook/opt-2.7b 0.521818 \n",
|
715 |
-
"43 facebook/opt-6.7b 0.522909 \n",
|
716 |
-
"44 facebook/opt-1.3b 0.521818 \n",
|
717 |
-
"45 tiiuae/falcon-7b-instruct 0.536727 \n",
|
718 |
-
"46 tiiuae/falcon-rw-1b 0.522545 \n",
|
719 |
-
"47 tiiuae/falcon-rw-7b 0.535818 \n",
|
720 |
-
"48 tiiuae/falcon-7b 0.559636 \n",
|
721 |
-
"49 huggyllama/llama-7b 0.541818 \n",
|
722 |
-
"50 meta-llama/Llama-2-7b-chat-hf 0.559818 \n",
|
723 |
-
"51 meta-llama/Llama-2-7b-hf 0.566727 \n",
|
724 |
-
"52 state-spaces/mamba-2.8b-hf 0.552909 \n",
|
725 |
-
"53 state-spaces/mamba-1.4b-hf 0.544182 \n",
|
726 |
"\n",
|
727 |
-
"
|
728 |
-
"0
|
729 |
-
"1
|
730 |
-
"2
|
731 |
-
"3
|
732 |
-
"4
|
733 |
-
"
|
734 |
-
"
|
735 |
-
"
|
736 |
-
"
|
737 |
-
"
|
738 |
-
"
|
739 |
-
"
|
740 |
-
"
|
741 |
-
"13 0.000000 NaN NaN \n",
|
742 |
-
"14 0.000000 NaN NaN \n",
|
743 |
-
"15 0.006740 0.517636 0.006740 \n",
|
744 |
-
"16 0.006742 0.517455 0.006742 \n",
|
745 |
-
"17 0.006743 0.510545 0.006743 \n",
|
746 |
-
"18 0.026198 0.521636 0.026198 \n",
|
747 |
-
"19 0.029742 0.512182 0.029742 \n",
|
748 |
-
"20 0.029612 0.517636 0.029612 \n",
|
749 |
-
"21 0.034147 0.537818 0.034147 \n",
|
750 |
-
"22 0.029316 0.529273 0.029316 \n",
|
751 |
-
"23 0.031702 0.528909 0.031702 \n",
|
752 |
-
"24 0.044635 0.578909 0.044635 \n",
|
753 |
-
"25 0.057252 0.590000 0.057252 \n",
|
754 |
-
"26 0.040977 0.575455 0.040977 \n",
|
755 |
-
"27 0.039406 0.554000 0.039406 \n",
|
756 |
-
"28 0.070563 0.622364 0.070563 \n",
|
757 |
-
"29 0.053116 0.601455 0.053116 \n",
|
758 |
-
"30 0.060680 0.559818 0.060680 \n",
|
759 |
-
"31 0.054490 0.559273 0.054490 \n",
|
760 |
-
"32 0.072168 0.622364 0.072168 \n",
|
761 |
-
"33 0.044247 0.578727 0.044247 \n",
|
762 |
-
"34 0.052056 0.579636 0.052056 \n",
|
763 |
-
"35 0.061039 0.595273 0.061039 \n",
|
764 |
-
"36 0.059748 0.590182 0.059748 \n",
|
765 |
-
"37 0.071125 0.621818 0.071125 \n",
|
766 |
-
"38 0.000000 NaN NaN \n",
|
767 |
-
"39 0.036407 0.525455 0.036407 \n",
|
768 |
-
"40 0.036470 0.528545 0.036470 \n",
|
769 |
-
"41 0.038723 0.535455 0.038723 \n",
|
770 |
-
"42 0.029821 0.521818 0.029821 \n",
|
771 |
-
"43 0.027216 0.522909 0.027216 \n",
|
772 |
-
"44 0.029112 0.521818 0.029112 \n",
|
773 |
-
"45 0.053430 0.536727 0.053430 \n",
|
774 |
-
"46 0.029446 0.522545 0.029446 \n",
|
775 |
-
"47 0.033185 0.535818 0.033185 \n",
|
776 |
-
"48 0.071650 0.559636 0.071650 \n",
|
777 |
-
"49 0.040718 0.541818 0.040718 \n",
|
778 |
-
"50 0.054954 0.559818 0.054954 \n",
|
779 |
-
"51 0.052515 0.566727 0.052515 \n",
|
780 |
-
"52 0.035570 0.552909 0.035570 \n",
|
781 |
-
"53 0.031390 0.544182 0.031390 "
|
782 |
]
|
783 |
},
|
784 |
-
"execution_count":
|
785 |
"metadata": {},
|
786 |
"output_type": "execute_result"
|
787 |
}
|
@@ -982,32 +555,32 @@
|
|
982 |
},
|
983 |
{
|
984 |
"cell_type": "code",
|
985 |
-
"execution_count":
|
986 |
"metadata": {},
|
987 |
"outputs": [
|
988 |
{
|
989 |
"name": "stdout",
|
990 |
"output_type": "stream",
|
991 |
"text": [
|
992 |
-
"total
|
993 |
-
"-rw-r--r--@ 1 picocreator staff 1.
|
994 |
-
"-rw-r--r--@ 1 picocreator staff
|
995 |
-
"-rw-r--r--@ 1 picocreator staff
|
996 |
-
"-rw-r--r--@ 1 picocreator staff
|
997 |
-
"-rw-r--r--@ 1 picocreator staff 1.
|
998 |
-
"-rw-r--r--@ 1 picocreator staff
|
999 |
-
"-rw-r--r--@ 1 picocreator staff
|
1000 |
-
"-rw-r--r--@ 1 picocreator staff
|
1001 |
-
"-rw-r--r--@ 1 picocreator staff
|
1002 |
-
"-rw-r--r--@ 1 picocreator staff 1.
|
1003 |
-
"-rw-r--r--@ 1 picocreator staff
|
1004 |
-
"-rw-r--r--@ 1 picocreator staff
|
1005 |
-
"-rw-r--r-- 1 picocreator staff
|
1006 |
-
"-rw-r--r--@ 1 picocreator staff
|
1007 |
-
"-rw-r--r--@ 1 picocreator staff
|
1008 |
-
"-rw-r--r--@ 1 picocreator staff
|
1009 |
-
"-rw-r--r--@ 1 picocreator staff
|
1010 |
-
"-rw-r--r--@ 1 picocreator staff
|
1011 |
]
|
1012 |
}
|
1013 |
],
|
@@ -1018,6 +591,11 @@
|
|
1018 |
"#\n",
|
1019 |
"##################################################\n",
|
1020 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
1021 |
"# Overall results\n",
|
1022 |
"all_results = generate_result_table( inConfig = { \"dtype\": \"bfloat16\" }, inGroups=[\"*\"], inResults=[\"*\"] )\n",
|
1023 |
"all_results.to_csv('summary/bf16-all-results-and-groups.csv', index=False)\n",
|
@@ -1043,7 +621,7 @@
|
|
1043 |
"multilang_grp_sorted.to_csv('summary/bf16-sorted-multilang-summary.csv', index=False)\n",
|
1044 |
"\n",
|
1045 |
"# RWKV perf tracking\n",
|
1046 |
-
"rwkv_multilang_grp_sorted = generate_result_table( inConfig = { \"dtype\": \"bfloat16\" }, inGroups=multiLang_tGrps, inResults=[], exModels=[], inModels=
|
1047 |
"rwkv_multilang_grp_sorted.to_csv('summary/rwkv-x-dev-bf16-sorted-multilang-summary.csv', index=False)\n",
|
1048 |
"\n",
|
1049 |
"# All other results\n",
|
@@ -1071,11 +649,11 @@
|
|
1071 |
"eng_focus_sorted.to_csv('summary/bf16-sorted-eng-focus.csv', index=False)\n",
|
1072 |
"\n",
|
1073 |
"# RWKV perf tracking\n",
|
1074 |
-
"rwkv_eng_focus_sorted = generate_result_table( inConfig = { \"dtype\": \"bfloat16\" }, inGroups=eng_focus_tGrps, inResults=eng_focus_tTest, exModels=[], inModels=
|
1075 |
"rwkv_eng_focus_sorted.to_csv('summary/rwkv-x-dev-bf16-sorted-eng-focus.csv', index=False)\n",
|
1076 |
"\n",
|
1077 |
"# RWKV perf tracking\n",
|
1078 |
-
"rwkv_eng_all_sorted = generate_result_table( inConfig = { \"dtype\": \"bfloat16\" }, inGroups=[\"*\"], inResults=[\"*\"], exModels=[], inModels=
|
1079 |
"rwkv_eng_all_sorted.to_csv('summary/rwkv-x-dev-bf16-sorted-eng-all.csv', index=False)\n",
|
1080 |
"\n",
|
1081 |
"# # Overall results\n",
|
@@ -1088,7 +666,7 @@
|
|
1088 |
},
|
1089 |
{
|
1090 |
"cell_type": "code",
|
1091 |
-
"execution_count":
|
1092 |
"metadata": {},
|
1093 |
"outputs": [],
|
1094 |
"source": [
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 43,
|
6 |
"metadata": {},
|
7 |
"outputs": [
|
8 |
{
|
|
|
11 |
"text": [
|
12 |
"Defaulting to user installation because normal site-packages is not writeable\n",
|
13 |
"Requirement already satisfied: pandas in /Users/picocreator/Library/Python/3.9/lib/python/site-packages (2.2.0)\n",
|
|
|
|
|
14 |
"Requirement already satisfied: pytz>=2020.1 in /Users/picocreator/Library/Python/3.9/lib/python/site-packages (from pandas) (2024.1)\n",
|
15 |
+
"Requirement already satisfied: numpy<2,>=1.22.4 in /Users/picocreator/Library/Python/3.9/lib/python/site-packages (from pandas) (1.26.1)\n",
|
16 |
"Requirement already satisfied: tzdata>=2022.7 in /Users/picocreator/Library/Python/3.9/lib/python/site-packages (from pandas) (2024.1)\n",
|
17 |
+
"Requirement already satisfied: python-dateutil>=2.8.2 in /Users/picocreator/Library/Python/3.9/lib/python/site-packages (from pandas) (2.8.2)\n",
|
18 |
"Requirement already satisfied: six>=1.5 in /Library/Developer/CommandLineTools/Library/Frameworks/Python3.framework/Versions/3.9/lib/python3.9/site-packages (from python-dateutil>=2.8.2->pandas) (1.15.0)\n",
|
19 |
+
"\u001b[33mWARNING: You are using pip version 21.2.4; however, version 24.1.2 is available.\n",
|
20 |
"You should consider upgrading via the '/Library/Developer/CommandLineTools/usr/bin/python3 -m pip install --upgrade pip' command.\u001b[0m\n"
|
21 |
]
|
22 |
}
|
|
|
36 |
},
|
37 |
{
|
38 |
"cell_type": "code",
|
39 |
+
"execution_count": 44,
|
40 |
"metadata": {},
|
41 |
"outputs": [
|
42 |
{
|
43 |
"name": "stdout",
|
44 |
"output_type": "stream",
|
45 |
"text": [
|
46 |
+
"Found 6042 results.json files\n"
|
47 |
]
|
48 |
}
|
49 |
],
|
|
|
71 |
},
|
72 |
{
|
73 |
"cell_type": "code",
|
74 |
+
"execution_count": 45,
|
75 |
"metadata": {},
|
76 |
"outputs": [
|
77 |
{
|
|
|
156 |
},
|
157 |
{
|
158 |
"cell_type": "code",
|
159 |
+
"execution_count": 46,
|
160 |
"metadata": {},
|
161 |
"outputs": [
|
162 |
{
|
163 |
"name": "stdout",
|
164 |
"output_type": "stream",
|
165 |
"text": [
|
166 |
+
"Found 130 models\n",
|
167 |
"Models: \n",
|
168 |
+
"['mistralai/Mistral-7B-Instruct-v0.2', 'mistralai/Mistral-7B-v0.1', 'mosaicml/mpt-7b-instruct', 'mosaicml/mpt-7b', 'mosaicml/mpt-7b-chat', 'bigscience/bloom-7b1', 'bigscience/bloomz-7b1-mt', 'bigscience/bloomz-7b1', 'EleutherAI/pythia-2.8b', 'EleutherAI/pythia-1.4b', 'EleutherAI/gpt-j-6b', 'EleutherAI/pythia-6.9b', 'google/flan-t5-base', 'google/gemma-2b', 'google/gemma-2b-it', 'google/gemma-7b', 'google/gemma-7b-it', 'google/flan-t5-large', 'microsoft/phi-1_5', 'microsoft/phi-2', 'microsoft/phi-1', 'allenai/OLMo-7B', 'TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T', 'TinyLlama/TinyLlama-1.1B-Chat-v1.0', 'RWKV/rwkv-5-world-1b5', 'RWKV/rwkv-5-world-3b', 'RWKV/rwkv-4-world-3b', 'RWKV/v5-EagleX-v2-7B-HF', 'RWKV/rwkv-6-world-1b6', 'RWKV/rwkv-4-world-1b5', 'RWKV/v5-Eagle-7B-HF', 'RWKV/v6-Finch-7B-HF', 'RWKV/rwkv-6-world-3b-v2.1', 'RWKV/rwkv-4-world-7b', 'RWKV/v6-Finch-14B-HF', 'RWKV/rwkv-raven-7b', 'RWKV/rwkv-6-world-3b', 'aisingapore/sealion7b', 'aisingapore/sealion3b', './rwkv-x-dev/1_3-C5-rwkv-270_pth', './rwkv-x-dev/225-EagleX-PreFT-C', './rwkv-x-dev/225-EagleX-PreFT-D', './rwkv-x-dev/1_0_pth', './rwkv-x-dev/chunk4-0_85_pth', './rwkv-x-dev/1_3-C1-rwkv-340_pth', './rwkv-x-dev/chunk1-0_8_pth', './rwkv-x-dev/chunk0-0_8_pth', './rwkv-x-dev/225-EagleX-PreFT-E', './rwkv-x-dev/225-EagleX-PreFT-B', './rwkv-x-dev/blink4-final_pth', './rwkv-x-dev/chunk2-0_8_pth', './rwkv-x-dev/chunk3-0_8_pth', './rwkv-x-dev/r3-4k-test2-fix3-blink-final_pth', './rwkv-x-dev/R4-7B-15t-With-Mask_pth', './rwkv-x-dev/r3-testchunk-1-8_pth', './rwkv-x-dev/R4-with-shuffle-rwkv-53_pth', './rwkv-x-dev/chunk7-2-0_85_pth', './rwkv-x-dev/EagleX-1_7T_pth', './rwkv-x-dev/r3-testchunk2-blink-fixed_pth', './rwkv-x-dev/r3-testchunk2-blink_pth', './rwkv-x-dev/rwkv-230_pth', './rwkv-x-dev/1_3-C0-rwkv-60_pth', './rwkv-x-dev/chunk5-0_85_pth', './rwkv-x-dev/R4-7B-Base-No-Mask_pth', './rwkv-x-dev/RWKV-5-World-1B5-v2-20231025-ctx4096', './rwkv-x-dev/R4-1B5-No-Mask_pth', './rwkv-x-dev/RWKV-32K-5B-RW_pth', './rwkv-x-dev/R4-7B-15t-32k-No-Mask_pth', './rwkv-x-dev/1_3-C0-PRERUN-rwkv-60_pth', './rwkv-x-dev/EagleX_1-7T_Chat_pth', './rwkv-x-dev/1_3-C1-rwkv-390_pth', './rwkv-x-dev/1_3-C1-rwkv-20_pth', './rwkv-x-dev/chunk8-1-0_85_pth', './rwkv-x-dev/R4-7B-Base-32k-No-Mask_pth', './rwkv-x-dev/R4-no-shuffle-rwkv-53_pth', './rwkv-x-dev/1_3-C2-rwkv-648_pth', './rwkv-x-dev/1_3-C2-rwkv-250_pth', './rwkv-x-dev/r3-testchunk-1-8-no-cuda-with-warmup_pth', './rwkv-x-dev/1_3-C0-rwkv-140_pth', './rwkv-x-dev/bruber_9b', './rwkv-x-dev/Eagle-225-1FT', './rwkv-x-dev/225-EagleX-PreFT-A', './rwkv-x-dev/225-EagleX-PreFT-F', './rwkv-x-dev/r3-c1-8_pth', './rwkv-x-dev/1_3-C0-PRERUN-rwkv-450_pth', './rwkv-x-dev/RWKV-5-World-3B-v2-20231118-ctx16k', './rwkv-x-dev/1_3-C0-PREPRERUN-rwkv-40_pth', './rwkv-x-dev/RWKV-5-World-7B-v2-20240128-ctx4096', './rwkv-x-dev/R4-7B-15t-No-Mask_pth', './rwkv-x-dev/1_0-c1-290_pth', './rwkv-x-dev/R4-1B5-With-Mask_pth', './rwkv-x-dev/Quetzal-N8-1', './rwkv-x-dev/1_3-C0-PREPRERUN-rwkv-30_pth', './rwkv-x-dev/1_3-C0-rwkv-70_pth', './rwkv-x-dev/chunk6-0_85_pth', './rwkv-x-dev/R4-7B-Base-With-Mask_pth', 'rwkv-x-dev/v5-Eagle-7B-1_0T-HF', './rwkv-x-dev/1_3-C0-PRERUN-rwkv-30_pth', './rwkv-x-dev/chunk7-1-0_85_pth', './rwkv-x-dev/1_3-C1-rwkv-190_pth', './rwkv-x-dev/R4-7B-15t-extd-e3_pth', './rwkv-x-dev/r3-testchunk2_pth', './rwkv-x-dev/Hermes-RWKV-v5-7B_pth', './rwkv-x-dev/1_3-C0-rwkv-153_pth', './rwkv-x-dev/R4-7B-15t-extd-e2_pth', './rwkv-x-dev/r3-testchunk-blink_pth', 'SmerkyG/rwkv-5-world-1b5', 'SmerkyG/rwkv6-world-1b6', 'SmerkyG/rwkv6-world-3b', 'SmerkyG/rwkv-5-world-3b', 'SmerkyG/rwkv-5-world-7b', 'SmerkyG/rwkv5-world-7b', 'togethercomputer/RedPajama-INCITE-7B-Base', 'togethercomputer/RedPajama-INCITE-7B-Instruct', 'togethercomputer/RedPajama-INCITE-7B-Chat', 'facebook/opt-2.7b', 'facebook/opt-6.7b', 'facebook/opt-1.3b', 'tiiuae/falcon-7b-instruct', 'tiiuae/falcon-rw-1b', 'tiiuae/falcon-rw-7b', 'tiiuae/falcon-7b', 'm8than/Finch-14B-Continued', 'm8than/FinchX-Med', 'TimeMobius/Mobius-RWKV-Chat-12B-128k-v4-HF', 'huggyllama/llama-7b', 'meta-llama/Llama-2-7b-chat-hf', 'meta-llama/Llama-2-7b-hf', 'state-spaces/mamba-2.8b-hf', 'state-spaces/mamba-1.4b-hf']\n",
|
169 |
"Saved to compiled-lm-eval-results.json\n"
|
170 |
]
|
171 |
}
|
|
|
199 |
},
|
200 |
{
|
201 |
"cell_type": "code",
|
202 |
+
"execution_count": 47,
|
203 |
"metadata": {},
|
204 |
"outputs": [
|
205 |
{
|
|
|
272 |
" <td>0.047059</td>\n",
|
273 |
" </tr>\n",
|
274 |
" <tr>\n",
|
275 |
+
" <th>...</th>\n",
|
276 |
+
" <td>...</td>\n",
|
277 |
+
" <td>...</td>\n",
|
278 |
+
" <td>...</td>\n",
|
279 |
+
" <td>...</td>\n",
|
280 |
+
" <td>...</td>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
" </tr>\n",
|
282 |
" <tr>\n",
|
283 |
+
" <th>56</th>\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
" <td>huggyllama/llama-7b</td>\n",
|
285 |
" <td>0.541818</td>\n",
|
286 |
" <td>0.040718</td>\n",
|
|
|
288 |
" <td>0.040718</td>\n",
|
289 |
" </tr>\n",
|
290 |
" <tr>\n",
|
291 |
+
" <th>57</th>\n",
|
292 |
" <td>meta-llama/Llama-2-7b-chat-hf</td>\n",
|
293 |
" <td>0.559818</td>\n",
|
294 |
" <td>0.054954</td>\n",
|
|
|
296 |
" <td>0.054954</td>\n",
|
297 |
" </tr>\n",
|
298 |
" <tr>\n",
|
299 |
+
" <th>58</th>\n",
|
300 |
" <td>meta-llama/Llama-2-7b-hf</td>\n",
|
301 |
" <td>0.566727</td>\n",
|
302 |
" <td>0.052515</td>\n",
|
|
|
304 |
" <td>0.052515</td>\n",
|
305 |
" </tr>\n",
|
306 |
" <tr>\n",
|
307 |
+
" <th>59</th>\n",
|
308 |
" <td>state-spaces/mamba-2.8b-hf</td>\n",
|
309 |
" <td>0.552909</td>\n",
|
310 |
" <td>0.035570</td>\n",
|
|
|
312 |
" <td>0.035570</td>\n",
|
313 |
" </tr>\n",
|
314 |
" <tr>\n",
|
315 |
+
" <th>60</th>\n",
|
316 |
" <td>state-spaces/mamba-1.4b-hf</td>\n",
|
317 |
" <td>0.544182</td>\n",
|
318 |
" <td>0.031390</td>\n",
|
|
|
321 |
" </tr>\n",
|
322 |
" </tbody>\n",
|
323 |
"</table>\n",
|
324 |
+
"<p>61 rows × 5 columns</p>\n",
|
325 |
"</div>"
|
326 |
],
|
327 |
"text/plain": [
|
328 |
+
" model avg_acc avg_acc_stderr xcopa (acc) \\\n",
|
329 |
+
"0 mistralai/Mistral-7B-Instruct-v0.2 0.000000 0.000000 NaN \n",
|
330 |
+
"1 mistralai/Mistral-7B-v0.1 0.559455 0.053879 0.559455 \n",
|
331 |
+
"2 mosaicml/mpt-7b-instruct 0.537091 0.041919 0.537091 \n",
|
332 |
+
"3 mosaicml/mpt-7b 0.536000 0.042339 0.536000 \n",
|
333 |
+
"4 mosaicml/mpt-7b-chat 0.538000 0.047059 0.538000 \n",
|
334 |
+
".. ... ... ... ... \n",
|
335 |
+
"56 huggyllama/llama-7b 0.541818 0.040718 0.541818 \n",
|
336 |
+
"57 meta-llama/Llama-2-7b-chat-hf 0.559818 0.054954 0.559818 \n",
|
337 |
+
"58 meta-llama/Llama-2-7b-hf 0.566727 0.052515 0.566727 \n",
|
338 |
+
"59 state-spaces/mamba-2.8b-hf 0.552909 0.035570 0.552909 \n",
|
339 |
+
"60 state-spaces/mamba-1.4b-hf 0.544182 0.031390 0.544182 \n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
"\n",
|
341 |
+
" xcopa (acc_stderr) \n",
|
342 |
+
"0 NaN \n",
|
343 |
+
"1 0.053879 \n",
|
344 |
+
"2 0.041919 \n",
|
345 |
+
"3 0.042339 \n",
|
346 |
+
"4 0.047059 \n",
|
347 |
+
".. ... \n",
|
348 |
+
"56 0.040718 \n",
|
349 |
+
"57 0.054954 \n",
|
350 |
+
"58 0.052515 \n",
|
351 |
+
"59 0.035570 \n",
|
352 |
+
"60 0.031390 \n",
|
353 |
+
"\n",
|
354 |
+
"[61 rows x 5 columns]"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
]
|
356 |
},
|
357 |
+
"execution_count": 47,
|
358 |
"metadata": {},
|
359 |
"output_type": "execute_result"
|
360 |
}
|
|
|
555 |
},
|
556 |
{
|
557 |
"cell_type": "code",
|
558 |
+
"execution_count": 48,
|
559 |
"metadata": {},
|
560 |
"outputs": [
|
561 |
{
|
562 |
"name": "stdout",
|
563 |
"output_type": "stream",
|
564 |
"text": [
|
565 |
+
"total 38624\n",
|
566 |
+
"-rw-r--r--@ 1 picocreator staff 1.3M Jul 26 09:22 bf16-all-results-and-groups.csv\n",
|
567 |
+
"-rw-r--r--@ 1 picocreator staff 350K Jul 26 09:22 bf16-all-simplified-results-and-groups.csv\n",
|
568 |
+
"-rw-r--r--@ 1 picocreator staff 350K Jul 26 09:22 bf16-all-sorted-results-and-groups.csv\n",
|
569 |
+
"-rw-r--r--@ 1 picocreator staff 91K Jul 26 09:22 bf16-eng-focus.csv\n",
|
570 |
+
"-rw-r--r--@ 1 picocreator staff 1.2M Jul 26 09:22 bf16-eng-results.csv\n",
|
571 |
+
"-rw-r--r--@ 1 picocreator staff 105K Jul 26 09:22 bf16-eng-summary.csv\n",
|
572 |
+
"-rw-r--r--@ 1 picocreator staff 134K Jul 26 09:22 bf16-multilang-results.csv\n",
|
573 |
+
"-rw-r--r--@ 1 picocreator staff 19K Jul 26 09:22 bf16-multilang-summary.csv\n",
|
574 |
+
"-rw-r--r--@ 1 picocreator staff 91K Jul 26 09:22 bf16-sorted-eng-focus.csv\n",
|
575 |
+
"-rw-r--r--@ 1 picocreator staff 1.2M Jul 26 09:22 bf16-sorted-eng-results.csv\n",
|
576 |
+
"-rw-r--r--@ 1 picocreator staff 105K Jul 26 09:22 bf16-sorted-eng-summary.csv\n",
|
577 |
+
"-rw-r--r--@ 1 picocreator staff 19K Jul 26 09:22 bf16-sorted-multilang-summary.csv\n",
|
578 |
+
"-rw-r--r-- 1 picocreator staff 10M Jul 26 09:22 compiled-lm-eval-results.json\n",
|
579 |
+
"-rw-r--r--@ 1 picocreator staff 184K Jul 26 09:21 rwkv-x-dev-bf16-sorted-eng-180.csv\n",
|
580 |
+
"-rw-r--r--@ 1 picocreator staff 33K Jul 26 09:21 rwkv-x-dev-bf16-sorted-eng-21-focus.csv\n",
|
581 |
+
"-rw-r--r--@ 1 picocreator staff 107K Jul 26 09:22 rwkv-x-dev-bf16-sorted-eng-all.csv\n",
|
582 |
+
"-rw-r--r--@ 1 picocreator staff 6.7K Jul 26 09:22 rwkv-x-dev-bf16-sorted-eng-focus.csv\n",
|
583 |
+
"-rw-r--r--@ 1 picocreator staff 5.7K Jul 26 09:22 rwkv-x-dev-bf16-sorted-multilang-summary.csv\n"
|
584 |
]
|
585 |
}
|
586 |
],
|
|
|
591 |
"#\n",
|
592 |
"##################################################\n",
|
593 |
"\n",
|
594 |
+
"FOCUS_MODEL_LIST=[\n",
|
595 |
+
" # \"./rwkv-x-dev/*\", \n",
|
596 |
+
" \"rwkv-x-dev/*\", \"RWKV/*\", \"meta-llama/Llama-2-7b*\", \"mistralai/Mistral-7B-v0.1\", \"m8than/*\"\n",
|
597 |
+
"]\n",
|
598 |
+
"\n",
|
599 |
"# Overall results\n",
|
600 |
"all_results = generate_result_table( inConfig = { \"dtype\": \"bfloat16\" }, inGroups=[\"*\"], inResults=[\"*\"] )\n",
|
601 |
"all_results.to_csv('summary/bf16-all-results-and-groups.csv', index=False)\n",
|
|
|
621 |
"multilang_grp_sorted.to_csv('summary/bf16-sorted-multilang-summary.csv', index=False)\n",
|
622 |
"\n",
|
623 |
"# RWKV perf tracking\n",
|
624 |
+
"rwkv_multilang_grp_sorted = generate_result_table( inConfig = { \"dtype\": \"bfloat16\" }, inGroups=multiLang_tGrps, inResults=[], exModels=[], inModels=FOCUS_MODEL_LIST, sort=True )\n",
|
625 |
"rwkv_multilang_grp_sorted.to_csv('summary/rwkv-x-dev-bf16-sorted-multilang-summary.csv', index=False)\n",
|
626 |
"\n",
|
627 |
"# All other results\n",
|
|
|
649 |
"eng_focus_sorted.to_csv('summary/bf16-sorted-eng-focus.csv', index=False)\n",
|
650 |
"\n",
|
651 |
"# RWKV perf tracking\n",
|
652 |
+
"rwkv_eng_focus_sorted = generate_result_table( inConfig = { \"dtype\": \"bfloat16\" }, inGroups=eng_focus_tGrps, inResults=eng_focus_tTest, exModels=[], inModels=FOCUS_MODEL_LIST, sort=True, simplified=True )\n",
|
653 |
"rwkv_eng_focus_sorted.to_csv('summary/rwkv-x-dev-bf16-sorted-eng-focus.csv', index=False)\n",
|
654 |
"\n",
|
655 |
"# RWKV perf tracking\n",
|
656 |
+
"rwkv_eng_all_sorted = generate_result_table( inConfig = { \"dtype\": \"bfloat16\" }, inGroups=[\"*\"], inResults=[\"*\"], exModels=[], inModels=FOCUS_MODEL_LIST, sort=True, simplified=True )\n",
|
657 |
"rwkv_eng_all_sorted.to_csv('summary/rwkv-x-dev-bf16-sorted-eng-all.csv', index=False)\n",
|
658 |
"\n",
|
659 |
"# # Overall results\n",
|
|
|
666 |
},
|
667 |
{
|
668 |
"cell_type": "code",
|
669 |
+
"execution_count": 49,
|
670 |
"metadata": {},
|
671 |
"outputs": [],
|
672 |
"source": [
|
lm-eval-output/RWKV/v6-Finch-7B-HF/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"results": {
|
3 |
"xnli": {
|
4 |
-
"acc,none": 0.
|
5 |
-
"acc_stderr,none": 0.
|
6 |
"alias": "xnli"
|
7 |
},
|
8 |
"xnli_ar": {
|
@@ -11,8 +11,8 @@
|
|
11 |
"alias": " - xnli_ar"
|
12 |
},
|
13 |
"xnli_bg": {
|
14 |
-
"acc,none": 0.
|
15 |
-
"acc_stderr,none": 0.
|
16 |
"alias": " - xnli_bg"
|
17 |
},
|
18 |
"xnli_de": {
|
@@ -21,70 +21,70 @@
|
|
21 |
"alias": " - xnli_de"
|
22 |
},
|
23 |
"xnli_el": {
|
24 |
-
"acc,none": 0.
|
25 |
-
"acc_stderr,none": 0.
|
26 |
"alias": " - xnli_el"
|
27 |
},
|
28 |
"xnli_en": {
|
29 |
-
"acc,none": 0.
|
30 |
-
"acc_stderr,none": 0.
|
31 |
"alias": " - xnli_en"
|
32 |
},
|
33 |
"xnli_es": {
|
34 |
-
"acc,none": 0.
|
35 |
-
"acc_stderr,none": 0.
|
36 |
"alias": " - xnli_es"
|
37 |
},
|
38 |
"xnli_fr": {
|
39 |
-
"acc,none": 0.
|
40 |
-
"acc_stderr,none": 0.
|
41 |
"alias": " - xnli_fr"
|
42 |
},
|
43 |
"xnli_hi": {
|
44 |
-
"acc,none": 0.
|
45 |
-
"acc_stderr,none": 0.
|
46 |
"alias": " - xnli_hi"
|
47 |
},
|
48 |
"xnli_ru": {
|
49 |
-
"acc,none": 0.
|
50 |
-
"acc_stderr,none": 0.
|
51 |
"alias": " - xnli_ru"
|
52 |
},
|
53 |
"xnli_sw": {
|
54 |
-
"acc,none": 0.
|
55 |
-
"acc_stderr,none": 0.
|
56 |
"alias": " - xnli_sw"
|
57 |
},
|
58 |
"xnli_th": {
|
59 |
-
"acc,none": 0.
|
60 |
-
"acc_stderr,none": 0.
|
61 |
"alias": " - xnli_th"
|
62 |
},
|
63 |
"xnli_tr": {
|
64 |
-
"acc,none": 0.
|
65 |
-
"acc_stderr,none": 0.
|
66 |
"alias": " - xnli_tr"
|
67 |
},
|
68 |
"xnli_ur": {
|
69 |
-
"acc,none": 0.
|
70 |
-
"acc_stderr,none": 0.
|
71 |
"alias": " - xnli_ur"
|
72 |
},
|
73 |
"xnli_vi": {
|
74 |
-
"acc,none": 0.
|
75 |
-
"acc_stderr,none": 0.
|
76 |
"alias": " - xnli_vi"
|
77 |
},
|
78 |
"xnli_zh": {
|
79 |
-
"acc,none": 0.
|
80 |
-
"acc_stderr,none": 0.
|
81 |
"alias": " - xnli_zh"
|
82 |
}
|
83 |
},
|
84 |
"groups": {
|
85 |
"xnli": {
|
86 |
-
"acc,none": 0.
|
87 |
-
"acc_stderr,none": 0.
|
88 |
"alias": "xnli"
|
89 |
}
|
90 |
},
|
|
|
1 |
{
|
2 |
"results": {
|
3 |
"xnli": {
|
4 |
+
"acc,none": 0.4419812583668005,
|
5 |
+
"acc_stderr,none": 0.05072266385982506,
|
6 |
"alias": "xnli"
|
7 |
},
|
8 |
"xnli_ar": {
|
|
|
11 |
"alias": " - xnli_ar"
|
12 |
},
|
13 |
"xnli_bg": {
|
14 |
+
"acc,none": 0.4714859437751004,
|
15 |
+
"acc_stderr,none": 0.010005762674605288,
|
16 |
"alias": " - xnli_bg"
|
17 |
},
|
18 |
"xnli_de": {
|
|
|
21 |
"alias": " - xnli_de"
|
22 |
},
|
23 |
"xnli_el": {
|
24 |
+
"acc,none": 0.39959839357429716,
|
25 |
+
"acc_stderr,none": 0.009817939267958266,
|
26 |
"alias": " - xnli_el"
|
27 |
},
|
28 |
"xnli_en": {
|
29 |
+
"acc,none": 0.5401606425702812,
|
30 |
+
"acc_stderr,none": 0.009989691810169688,
|
31 |
"alias": " - xnli_en"
|
32 |
},
|
33 |
"xnli_es": {
|
34 |
+
"acc,none": 0.5072289156626506,
|
35 |
+
"acc_stderr,none": 0.010021025361119635,
|
36 |
"alias": " - xnli_es"
|
37 |
},
|
38 |
"xnli_fr": {
|
39 |
+
"acc,none": 0.4991967871485944,
|
40 |
+
"acc_stderr,none": 0.010022059935722397,
|
41 |
"alias": " - xnli_fr"
|
42 |
},
|
43 |
"xnli_hi": {
|
44 |
+
"acc,none": 0.4393574297188755,
|
45 |
+
"acc_stderr,none": 0.00994808700111736,
|
46 |
"alias": " - xnli_hi"
|
47 |
},
|
48 |
"xnli_ru": {
|
49 |
+
"acc,none": 0.4815261044176707,
|
50 |
+
"acc_stderr,none": 0.010015229768356988,
|
51 |
"alias": " - xnli_ru"
|
52 |
},
|
53 |
"xnli_sw": {
|
54 |
+
"acc,none": 0.39116465863453814,
|
55 |
+
"acc_stderr,none": 0.009781766322010008,
|
56 |
"alias": " - xnli_sw"
|
57 |
},
|
58 |
"xnli_th": {
|
59 |
+
"acc,none": 0.42128514056224897,
|
60 |
+
"acc_stderr,none": 0.009897099560589198,
|
61 |
"alias": " - xnli_th"
|
62 |
},
|
63 |
"xnli_tr": {
|
64 |
+
"acc,none": 0.4606425702811245,
|
65 |
+
"acc_stderr,none": 0.009990976095711894,
|
66 |
"alias": " - xnli_tr"
|
67 |
},
|
68 |
"xnli_ur": {
|
69 |
+
"acc,none": 0.41847389558232934,
|
70 |
+
"acc_stderr,none": 0.009887951897505937,
|
71 |
"alias": " - xnli_ur"
|
72 |
},
|
73 |
"xnli_vi": {
|
74 |
+
"acc,none": 0.40602409638554215,
|
75 |
+
"acc_stderr,none": 0.00984346200738422,
|
76 |
"alias": " - xnli_vi"
|
77 |
},
|
78 |
"xnli_zh": {
|
79 |
+
"acc,none": 0.3642570281124498,
|
80 |
+
"acc_stderr,none": 0.009645667910246843,
|
81 |
"alias": " - xnli_zh"
|
82 |
}
|
83 |
},
|
84 |
"groups": {
|
85 |
"xnli": {
|
86 |
+
"acc,none": 0.4419812583668005,
|
87 |
+
"acc_stderr,none": 0.05072266385982506,
|
88 |
"alias": "xnli"
|
89 |
}
|
90 |
},
|
lm-eval-output/RWKV/v6-Finch-7B-HF/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:950386625b020e188469729baf385a8c0e14f0ee1cbcdd15e0ab865ef78f50cd
|
3 |
+
size 35171
|
lm-eval-output/m8than/Finch-14B-Continued-10/ai2_arc/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a3bafb4d997aac45abf501d95155726777eb2d1c8a57295fedab9579859d429
|
3 |
+
size 683924
|
lm-eval-output/m8than/Finch-14B-Continued-10/ai2_arc/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"ai2_arc": {
|
4 |
+
"acc,none": 0.6651634723788049,
|
5 |
+
"acc_stderr,none": 0.09757683014091857,
|
6 |
+
"acc_norm,none": 0.6660090191657272,
|
7 |
+
"acc_norm_stderr,none": 0.08722264440751773,
|
8 |
+
"alias": "ai2_arc"
|
9 |
+
},
|
10 |
+
"arc_challenge": {
|
11 |
+
"acc,none": 0.4590443686006826,
|
12 |
+
"acc_stderr,none": 0.01456229107360122,
|
13 |
+
"acc_norm,none": 0.48208191126279865,
|
14 |
+
"acc_norm_stderr,none": 0.014602005585490983,
|
15 |
+
"alias": " - arc_challenge"
|
16 |
+
},
|
17 |
+
"arc_easy": {
|
18 |
+
"acc,none": 0.7668350168350169,
|
19 |
+
"acc_stderr,none": 0.008676624951179686,
|
20 |
+
"acc_norm,none": 0.7567340067340067,
|
21 |
+
"acc_norm_stderr,none": 0.008804009846865534,
|
22 |
+
"alias": " - arc_easy"
|
23 |
+
}
|
24 |
+
},
|
25 |
+
"groups": {
|
26 |
+
"ai2_arc": {
|
27 |
+
"acc,none": 0.6651634723788049,
|
28 |
+
"acc_stderr,none": 0.09757683014091857,
|
29 |
+
"acc_norm,none": 0.6660090191657272,
|
30 |
+
"acc_norm_stderr,none": 0.08722264440751773,
|
31 |
+
"alias": "ai2_arc"
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"configs": {
|
35 |
+
"arc_challenge": {
|
36 |
+
"task": "arc_challenge",
|
37 |
+
"group": [
|
38 |
+
"ai2_arc"
|
39 |
+
],
|
40 |
+
"dataset_path": "allenai/ai2_arc",
|
41 |
+
"dataset_name": "ARC-Challenge",
|
42 |
+
"training_split": "train",
|
43 |
+
"validation_split": "validation",
|
44 |
+
"test_split": "test",
|
45 |
+
"doc_to_text": "Question: {{question}}\nAnswer:",
|
46 |
+
"doc_to_target": "{{choices.label.index(answerKey)}}",
|
47 |
+
"doc_to_choice": "{{choices.text}}",
|
48 |
+
"description": "",
|
49 |
+
"target_delimiter": " ",
|
50 |
+
"fewshot_delimiter": "\n\n",
|
51 |
+
"metric_list": [
|
52 |
+
{
|
53 |
+
"metric": "acc",
|
54 |
+
"aggregation": "mean",
|
55 |
+
"higher_is_better": true
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"metric": "acc_norm",
|
59 |
+
"aggregation": "mean",
|
60 |
+
"higher_is_better": true
|
61 |
+
}
|
62 |
+
],
|
63 |
+
"output_type": "multiple_choice",
|
64 |
+
"repeats": 1,
|
65 |
+
"should_decontaminate": true,
|
66 |
+
"doc_to_decontamination_query": "Question: {{question}}\nAnswer:",
|
67 |
+
"metadata": {
|
68 |
+
"version": 1.0
|
69 |
+
}
|
70 |
+
},
|
71 |
+
"arc_easy": {
|
72 |
+
"task": "arc_easy",
|
73 |
+
"group": [
|
74 |
+
"ai2_arc"
|
75 |
+
],
|
76 |
+
"dataset_path": "allenai/ai2_arc",
|
77 |
+
"dataset_name": "ARC-Easy",
|
78 |
+
"training_split": "train",
|
79 |
+
"validation_split": "validation",
|
80 |
+
"test_split": "test",
|
81 |
+
"doc_to_text": "Question: {{question}}\nAnswer:",
|
82 |
+
"doc_to_target": "{{choices.label.index(answerKey)}}",
|
83 |
+
"doc_to_choice": "{{choices.text}}",
|
84 |
+
"description": "",
|
85 |
+
"target_delimiter": " ",
|
86 |
+
"fewshot_delimiter": "\n\n",
|
87 |
+
"metric_list": [
|
88 |
+
{
|
89 |
+
"metric": "acc",
|
90 |
+
"aggregation": "mean",
|
91 |
+
"higher_is_better": true
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"metric": "acc_norm",
|
95 |
+
"aggregation": "mean",
|
96 |
+
"higher_is_better": true
|
97 |
+
}
|
98 |
+
],
|
99 |
+
"output_type": "multiple_choice",
|
100 |
+
"repeats": 1,
|
101 |
+
"should_decontaminate": true,
|
102 |
+
"doc_to_decontamination_query": "Question: {{question}}\nAnswer:",
|
103 |
+
"metadata": {
|
104 |
+
"version": 1.0
|
105 |
+
}
|
106 |
+
}
|
107 |
+
},
|
108 |
+
"versions": {
|
109 |
+
"ai2_arc": "N/A",
|
110 |
+
"arc_challenge": 1.0,
|
111 |
+
"arc_easy": 1.0
|
112 |
+
},
|
113 |
+
"n-shot": {
|
114 |
+
"ai2_arc": 0,
|
115 |
+
"arc_challenge": 0,
|
116 |
+
"arc_easy": 0
|
117 |
+
},
|
118 |
+
"config": {
|
119 |
+
"model": "hf",
|
120 |
+
"model_args": "pretrained=m8than/Finch-14B-Continued-10,dtype=bfloat16,trust_remote_code=True",
|
121 |
+
"batch_size": "auto",
|
122 |
+
"batch_sizes": [
|
123 |
+
64
|
124 |
+
],
|
125 |
+
"device": null,
|
126 |
+
"use_cache": null,
|
127 |
+
"limit": null,
|
128 |
+
"bootstrap_iters": 100000,
|
129 |
+
"gen_kwargs": null
|
130 |
+
},
|
131 |
+
"git_hash": "97a2520"
|
132 |
+
}
|
lm-eval-output/m8than/Finch-14B-Continued-10/ai2_arc/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8acea2dbceb70318aa8672cd91395169df6d38436d827bf17c6d4dbe7b1f1da
|
3 |
+
size 15844
|
lm-eval-output/m8than/Finch-14B-Continued-10/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b21dc663dd230a6d0b03b9a015f59a040b5305829cec2563a7f86bb6dac49fd8
|
3 |
+
size 1082861
|
lm-eval-output/m8than/Finch-14B-Continued-10/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"anli": {
|
4 |
+
"acc,none": 0.5459375,
|
5 |
+
"acc_stderr,none": 0.046057318730907466,
|
6 |
+
"alias": "anli"
|
7 |
+
},
|
8 |
+
"anli_r1": {
|
9 |
+
"acc,none": 0.639,
|
10 |
+
"acc_stderr,none": 0.015195720118175115,
|
11 |
+
"alias": " - anli_r1"
|
12 |
+
},
|
13 |
+
"anli_r2": {
|
14 |
+
"acc,none": 0.49,
|
15 |
+
"acc_stderr,none": 0.01581613575277321,
|
16 |
+
"alias": " - anli_r2"
|
17 |
+
},
|
18 |
+
"anli_r3": {
|
19 |
+
"acc,none": 0.515,
|
20 |
+
"acc_stderr,none": 0.014433275195211854,
|
21 |
+
"alias": " - anli_r3"
|
22 |
+
}
|
23 |
+
},
|
24 |
+
"groups": {
|
25 |
+
"anli": {
|
26 |
+
"acc,none": 0.5459375,
|
27 |
+
"acc_stderr,none": 0.046057318730907466,
|
28 |
+
"alias": "anli"
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"configs": {
|
32 |
+
"anli_r1": {
|
33 |
+
"task": "anli_r1",
|
34 |
+
"group": [
|
35 |
+
"anli"
|
36 |
+
],
|
37 |
+
"dataset_path": "anli",
|
38 |
+
"training_split": "train_r1",
|
39 |
+
"validation_split": "dev_r1",
|
40 |
+
"test_split": "test_r1",
|
41 |
+
"doc_to_text": "{{premise}}\nQuestion: {{hypothesis}} True, False, or Neither?\nAnswer:",
|
42 |
+
"doc_to_target": "{{['True', 'Neither', 'False'][label]}}",
|
43 |
+
"doc_to_choice": [
|
44 |
+
"True",
|
45 |
+
"Neither",
|
46 |
+
"False"
|
47 |
+
],
|
48 |
+
"description": "",
|
49 |
+
"target_delimiter": " ",
|
50 |
+
"fewshot_delimiter": "\n\n",
|
51 |
+
"metric_list": [
|
52 |
+
{
|
53 |
+
"metric": "acc",
|
54 |
+
"aggregation": "mean",
|
55 |
+
"higher_is_better": true
|
56 |
+
}
|
57 |
+
],
|
58 |
+
"output_type": "multiple_choice",
|
59 |
+
"repeats": 1,
|
60 |
+
"should_decontaminate": true,
|
61 |
+
"doc_to_decontamination_query": "premise",
|
62 |
+
"metadata": {
|
63 |
+
"version": 1.0
|
64 |
+
}
|
65 |
+
},
|
66 |
+
"anli_r2": {
|
67 |
+
"task": "anli_r2",
|
68 |
+
"group": [
|
69 |
+
"anli"
|
70 |
+
],
|
71 |
+
"dataset_path": "anli",
|
72 |
+
"training_split": "train_r2",
|
73 |
+
"validation_split": "dev_r2",
|
74 |
+
"test_split": "test_r2",
|
75 |
+
"doc_to_text": "{{premise}}\nQuestion: {{hypothesis}} True, False, or Neither?\nAnswer:",
|
76 |
+
"doc_to_target": "{{['True', 'Neither', 'False'][label]}}",
|
77 |
+
"doc_to_choice": [
|
78 |
+
"True",
|
79 |
+
"Neither",
|
80 |
+
"False"
|
81 |
+
],
|
82 |
+
"description": "",
|
83 |
+
"target_delimiter": " ",
|
84 |
+
"fewshot_delimiter": "\n\n",
|
85 |
+
"metric_list": [
|
86 |
+
{
|
87 |
+
"metric": "acc",
|
88 |
+
"aggregation": "mean",
|
89 |
+
"higher_is_better": true
|
90 |
+
}
|
91 |
+
],
|
92 |
+
"output_type": "multiple_choice",
|
93 |
+
"repeats": 1,
|
94 |
+
"should_decontaminate": true,
|
95 |
+
"doc_to_decontamination_query": "premise",
|
96 |
+
"metadata": {
|
97 |
+
"version": 1.0
|
98 |
+
}
|
99 |
+
},
|
100 |
+
"anli_r3": {
|
101 |
+
"task": "anli_r3",
|
102 |
+
"group": [
|
103 |
+
"anli"
|
104 |
+
],
|
105 |
+
"dataset_path": "anli",
|
106 |
+
"training_split": "train_r3",
|
107 |
+
"validation_split": "dev_r3",
|
108 |
+
"test_split": "test_r3",
|
109 |
+
"doc_to_text": "{{premise}}\nQuestion: {{hypothesis}} True, False, or Neither?\nAnswer:",
|
110 |
+
"doc_to_target": "{{['True', 'Neither', 'False'][label]}}",
|
111 |
+
"doc_to_choice": [
|
112 |
+
"True",
|
113 |
+
"Neither",
|
114 |
+
"False"
|
115 |
+
],
|
116 |
+
"description": "",
|
117 |
+
"target_delimiter": " ",
|
118 |
+
"fewshot_delimiter": "\n\n",
|
119 |
+
"metric_list": [
|
120 |
+
{
|
121 |
+
"metric": "acc",
|
122 |
+
"aggregation": "mean",
|
123 |
+
"higher_is_better": true
|
124 |
+
}
|
125 |
+
],
|
126 |
+
"output_type": "multiple_choice",
|
127 |
+
"repeats": 1,
|
128 |
+
"should_decontaminate": true,
|
129 |
+
"doc_to_decontamination_query": "premise",
|
130 |
+
"metadata": {
|
131 |
+
"version": 1.0
|
132 |
+
}
|
133 |
+
}
|
134 |
+
},
|
135 |
+
"versions": {
|
136 |
+
"anli": "N/A",
|
137 |
+
"anli_r1": 1.0,
|
138 |
+
"anli_r2": 1.0,
|
139 |
+
"anli_r3": 1.0
|
140 |
+
},
|
141 |
+
"n-shot": {
|
142 |
+
"anli": 0,
|
143 |
+
"anli_r1": 0,
|
144 |
+
"anli_r2": 0,
|
145 |
+
"anli_r3": 0
|
146 |
+
},
|
147 |
+
"config": {
|
148 |
+
"model": "hf",
|
149 |
+
"model_args": "pretrained=m8than/Finch-14B-Continued-10,dtype=bfloat16,trust_remote_code=True",
|
150 |
+
"batch_size": "auto",
|
151 |
+
"batch_sizes": [
|
152 |
+
64
|
153 |
+
],
|
154 |
+
"device": null,
|
155 |
+
"use_cache": null,
|
156 |
+
"limit": null,
|
157 |
+
"bootstrap_iters": 100000,
|
158 |
+
"gen_kwargs": null
|
159 |
+
},
|
160 |
+
"git_hash": "97a2520"
|
161 |
+
}
|
lm-eval-output/m8than/Finch-14B-Continued-10/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88b1775a4b8c8a396f948b580b28cb3f78f8bcb8bdb8d6822c394d7c237a4b9e
|
3 |
+
size 17692
|
lm-eval-output/m8than/Finch-14B-Continued-10/blimp/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a62f5053b76bd05f8a7247ad11153eef5b360e80ee798c8dc085f6c4dab5d4c5
|
3 |
+
size 4234906
|
lm-eval-output/m8than/Finch-14B-Continued-10/blimp/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,2249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"blimp": {
|
4 |
+
"acc,none": 0.844,
|
5 |
+
"acc_stderr,none": 0.13676486091184517,
|
6 |
+
"alias": "blimp"
|
7 |
+
},
|
8 |
+
"blimp_adjunct_island": {
|
9 |
+
"acc,none": 0.912,
|
10 |
+
"acc_stderr,none": 0.008963053962592083,
|
11 |
+
"alias": " - blimp_adjunct_island"
|
12 |
+
},
|
13 |
+
"blimp_anaphor_gender_agreement": {
|
14 |
+
"acc,none": 0.99,
|
15 |
+
"acc_stderr,none": 0.003148000938676768,
|
16 |
+
"alias": " - blimp_anaphor_gender_agreement"
|
17 |
+
},
|
18 |
+
"blimp_anaphor_number_agreement": {
|
19 |
+
"acc,none": 0.993,
|
20 |
+
"acc_stderr,none": 0.0026377941462437586,
|
21 |
+
"alias": " - blimp_anaphor_number_agreement"
|
22 |
+
},
|
23 |
+
"blimp_animate_subject_passive": {
|
24 |
+
"acc,none": 0.83,
|
25 |
+
"acc_stderr,none": 0.011884495834541672,
|
26 |
+
"alias": " - blimp_animate_subject_passive"
|
27 |
+
},
|
28 |
+
"blimp_animate_subject_trans": {
|
29 |
+
"acc,none": 0.902,
|
30 |
+
"acc_stderr,none": 0.009406619184621228,
|
31 |
+
"alias": " - blimp_animate_subject_trans"
|
32 |
+
},
|
33 |
+
"blimp_causative": {
|
34 |
+
"acc,none": 0.789,
|
35 |
+
"acc_stderr,none": 0.012909130321042092,
|
36 |
+
"alias": " - blimp_causative"
|
37 |
+
},
|
38 |
+
"blimp_complex_NP_island": {
|
39 |
+
"acc,none": 0.628,
|
40 |
+
"acc_stderr,none": 0.015292149942040577,
|
41 |
+
"alias": " - blimp_complex_NP_island"
|
42 |
+
},
|
43 |
+
"blimp_coordinate_structure_constraint_complex_left_branch": {
|
44 |
+
"acc,none": 0.779,
|
45 |
+
"acc_stderr,none": 0.01312750285969626,
|
46 |
+
"alias": " - blimp_coordinate_structure_constraint_complex_left_branch"
|
47 |
+
},
|
48 |
+
"blimp_coordinate_structure_constraint_object_extraction": {
|
49 |
+
"acc,none": 0.892,
|
50 |
+
"acc_stderr,none": 0.009820001651345714,
|
51 |
+
"alias": " - blimp_coordinate_structure_constraint_object_extraction"
|
52 |
+
},
|
53 |
+
"blimp_determiner_noun_agreement_1": {
|
54 |
+
"acc,none": 0.994,
|
55 |
+
"acc_stderr,none": 0.0024433521993298198,
|
56 |
+
"alias": " - blimp_determiner_noun_agreement_1"
|
57 |
+
},
|
58 |
+
"blimp_determiner_noun_agreement_2": {
|
59 |
+
"acc,none": 0.989,
|
60 |
+
"acc_stderr,none": 0.003299983316607817,
|
61 |
+
"alias": " - blimp_determiner_noun_agreement_2"
|
62 |
+
},
|
63 |
+
"blimp_determiner_noun_agreement_irregular_1": {
|
64 |
+
"acc,none": 0.965,
|
65 |
+
"acc_stderr,none": 0.005814534272734934,
|
66 |
+
"alias": " - blimp_determiner_noun_agreement_irregular_1"
|
67 |
+
},
|
68 |
+
"blimp_determiner_noun_agreement_irregular_2": {
|
69 |
+
"acc,none": 0.956,
|
70 |
+
"acc_stderr,none": 0.006488921798427418,
|
71 |
+
"alias": " - blimp_determiner_noun_agreement_irregular_2"
|
72 |
+
},
|
73 |
+
"blimp_determiner_noun_agreement_with_adj_2": {
|
74 |
+
"acc,none": 0.97,
|
75 |
+
"acc_stderr,none": 0.0053971408290991955,
|
76 |
+
"alias": " - blimp_determiner_noun_agreement_with_adj_2"
|
77 |
+
},
|
78 |
+
"blimp_determiner_noun_agreement_with_adj_irregular_1": {
|
79 |
+
"acc,none": 0.938,
|
80 |
+
"acc_stderr,none": 0.007629823996280306,
|
81 |
+
"alias": " - blimp_determiner_noun_agreement_with_adj_irregular_1"
|
82 |
+
},
|
83 |
+
"blimp_determiner_noun_agreement_with_adj_irregular_2": {
|
84 |
+
"acc,none": 0.928,
|
85 |
+
"acc_stderr,none": 0.008178195576218681,
|
86 |
+
"alias": " - blimp_determiner_noun_agreement_with_adj_irregular_2"
|
87 |
+
},
|
88 |
+
"blimp_determiner_noun_agreement_with_adjective_1": {
|
89 |
+
"acc,none": 0.986,
|
90 |
+
"acc_stderr,none": 0.0037172325482565743,
|
91 |
+
"alias": " - blimp_determiner_noun_agreement_with_adjective_1"
|
92 |
+
},
|
93 |
+
"blimp_distractor_agreement_relational_noun": {
|
94 |
+
"acc,none": 0.945,
|
95 |
+
"acc_stderr,none": 0.0072129762946392395,
|
96 |
+
"alias": " - blimp_distractor_agreement_relational_noun"
|
97 |
+
},
|
98 |
+
"blimp_distractor_agreement_relative_clause": {
|
99 |
+
"acc,none": 0.871,
|
100 |
+
"acc_stderr,none": 0.010605256784796558,
|
101 |
+
"alias": " - blimp_distractor_agreement_relative_clause"
|
102 |
+
},
|
103 |
+
"blimp_drop_argument": {
|
104 |
+
"acc,none": 0.789,
|
105 |
+
"acc_stderr,none": 0.012909130321042095,
|
106 |
+
"alias": " - blimp_drop_argument"
|
107 |
+
},
|
108 |
+
"blimp_ellipsis_n_bar_1": {
|
109 |
+
"acc,none": 0.802,
|
110 |
+
"acc_stderr,none": 0.01260773393417531,
|
111 |
+
"alias": " - blimp_ellipsis_n_bar_1"
|
112 |
+
},
|
113 |
+
"blimp_ellipsis_n_bar_2": {
|
114 |
+
"acc,none": 0.959,
|
115 |
+
"acc_stderr,none": 0.006273624021118792,
|
116 |
+
"alias": " - blimp_ellipsis_n_bar_2"
|
117 |
+
},
|
118 |
+
"blimp_existential_there_object_raising": {
|
119 |
+
"acc,none": 0.831,
|
120 |
+
"acc_stderr,none": 0.011856625977890117,
|
121 |
+
"alias": " - blimp_existential_there_object_raising"
|
122 |
+
},
|
123 |
+
"blimp_existential_there_quantifiers_1": {
|
124 |
+
"acc,none": 0.998,
|
125 |
+
"acc_stderr,none": 0.001413505570557794,
|
126 |
+
"alias": " - blimp_existential_there_quantifiers_1"
|
127 |
+
},
|
128 |
+
"blimp_existential_there_quantifiers_2": {
|
129 |
+
"acc,none": 0.361,
|
130 |
+
"acc_stderr,none": 0.015195720118175129,
|
131 |
+
"alias": " - blimp_existential_there_quantifiers_2"
|
132 |
+
},
|
133 |
+
"blimp_existential_there_subject_raising": {
|
134 |
+
"acc,none": 0.904,
|
135 |
+
"acc_stderr,none": 0.009320454434783222,
|
136 |
+
"alias": " - blimp_existential_there_subject_raising"
|
137 |
+
},
|
138 |
+
"blimp_expletive_it_object_raising": {
|
139 |
+
"acc,none": 0.797,
|
140 |
+
"acc_stderr,none": 0.012726073744598285,
|
141 |
+
"alias": " - blimp_expletive_it_object_raising"
|
142 |
+
},
|
143 |
+
"blimp_inchoative": {
|
144 |
+
"acc,none": 0.734,
|
145 |
+
"acc_stderr,none": 0.013979965645145143,
|
146 |
+
"alias": " - blimp_inchoative"
|
147 |
+
},
|
148 |
+
"blimp_intransitive": {
|
149 |
+
"acc,none": 0.862,
|
150 |
+
"acc_stderr,none": 0.010912152632504387,
|
151 |
+
"alias": " - blimp_intransitive"
|
152 |
+
},
|
153 |
+
"blimp_irregular_past_participle_adjectives": {
|
154 |
+
"acc,none": 0.876,
|
155 |
+
"acc_stderr,none": 0.010427498872343961,
|
156 |
+
"alias": " - blimp_irregular_past_participle_adjectives"
|
157 |
+
},
|
158 |
+
"blimp_irregular_past_participle_verbs": {
|
159 |
+
"acc,none": 0.908,
|
160 |
+
"acc_stderr,none": 0.009144376393151118,
|
161 |
+
"alias": " - blimp_irregular_past_participle_verbs"
|
162 |
+
},
|
163 |
+
"blimp_irregular_plural_subject_verb_agreement_1": {
|
164 |
+
"acc,none": 0.947,
|
165 |
+
"acc_stderr,none": 0.007088105617246447,
|
166 |
+
"alias": " - blimp_irregular_plural_subject_verb_agreement_1"
|
167 |
+
},
|
168 |
+
"blimp_irregular_plural_subject_verb_agreement_2": {
|
169 |
+
"acc,none": 0.939,
|
170 |
+
"acc_stderr,none": 0.007572076091557422,
|
171 |
+
"alias": " - blimp_irregular_plural_subject_verb_agreement_2"
|
172 |
+
},
|
173 |
+
"blimp_left_branch_island_echo_question": {
|
174 |
+
"acc,none": 0.678,
|
175 |
+
"acc_stderr,none": 0.014782913600996662,
|
176 |
+
"alias": " - blimp_left_branch_island_echo_question"
|
177 |
+
},
|
178 |
+
"blimp_left_branch_island_simple_question": {
|
179 |
+
"acc,none": 0.892,
|
180 |
+
"acc_stderr,none": 0.009820001651345694,
|
181 |
+
"alias": " - blimp_left_branch_island_simple_question"
|
182 |
+
},
|
183 |
+
"blimp_matrix_question_npi_licensor_present": {
|
184 |
+
"acc,none": 0.603,
|
185 |
+
"acc_stderr,none": 0.015480007449307989,
|
186 |
+
"alias": " - blimp_matrix_question_npi_licensor_present"
|
187 |
+
},
|
188 |
+
"blimp_npi_present_1": {
|
189 |
+
"acc,none": 0.653,
|
190 |
+
"acc_stderr,none": 0.015060472031706625,
|
191 |
+
"alias": " - blimp_npi_present_1"
|
192 |
+
},
|
193 |
+
"blimp_npi_present_2": {
|
194 |
+
"acc,none": 0.692,
|
195 |
+
"acc_stderr,none": 0.01460648312734276,
|
196 |
+
"alias": " - blimp_npi_present_2"
|
197 |
+
},
|
198 |
+
"blimp_only_npi_licensor_present": {
|
199 |
+
"acc,none": 0.887,
|
200 |
+
"acc_stderr,none": 0.010016552866696863,
|
201 |
+
"alias": " - blimp_only_npi_licensor_present"
|
202 |
+
},
|
203 |
+
"blimp_only_npi_scope": {
|
204 |
+
"acc,none": 0.763,
|
205 |
+
"acc_stderr,none": 0.01345407046257795,
|
206 |
+
"alias": " - blimp_only_npi_scope"
|
207 |
+
},
|
208 |
+
"blimp_passive_1": {
|
209 |
+
"acc,none": 0.902,
|
210 |
+
"acc_stderr,none": 0.009406619184621214,
|
211 |
+
"alias": " - blimp_passive_1"
|
212 |
+
},
|
213 |
+
"blimp_passive_2": {
|
214 |
+
"acc,none": 0.918,
|
215 |
+
"acc_stderr,none": 0.008680515615523715,
|
216 |
+
"alias": " - blimp_passive_2"
|
217 |
+
},
|
218 |
+
"blimp_principle_A_c_command": {
|
219 |
+
"acc,none": 0.804,
|
220 |
+
"acc_stderr,none": 0.012559527926707373,
|
221 |
+
"alias": " - blimp_principle_A_c_command"
|
222 |
+
},
|
223 |
+
"blimp_principle_A_case_1": {
|
224 |
+
"acc,none": 1.0,
|
225 |
+
"acc_stderr,none": 0.0,
|
226 |
+
"alias": " - blimp_principle_A_case_1"
|
227 |
+
},
|
228 |
+
"blimp_principle_A_case_2": {
|
229 |
+
"acc,none": 0.952,
|
230 |
+
"acc_stderr,none": 0.006763264133666695,
|
231 |
+
"alias": " - blimp_principle_A_case_2"
|
232 |
+
},
|
233 |
+
"blimp_principle_A_domain_1": {
|
234 |
+
"acc,none": 0.973,
|
235 |
+
"acc_stderr,none": 0.00512808904927529,
|
236 |
+
"alias": " - blimp_principle_A_domain_1"
|
237 |
+
},
|
238 |
+
"blimp_principle_A_domain_2": {
|
239 |
+
"acc,none": 0.884,
|
240 |
+
"acc_stderr,none": 0.010131468138756998,
|
241 |
+
"alias": " - blimp_principle_A_domain_2"
|
242 |
+
},
|
243 |
+
"blimp_principle_A_domain_3": {
|
244 |
+
"acc,none": 0.753,
|
245 |
+
"acc_stderr,none": 0.01364467578131413,
|
246 |
+
"alias": " - blimp_principle_A_domain_3"
|
247 |
+
},
|
248 |
+
"blimp_principle_A_reconstruction": {
|
249 |
+
"acc,none": 0.702,
|
250 |
+
"acc_stderr,none": 0.014470846741134715,
|
251 |
+
"alias": " - blimp_principle_A_reconstruction"
|
252 |
+
},
|
253 |
+
"blimp_regular_plural_subject_verb_agreement_1": {
|
254 |
+
"acc,none": 0.969,
|
255 |
+
"acc_stderr,none": 0.005483527064679195,
|
256 |
+
"alias": " - blimp_regular_plural_subject_verb_agreement_1"
|
257 |
+
},
|
258 |
+
"blimp_regular_plural_subject_verb_agreement_2": {
|
259 |
+
"acc,none": 0.925,
|
260 |
+
"acc_stderr,none": 0.008333333333333335,
|
261 |
+
"alias": " - blimp_regular_plural_subject_verb_agreement_2"
|
262 |
+
},
|
263 |
+
"blimp_sentential_negation_npi_licensor_present": {
|
264 |
+
"acc,none": 0.998,
|
265 |
+
"acc_stderr,none": 0.0014135055705578026,
|
266 |
+
"alias": " - blimp_sentential_negation_npi_licensor_present"
|
267 |
+
},
|
268 |
+
"blimp_sentential_negation_npi_scope": {
|
269 |
+
"acc,none": 0.656,
|
270 |
+
"acc_stderr,none": 0.015029633724408945,
|
271 |
+
"alias": " - blimp_sentential_negation_npi_scope"
|
272 |
+
},
|
273 |
+
"blimp_sentential_subject_island": {
|
274 |
+
"acc,none": 0.523,
|
275 |
+
"acc_stderr,none": 0.015802554246726094,
|
276 |
+
"alias": " - blimp_sentential_subject_island"
|
277 |
+
},
|
278 |
+
"blimp_superlative_quantifiers_1": {
|
279 |
+
"acc,none": 0.737,
|
280 |
+
"acc_stderr,none": 0.01392928659425975,
|
281 |
+
"alias": " - blimp_superlative_quantifiers_1"
|
282 |
+
},
|
283 |
+
"blimp_superlative_quantifiers_2": {
|
284 |
+
"acc,none": 0.928,
|
285 |
+
"acc_stderr,none": 0.008178195576218681,
|
286 |
+
"alias": " - blimp_superlative_quantifiers_2"
|
287 |
+
},
|
288 |
+
"blimp_tough_vs_raising_1": {
|
289 |
+
"acc,none": 0.717,
|
290 |
+
"acc_stderr,none": 0.014251810906481744,
|
291 |
+
"alias": " - blimp_tough_vs_raising_1"
|
292 |
+
},
|
293 |
+
"blimp_tough_vs_raising_2": {
|
294 |
+
"acc,none": 0.9,
|
295 |
+
"acc_stderr,none": 0.009491579957525044,
|
296 |
+
"alias": " - blimp_tough_vs_raising_2"
|
297 |
+
},
|
298 |
+
"blimp_transitive": {
|
299 |
+
"acc,none": 0.924,
|
300 |
+
"acc_stderr,none": 0.008384169266796387,
|
301 |
+
"alias": " - blimp_transitive"
|
302 |
+
},
|
303 |
+
"blimp_wh_island": {
|
304 |
+
"acc,none": 0.774,
|
305 |
+
"acc_stderr,none": 0.01323250161908533,
|
306 |
+
"alias": " - blimp_wh_island"
|
307 |
+
},
|
308 |
+
"blimp_wh_questions_object_gap": {
|
309 |
+
"acc,none": 0.868,
|
310 |
+
"acc_stderr,none": 0.010709373963528033,
|
311 |
+
"alias": " - blimp_wh_questions_object_gap"
|
312 |
+
},
|
313 |
+
"blimp_wh_questions_subject_gap": {
|
314 |
+
"acc,none": 0.953,
|
315 |
+
"acc_stderr,none": 0.006695956678163042,
|
316 |
+
"alias": " - blimp_wh_questions_subject_gap"
|
317 |
+
},
|
318 |
+
"blimp_wh_questions_subject_gap_long_distance": {
|
319 |
+
"acc,none": 0.946,
|
320 |
+
"acc_stderr,none": 0.007150883521295437,
|
321 |
+
"alias": " - blimp_wh_questions_subject_gap_long_distance"
|
322 |
+
},
|
323 |
+
"blimp_wh_vs_that_no_gap": {
|
324 |
+
"acc,none": 0.985,
|
325 |
+
"acc_stderr,none": 0.0038457495745030006,
|
326 |
+
"alias": " - blimp_wh_vs_that_no_gap"
|
327 |
+
},
|
328 |
+
"blimp_wh_vs_that_no_gap_long_distance": {
|
329 |
+
"acc,none": 0.979,
|
330 |
+
"acc_stderr,none": 0.0045364721513064974,
|
331 |
+
"alias": " - blimp_wh_vs_that_no_gap_long_distance"
|
332 |
+
},
|
333 |
+
"blimp_wh_vs_that_with_gap": {
|
334 |
+
"acc,none": 0.412,
|
335 |
+
"acc_stderr,none": 0.0155723632920151,
|
336 |
+
"alias": " - blimp_wh_vs_that_with_gap"
|
337 |
+
},
|
338 |
+
"blimp_wh_vs_that_with_gap_long_distance": {
|
339 |
+
"acc,none": 0.334,
|
340 |
+
"acc_stderr,none": 0.014922019523732963,
|
341 |
+
"alias": " - blimp_wh_vs_that_with_gap_long_distance"
|
342 |
+
}
|
343 |
+
},
|
344 |
+
"groups": {
|
345 |
+
"blimp": {
|
346 |
+
"acc,none": 0.844,
|
347 |
+
"acc_stderr,none": 0.13676486091184517,
|
348 |
+
"alias": "blimp"
|
349 |
+
}
|
350 |
+
},
|
351 |
+
"configs": {
|
352 |
+
"blimp_adjunct_island": {
|
353 |
+
"task": "blimp_adjunct_island",
|
354 |
+
"group": "blimp",
|
355 |
+
"dataset_path": "blimp",
|
356 |
+
"dataset_name": "adjunct_island",
|
357 |
+
"validation_split": "train",
|
358 |
+
"doc_to_text": "",
|
359 |
+
"doc_to_target": 0,
|
360 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
361 |
+
"description": "",
|
362 |
+
"target_delimiter": " ",
|
363 |
+
"fewshot_delimiter": "\n\n",
|
364 |
+
"num_fewshot": 0,
|
365 |
+
"metric_list": [
|
366 |
+
{
|
367 |
+
"metric": "acc"
|
368 |
+
}
|
369 |
+
],
|
370 |
+
"output_type": "multiple_choice",
|
371 |
+
"repeats": 1,
|
372 |
+
"should_decontaminate": true,
|
373 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
374 |
+
"metadata": {
|
375 |
+
"version": 1.0
|
376 |
+
}
|
377 |
+
},
|
378 |
+
"blimp_anaphor_gender_agreement": {
|
379 |
+
"task": "blimp_anaphor_gender_agreement",
|
380 |
+
"group": "blimp",
|
381 |
+
"dataset_path": "blimp",
|
382 |
+
"dataset_name": "anaphor_gender_agreement",
|
383 |
+
"validation_split": "train",
|
384 |
+
"doc_to_text": "",
|
385 |
+
"doc_to_target": 0,
|
386 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
387 |
+
"description": "",
|
388 |
+
"target_delimiter": " ",
|
389 |
+
"fewshot_delimiter": "\n\n",
|
390 |
+
"num_fewshot": 0,
|
391 |
+
"metric_list": [
|
392 |
+
{
|
393 |
+
"metric": "acc"
|
394 |
+
}
|
395 |
+
],
|
396 |
+
"output_type": "multiple_choice",
|
397 |
+
"repeats": 1,
|
398 |
+
"should_decontaminate": true,
|
399 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
400 |
+
"metadata": {
|
401 |
+
"version": 1.0
|
402 |
+
}
|
403 |
+
},
|
404 |
+
"blimp_anaphor_number_agreement": {
|
405 |
+
"task": "blimp_anaphor_number_agreement",
|
406 |
+
"group": "blimp",
|
407 |
+
"dataset_path": "blimp",
|
408 |
+
"dataset_name": "anaphor_number_agreement",
|
409 |
+
"validation_split": "train",
|
410 |
+
"doc_to_text": "",
|
411 |
+
"doc_to_target": 0,
|
412 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
413 |
+
"description": "",
|
414 |
+
"target_delimiter": " ",
|
415 |
+
"fewshot_delimiter": "\n\n",
|
416 |
+
"num_fewshot": 0,
|
417 |
+
"metric_list": [
|
418 |
+
{
|
419 |
+
"metric": "acc"
|
420 |
+
}
|
421 |
+
],
|
422 |
+
"output_type": "multiple_choice",
|
423 |
+
"repeats": 1,
|
424 |
+
"should_decontaminate": true,
|
425 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
426 |
+
"metadata": {
|
427 |
+
"version": 1.0
|
428 |
+
}
|
429 |
+
},
|
430 |
+
"blimp_animate_subject_passive": {
|
431 |
+
"task": "blimp_animate_subject_passive",
|
432 |
+
"group": "blimp",
|
433 |
+
"dataset_path": "blimp",
|
434 |
+
"dataset_name": "animate_subject_passive",
|
435 |
+
"validation_split": "train",
|
436 |
+
"doc_to_text": "",
|
437 |
+
"doc_to_target": 0,
|
438 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
439 |
+
"description": "",
|
440 |
+
"target_delimiter": " ",
|
441 |
+
"fewshot_delimiter": "\n\n",
|
442 |
+
"num_fewshot": 0,
|
443 |
+
"metric_list": [
|
444 |
+
{
|
445 |
+
"metric": "acc"
|
446 |
+
}
|
447 |
+
],
|
448 |
+
"output_type": "multiple_choice",
|
449 |
+
"repeats": 1,
|
450 |
+
"should_decontaminate": true,
|
451 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
452 |
+
"metadata": {
|
453 |
+
"version": 1.0
|
454 |
+
}
|
455 |
+
},
|
456 |
+
"blimp_animate_subject_trans": {
|
457 |
+
"task": "blimp_animate_subject_trans",
|
458 |
+
"group": "blimp",
|
459 |
+
"dataset_path": "blimp",
|
460 |
+
"dataset_name": "animate_subject_trans",
|
461 |
+
"validation_split": "train",
|
462 |
+
"doc_to_text": "",
|
463 |
+
"doc_to_target": 0,
|
464 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
465 |
+
"description": "",
|
466 |
+
"target_delimiter": " ",
|
467 |
+
"fewshot_delimiter": "\n\n",
|
468 |
+
"num_fewshot": 0,
|
469 |
+
"metric_list": [
|
470 |
+
{
|
471 |
+
"metric": "acc"
|
472 |
+
}
|
473 |
+
],
|
474 |
+
"output_type": "multiple_choice",
|
475 |
+
"repeats": 1,
|
476 |
+
"should_decontaminate": true,
|
477 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
478 |
+
"metadata": {
|
479 |
+
"version": 1.0
|
480 |
+
}
|
481 |
+
},
|
482 |
+
"blimp_causative": {
|
483 |
+
"task": "blimp_causative",
|
484 |
+
"group": "blimp",
|
485 |
+
"dataset_path": "blimp",
|
486 |
+
"dataset_name": "causative",
|
487 |
+
"validation_split": "train",
|
488 |
+
"doc_to_text": "",
|
489 |
+
"doc_to_target": 0,
|
490 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
491 |
+
"description": "",
|
492 |
+
"target_delimiter": " ",
|
493 |
+
"fewshot_delimiter": "\n\n",
|
494 |
+
"num_fewshot": 0,
|
495 |
+
"metric_list": [
|
496 |
+
{
|
497 |
+
"metric": "acc"
|
498 |
+
}
|
499 |
+
],
|
500 |
+
"output_type": "multiple_choice",
|
501 |
+
"repeats": 1,
|
502 |
+
"should_decontaminate": true,
|
503 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
504 |
+
"metadata": {
|
505 |
+
"version": 1.0
|
506 |
+
}
|
507 |
+
},
|
508 |
+
"blimp_complex_NP_island": {
|
509 |
+
"task": "blimp_complex_NP_island",
|
510 |
+
"group": "blimp",
|
511 |
+
"dataset_path": "blimp",
|
512 |
+
"dataset_name": "complex_NP_island",
|
513 |
+
"validation_split": "train",
|
514 |
+
"doc_to_text": "",
|
515 |
+
"doc_to_target": 0,
|
516 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
517 |
+
"description": "",
|
518 |
+
"target_delimiter": " ",
|
519 |
+
"fewshot_delimiter": "\n\n",
|
520 |
+
"num_fewshot": 0,
|
521 |
+
"metric_list": [
|
522 |
+
{
|
523 |
+
"metric": "acc"
|
524 |
+
}
|
525 |
+
],
|
526 |
+
"output_type": "multiple_choice",
|
527 |
+
"repeats": 1,
|
528 |
+
"should_decontaminate": true,
|
529 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
530 |
+
"metadata": {
|
531 |
+
"version": 1.0
|
532 |
+
}
|
533 |
+
},
|
534 |
+
"blimp_coordinate_structure_constraint_complex_left_branch": {
|
535 |
+
"task": "blimp_coordinate_structure_constraint_complex_left_branch",
|
536 |
+
"group": "blimp",
|
537 |
+
"dataset_path": "blimp",
|
538 |
+
"dataset_name": "coordinate_structure_constraint_complex_left_branch",
|
539 |
+
"validation_split": "train",
|
540 |
+
"doc_to_text": "",
|
541 |
+
"doc_to_target": 0,
|
542 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
543 |
+
"description": "",
|
544 |
+
"target_delimiter": " ",
|
545 |
+
"fewshot_delimiter": "\n\n",
|
546 |
+
"num_fewshot": 0,
|
547 |
+
"metric_list": [
|
548 |
+
{
|
549 |
+
"metric": "acc"
|
550 |
+
}
|
551 |
+
],
|
552 |
+
"output_type": "multiple_choice",
|
553 |
+
"repeats": 1,
|
554 |
+
"should_decontaminate": true,
|
555 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
556 |
+
"metadata": {
|
557 |
+
"version": 1.0
|
558 |
+
}
|
559 |
+
},
|
560 |
+
"blimp_coordinate_structure_constraint_object_extraction": {
|
561 |
+
"task": "blimp_coordinate_structure_constraint_object_extraction",
|
562 |
+
"group": "blimp",
|
563 |
+
"dataset_path": "blimp",
|
564 |
+
"dataset_name": "coordinate_structure_constraint_object_extraction",
|
565 |
+
"validation_split": "train",
|
566 |
+
"doc_to_text": "",
|
567 |
+
"doc_to_target": 0,
|
568 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
569 |
+
"description": "",
|
570 |
+
"target_delimiter": " ",
|
571 |
+
"fewshot_delimiter": "\n\n",
|
572 |
+
"num_fewshot": 0,
|
573 |
+
"metric_list": [
|
574 |
+
{
|
575 |
+
"metric": "acc"
|
576 |
+
}
|
577 |
+
],
|
578 |
+
"output_type": "multiple_choice",
|
579 |
+
"repeats": 1,
|
580 |
+
"should_decontaminate": true,
|
581 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
582 |
+
"metadata": {
|
583 |
+
"version": 1.0
|
584 |
+
}
|
585 |
+
},
|
586 |
+
"blimp_determiner_noun_agreement_1": {
|
587 |
+
"task": "blimp_determiner_noun_agreement_1",
|
588 |
+
"group": "blimp",
|
589 |
+
"dataset_path": "blimp",
|
590 |
+
"dataset_name": "determiner_noun_agreement_1",
|
591 |
+
"validation_split": "train",
|
592 |
+
"doc_to_text": "",
|
593 |
+
"doc_to_target": 0,
|
594 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
595 |
+
"description": "",
|
596 |
+
"target_delimiter": " ",
|
597 |
+
"fewshot_delimiter": "\n\n",
|
598 |
+
"num_fewshot": 0,
|
599 |
+
"metric_list": [
|
600 |
+
{
|
601 |
+
"metric": "acc"
|
602 |
+
}
|
603 |
+
],
|
604 |
+
"output_type": "multiple_choice",
|
605 |
+
"repeats": 1,
|
606 |
+
"should_decontaminate": true,
|
607 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
608 |
+
"metadata": {
|
609 |
+
"version": 1.0
|
610 |
+
}
|
611 |
+
},
|
612 |
+
"blimp_determiner_noun_agreement_2": {
|
613 |
+
"task": "blimp_determiner_noun_agreement_2",
|
614 |
+
"group": "blimp",
|
615 |
+
"dataset_path": "blimp",
|
616 |
+
"dataset_name": "determiner_noun_agreement_2",
|
617 |
+
"validation_split": "train",
|
618 |
+
"doc_to_text": "",
|
619 |
+
"doc_to_target": 0,
|
620 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
621 |
+
"description": "",
|
622 |
+
"target_delimiter": " ",
|
623 |
+
"fewshot_delimiter": "\n\n",
|
624 |
+
"num_fewshot": 0,
|
625 |
+
"metric_list": [
|
626 |
+
{
|
627 |
+
"metric": "acc"
|
628 |
+
}
|
629 |
+
],
|
630 |
+
"output_type": "multiple_choice",
|
631 |
+
"repeats": 1,
|
632 |
+
"should_decontaminate": true,
|
633 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
634 |
+
"metadata": {
|
635 |
+
"version": 1.0
|
636 |
+
}
|
637 |
+
},
|
638 |
+
"blimp_determiner_noun_agreement_irregular_1": {
|
639 |
+
"task": "blimp_determiner_noun_agreement_irregular_1",
|
640 |
+
"group": "blimp",
|
641 |
+
"dataset_path": "blimp",
|
642 |
+
"dataset_name": "determiner_noun_agreement_irregular_1",
|
643 |
+
"validation_split": "train",
|
644 |
+
"doc_to_text": "",
|
645 |
+
"doc_to_target": 0,
|
646 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
647 |
+
"description": "",
|
648 |
+
"target_delimiter": " ",
|
649 |
+
"fewshot_delimiter": "\n\n",
|
650 |
+
"num_fewshot": 0,
|
651 |
+
"metric_list": [
|
652 |
+
{
|
653 |
+
"metric": "acc"
|
654 |
+
}
|
655 |
+
],
|
656 |
+
"output_type": "multiple_choice",
|
657 |
+
"repeats": 1,
|
658 |
+
"should_decontaminate": true,
|
659 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
660 |
+
"metadata": {
|
661 |
+
"version": 1.0
|
662 |
+
}
|
663 |
+
},
|
664 |
+
"blimp_determiner_noun_agreement_irregular_2": {
|
665 |
+
"task": "blimp_determiner_noun_agreement_irregular_2",
|
666 |
+
"group": "blimp",
|
667 |
+
"dataset_path": "blimp",
|
668 |
+
"dataset_name": "determiner_noun_agreement_irregular_2",
|
669 |
+
"validation_split": "train",
|
670 |
+
"doc_to_text": "",
|
671 |
+
"doc_to_target": 0,
|
672 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
673 |
+
"description": "",
|
674 |
+
"target_delimiter": " ",
|
675 |
+
"fewshot_delimiter": "\n\n",
|
676 |
+
"num_fewshot": 0,
|
677 |
+
"metric_list": [
|
678 |
+
{
|
679 |
+
"metric": "acc"
|
680 |
+
}
|
681 |
+
],
|
682 |
+
"output_type": "multiple_choice",
|
683 |
+
"repeats": 1,
|
684 |
+
"should_decontaminate": true,
|
685 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
686 |
+
"metadata": {
|
687 |
+
"version": 1.0
|
688 |
+
}
|
689 |
+
},
|
690 |
+
"blimp_determiner_noun_agreement_with_adj_2": {
|
691 |
+
"task": "blimp_determiner_noun_agreement_with_adj_2",
|
692 |
+
"group": "blimp",
|
693 |
+
"dataset_path": "blimp",
|
694 |
+
"dataset_name": "determiner_noun_agreement_with_adj_2",
|
695 |
+
"validation_split": "train",
|
696 |
+
"doc_to_text": "",
|
697 |
+
"doc_to_target": 0,
|
698 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
699 |
+
"description": "",
|
700 |
+
"target_delimiter": " ",
|
701 |
+
"fewshot_delimiter": "\n\n",
|
702 |
+
"num_fewshot": 0,
|
703 |
+
"metric_list": [
|
704 |
+
{
|
705 |
+
"metric": "acc"
|
706 |
+
}
|
707 |
+
],
|
708 |
+
"output_type": "multiple_choice",
|
709 |
+
"repeats": 1,
|
710 |
+
"should_decontaminate": true,
|
711 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
712 |
+
"metadata": {
|
713 |
+
"version": 1.0
|
714 |
+
}
|
715 |
+
},
|
716 |
+
"blimp_determiner_noun_agreement_with_adj_irregular_1": {
|
717 |
+
"task": "blimp_determiner_noun_agreement_with_adj_irregular_1",
|
718 |
+
"group": "blimp",
|
719 |
+
"dataset_path": "blimp",
|
720 |
+
"dataset_name": "determiner_noun_agreement_with_adj_irregular_1",
|
721 |
+
"validation_split": "train",
|
722 |
+
"doc_to_text": "",
|
723 |
+
"doc_to_target": 0,
|
724 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
725 |
+
"description": "",
|
726 |
+
"target_delimiter": " ",
|
727 |
+
"fewshot_delimiter": "\n\n",
|
728 |
+
"num_fewshot": 0,
|
729 |
+
"metric_list": [
|
730 |
+
{
|
731 |
+
"metric": "acc"
|
732 |
+
}
|
733 |
+
],
|
734 |
+
"output_type": "multiple_choice",
|
735 |
+
"repeats": 1,
|
736 |
+
"should_decontaminate": true,
|
737 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
738 |
+
"metadata": {
|
739 |
+
"version": 1.0
|
740 |
+
}
|
741 |
+
},
|
742 |
+
"blimp_determiner_noun_agreement_with_adj_irregular_2": {
|
743 |
+
"task": "blimp_determiner_noun_agreement_with_adj_irregular_2",
|
744 |
+
"group": "blimp",
|
745 |
+
"dataset_path": "blimp",
|
746 |
+
"dataset_name": "determiner_noun_agreement_with_adj_irregular_2",
|
747 |
+
"validation_split": "train",
|
748 |
+
"doc_to_text": "",
|
749 |
+
"doc_to_target": 0,
|
750 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
751 |
+
"description": "",
|
752 |
+
"target_delimiter": " ",
|
753 |
+
"fewshot_delimiter": "\n\n",
|
754 |
+
"num_fewshot": 0,
|
755 |
+
"metric_list": [
|
756 |
+
{
|
757 |
+
"metric": "acc"
|
758 |
+
}
|
759 |
+
],
|
760 |
+
"output_type": "multiple_choice",
|
761 |
+
"repeats": 1,
|
762 |
+
"should_decontaminate": true,
|
763 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
764 |
+
"metadata": {
|
765 |
+
"version": 1.0
|
766 |
+
}
|
767 |
+
},
|
768 |
+
"blimp_determiner_noun_agreement_with_adjective_1": {
|
769 |
+
"task": "blimp_determiner_noun_agreement_with_adjective_1",
|
770 |
+
"group": "blimp",
|
771 |
+
"dataset_path": "blimp",
|
772 |
+
"dataset_name": "determiner_noun_agreement_with_adjective_1",
|
773 |
+
"validation_split": "train",
|
774 |
+
"doc_to_text": "",
|
775 |
+
"doc_to_target": 0,
|
776 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
777 |
+
"description": "",
|
778 |
+
"target_delimiter": " ",
|
779 |
+
"fewshot_delimiter": "\n\n",
|
780 |
+
"num_fewshot": 0,
|
781 |
+
"metric_list": [
|
782 |
+
{
|
783 |
+
"metric": "acc"
|
784 |
+
}
|
785 |
+
],
|
786 |
+
"output_type": "multiple_choice",
|
787 |
+
"repeats": 1,
|
788 |
+
"should_decontaminate": true,
|
789 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
790 |
+
"metadata": {
|
791 |
+
"version": 1.0
|
792 |
+
}
|
793 |
+
},
|
794 |
+
"blimp_distractor_agreement_relational_noun": {
|
795 |
+
"task": "blimp_distractor_agreement_relational_noun",
|
796 |
+
"group": "blimp",
|
797 |
+
"dataset_path": "blimp",
|
798 |
+
"dataset_name": "distractor_agreement_relational_noun",
|
799 |
+
"validation_split": "train",
|
800 |
+
"doc_to_text": "",
|
801 |
+
"doc_to_target": 0,
|
802 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
803 |
+
"description": "",
|
804 |
+
"target_delimiter": " ",
|
805 |
+
"fewshot_delimiter": "\n\n",
|
806 |
+
"num_fewshot": 0,
|
807 |
+
"metric_list": [
|
808 |
+
{
|
809 |
+
"metric": "acc"
|
810 |
+
}
|
811 |
+
],
|
812 |
+
"output_type": "multiple_choice",
|
813 |
+
"repeats": 1,
|
814 |
+
"should_decontaminate": true,
|
815 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
816 |
+
"metadata": {
|
817 |
+
"version": 1.0
|
818 |
+
}
|
819 |
+
},
|
820 |
+
"blimp_distractor_agreement_relative_clause": {
|
821 |
+
"task": "blimp_distractor_agreement_relative_clause",
|
822 |
+
"group": "blimp",
|
823 |
+
"dataset_path": "blimp",
|
824 |
+
"dataset_name": "distractor_agreement_relative_clause",
|
825 |
+
"validation_split": "train",
|
826 |
+
"doc_to_text": "",
|
827 |
+
"doc_to_target": 0,
|
828 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
829 |
+
"description": "",
|
830 |
+
"target_delimiter": " ",
|
831 |
+
"fewshot_delimiter": "\n\n",
|
832 |
+
"num_fewshot": 0,
|
833 |
+
"metric_list": [
|
834 |
+
{
|
835 |
+
"metric": "acc"
|
836 |
+
}
|
837 |
+
],
|
838 |
+
"output_type": "multiple_choice",
|
839 |
+
"repeats": 1,
|
840 |
+
"should_decontaminate": true,
|
841 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
842 |
+
"metadata": {
|
843 |
+
"version": 1.0
|
844 |
+
}
|
845 |
+
},
|
846 |
+
"blimp_drop_argument": {
|
847 |
+
"task": "blimp_drop_argument",
|
848 |
+
"group": "blimp",
|
849 |
+
"dataset_path": "blimp",
|
850 |
+
"dataset_name": "drop_argument",
|
851 |
+
"validation_split": "train",
|
852 |
+
"doc_to_text": "",
|
853 |
+
"doc_to_target": 0,
|
854 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
855 |
+
"description": "",
|
856 |
+
"target_delimiter": " ",
|
857 |
+
"fewshot_delimiter": "\n\n",
|
858 |
+
"num_fewshot": 0,
|
859 |
+
"metric_list": [
|
860 |
+
{
|
861 |
+
"metric": "acc"
|
862 |
+
}
|
863 |
+
],
|
864 |
+
"output_type": "multiple_choice",
|
865 |
+
"repeats": 1,
|
866 |
+
"should_decontaminate": true,
|
867 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
868 |
+
"metadata": {
|
869 |
+
"version": 1.0
|
870 |
+
}
|
871 |
+
},
|
872 |
+
"blimp_ellipsis_n_bar_1": {
|
873 |
+
"task": "blimp_ellipsis_n_bar_1",
|
874 |
+
"group": "blimp",
|
875 |
+
"dataset_path": "blimp",
|
876 |
+
"dataset_name": "ellipsis_n_bar_1",
|
877 |
+
"validation_split": "train",
|
878 |
+
"doc_to_text": "",
|
879 |
+
"doc_to_target": 0,
|
880 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
881 |
+
"description": "",
|
882 |
+
"target_delimiter": " ",
|
883 |
+
"fewshot_delimiter": "\n\n",
|
884 |
+
"num_fewshot": 0,
|
885 |
+
"metric_list": [
|
886 |
+
{
|
887 |
+
"metric": "acc"
|
888 |
+
}
|
889 |
+
],
|
890 |
+
"output_type": "multiple_choice",
|
891 |
+
"repeats": 1,
|
892 |
+
"should_decontaminate": true,
|
893 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
894 |
+
"metadata": {
|
895 |
+
"version": 1.0
|
896 |
+
}
|
897 |
+
},
|
898 |
+
"blimp_ellipsis_n_bar_2": {
|
899 |
+
"task": "blimp_ellipsis_n_bar_2",
|
900 |
+
"group": "blimp",
|
901 |
+
"dataset_path": "blimp",
|
902 |
+
"dataset_name": "ellipsis_n_bar_2",
|
903 |
+
"validation_split": "train",
|
904 |
+
"doc_to_text": "",
|
905 |
+
"doc_to_target": 0,
|
906 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
907 |
+
"description": "",
|
908 |
+
"target_delimiter": " ",
|
909 |
+
"fewshot_delimiter": "\n\n",
|
910 |
+
"num_fewshot": 0,
|
911 |
+
"metric_list": [
|
912 |
+
{
|
913 |
+
"metric": "acc"
|
914 |
+
}
|
915 |
+
],
|
916 |
+
"output_type": "multiple_choice",
|
917 |
+
"repeats": 1,
|
918 |
+
"should_decontaminate": true,
|
919 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
920 |
+
"metadata": {
|
921 |
+
"version": 1.0
|
922 |
+
}
|
923 |
+
},
|
924 |
+
"blimp_existential_there_object_raising": {
|
925 |
+
"task": "blimp_existential_there_object_raising",
|
926 |
+
"group": "blimp",
|
927 |
+
"dataset_path": "blimp",
|
928 |
+
"dataset_name": "existential_there_object_raising",
|
929 |
+
"validation_split": "train",
|
930 |
+
"doc_to_text": "",
|
931 |
+
"doc_to_target": 0,
|
932 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
933 |
+
"description": "",
|
934 |
+
"target_delimiter": " ",
|
935 |
+
"fewshot_delimiter": "\n\n",
|
936 |
+
"num_fewshot": 0,
|
937 |
+
"metric_list": [
|
938 |
+
{
|
939 |
+
"metric": "acc"
|
940 |
+
}
|
941 |
+
],
|
942 |
+
"output_type": "multiple_choice",
|
943 |
+
"repeats": 1,
|
944 |
+
"should_decontaminate": true,
|
945 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
946 |
+
"metadata": {
|
947 |
+
"version": 1.0
|
948 |
+
}
|
949 |
+
},
|
950 |
+
"blimp_existential_there_quantifiers_1": {
|
951 |
+
"task": "blimp_existential_there_quantifiers_1",
|
952 |
+
"group": "blimp",
|
953 |
+
"dataset_path": "blimp",
|
954 |
+
"dataset_name": "existential_there_quantifiers_1",
|
955 |
+
"validation_split": "train",
|
956 |
+
"doc_to_text": "",
|
957 |
+
"doc_to_target": 0,
|
958 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
959 |
+
"description": "",
|
960 |
+
"target_delimiter": " ",
|
961 |
+
"fewshot_delimiter": "\n\n",
|
962 |
+
"num_fewshot": 0,
|
963 |
+
"metric_list": [
|
964 |
+
{
|
965 |
+
"metric": "acc"
|
966 |
+
}
|
967 |
+
],
|
968 |
+
"output_type": "multiple_choice",
|
969 |
+
"repeats": 1,
|
970 |
+
"should_decontaminate": true,
|
971 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
972 |
+
"metadata": {
|
973 |
+
"version": 1.0
|
974 |
+
}
|
975 |
+
},
|
976 |
+
"blimp_existential_there_quantifiers_2": {
|
977 |
+
"task": "blimp_existential_there_quantifiers_2",
|
978 |
+
"group": "blimp",
|
979 |
+
"dataset_path": "blimp",
|
980 |
+
"dataset_name": "existential_there_quantifiers_2",
|
981 |
+
"validation_split": "train",
|
982 |
+
"doc_to_text": "",
|
983 |
+
"doc_to_target": 0,
|
984 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
985 |
+
"description": "",
|
986 |
+
"target_delimiter": " ",
|
987 |
+
"fewshot_delimiter": "\n\n",
|
988 |
+
"num_fewshot": 0,
|
989 |
+
"metric_list": [
|
990 |
+
{
|
991 |
+
"metric": "acc"
|
992 |
+
}
|
993 |
+
],
|
994 |
+
"output_type": "multiple_choice",
|
995 |
+
"repeats": 1,
|
996 |
+
"should_decontaminate": true,
|
997 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
998 |
+
"metadata": {
|
999 |
+
"version": 1.0
|
1000 |
+
}
|
1001 |
+
},
|
1002 |
+
"blimp_existential_there_subject_raising": {
|
1003 |
+
"task": "blimp_existential_there_subject_raising",
|
1004 |
+
"group": "blimp",
|
1005 |
+
"dataset_path": "blimp",
|
1006 |
+
"dataset_name": "existential_there_subject_raising",
|
1007 |
+
"validation_split": "train",
|
1008 |
+
"doc_to_text": "",
|
1009 |
+
"doc_to_target": 0,
|
1010 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1011 |
+
"description": "",
|
1012 |
+
"target_delimiter": " ",
|
1013 |
+
"fewshot_delimiter": "\n\n",
|
1014 |
+
"num_fewshot": 0,
|
1015 |
+
"metric_list": [
|
1016 |
+
{
|
1017 |
+
"metric": "acc"
|
1018 |
+
}
|
1019 |
+
],
|
1020 |
+
"output_type": "multiple_choice",
|
1021 |
+
"repeats": 1,
|
1022 |
+
"should_decontaminate": true,
|
1023 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1024 |
+
"metadata": {
|
1025 |
+
"version": 1.0
|
1026 |
+
}
|
1027 |
+
},
|
1028 |
+
"blimp_expletive_it_object_raising": {
|
1029 |
+
"task": "blimp_expletive_it_object_raising",
|
1030 |
+
"group": "blimp",
|
1031 |
+
"dataset_path": "blimp",
|
1032 |
+
"dataset_name": "expletive_it_object_raising",
|
1033 |
+
"validation_split": "train",
|
1034 |
+
"doc_to_text": "",
|
1035 |
+
"doc_to_target": 0,
|
1036 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1037 |
+
"description": "",
|
1038 |
+
"target_delimiter": " ",
|
1039 |
+
"fewshot_delimiter": "\n\n",
|
1040 |
+
"num_fewshot": 0,
|
1041 |
+
"metric_list": [
|
1042 |
+
{
|
1043 |
+
"metric": "acc"
|
1044 |
+
}
|
1045 |
+
],
|
1046 |
+
"output_type": "multiple_choice",
|
1047 |
+
"repeats": 1,
|
1048 |
+
"should_decontaminate": true,
|
1049 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1050 |
+
"metadata": {
|
1051 |
+
"version": 1.0
|
1052 |
+
}
|
1053 |
+
},
|
1054 |
+
"blimp_inchoative": {
|
1055 |
+
"task": "blimp_inchoative",
|
1056 |
+
"group": "blimp",
|
1057 |
+
"dataset_path": "blimp",
|
1058 |
+
"dataset_name": "inchoative",
|
1059 |
+
"validation_split": "train",
|
1060 |
+
"doc_to_text": "",
|
1061 |
+
"doc_to_target": 0,
|
1062 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1063 |
+
"description": "",
|
1064 |
+
"target_delimiter": " ",
|
1065 |
+
"fewshot_delimiter": "\n\n",
|
1066 |
+
"num_fewshot": 0,
|
1067 |
+
"metric_list": [
|
1068 |
+
{
|
1069 |
+
"metric": "acc"
|
1070 |
+
}
|
1071 |
+
],
|
1072 |
+
"output_type": "multiple_choice",
|
1073 |
+
"repeats": 1,
|
1074 |
+
"should_decontaminate": true,
|
1075 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1076 |
+
"metadata": {
|
1077 |
+
"version": 1.0
|
1078 |
+
}
|
1079 |
+
},
|
1080 |
+
"blimp_intransitive": {
|
1081 |
+
"task": "blimp_intransitive",
|
1082 |
+
"group": "blimp",
|
1083 |
+
"dataset_path": "blimp",
|
1084 |
+
"dataset_name": "intransitive",
|
1085 |
+
"validation_split": "train",
|
1086 |
+
"doc_to_text": "",
|
1087 |
+
"doc_to_target": 0,
|
1088 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1089 |
+
"description": "",
|
1090 |
+
"target_delimiter": " ",
|
1091 |
+
"fewshot_delimiter": "\n\n",
|
1092 |
+
"num_fewshot": 0,
|
1093 |
+
"metric_list": [
|
1094 |
+
{
|
1095 |
+
"metric": "acc"
|
1096 |
+
}
|
1097 |
+
],
|
1098 |
+
"output_type": "multiple_choice",
|
1099 |
+
"repeats": 1,
|
1100 |
+
"should_decontaminate": true,
|
1101 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1102 |
+
"metadata": {
|
1103 |
+
"version": 1.0
|
1104 |
+
}
|
1105 |
+
},
|
1106 |
+
"blimp_irregular_past_participle_adjectives": {
|
1107 |
+
"task": "blimp_irregular_past_participle_adjectives",
|
1108 |
+
"group": "blimp",
|
1109 |
+
"dataset_path": "blimp",
|
1110 |
+
"dataset_name": "irregular_past_participle_adjectives",
|
1111 |
+
"validation_split": "train",
|
1112 |
+
"doc_to_text": "",
|
1113 |
+
"doc_to_target": 0,
|
1114 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1115 |
+
"description": "",
|
1116 |
+
"target_delimiter": " ",
|
1117 |
+
"fewshot_delimiter": "\n\n",
|
1118 |
+
"num_fewshot": 0,
|
1119 |
+
"metric_list": [
|
1120 |
+
{
|
1121 |
+
"metric": "acc"
|
1122 |
+
}
|
1123 |
+
],
|
1124 |
+
"output_type": "multiple_choice",
|
1125 |
+
"repeats": 1,
|
1126 |
+
"should_decontaminate": true,
|
1127 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1128 |
+
"metadata": {
|
1129 |
+
"version": 1.0
|
1130 |
+
}
|
1131 |
+
},
|
1132 |
+
"blimp_irregular_past_participle_verbs": {
|
1133 |
+
"task": "blimp_irregular_past_participle_verbs",
|
1134 |
+
"group": "blimp",
|
1135 |
+
"dataset_path": "blimp",
|
1136 |
+
"dataset_name": "irregular_past_participle_verbs",
|
1137 |
+
"validation_split": "train",
|
1138 |
+
"doc_to_text": "",
|
1139 |
+
"doc_to_target": 0,
|
1140 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1141 |
+
"description": "",
|
1142 |
+
"target_delimiter": " ",
|
1143 |
+
"fewshot_delimiter": "\n\n",
|
1144 |
+
"num_fewshot": 0,
|
1145 |
+
"metric_list": [
|
1146 |
+
{
|
1147 |
+
"metric": "acc"
|
1148 |
+
}
|
1149 |
+
],
|
1150 |
+
"output_type": "multiple_choice",
|
1151 |
+
"repeats": 1,
|
1152 |
+
"should_decontaminate": true,
|
1153 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1154 |
+
"metadata": {
|
1155 |
+
"version": 1.0
|
1156 |
+
}
|
1157 |
+
},
|
1158 |
+
"blimp_irregular_plural_subject_verb_agreement_1": {
|
1159 |
+
"task": "blimp_irregular_plural_subject_verb_agreement_1",
|
1160 |
+
"group": "blimp",
|
1161 |
+
"dataset_path": "blimp",
|
1162 |
+
"dataset_name": "irregular_plural_subject_verb_agreement_1",
|
1163 |
+
"validation_split": "train",
|
1164 |
+
"doc_to_text": "",
|
1165 |
+
"doc_to_target": 0,
|
1166 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1167 |
+
"description": "",
|
1168 |
+
"target_delimiter": " ",
|
1169 |
+
"fewshot_delimiter": "\n\n",
|
1170 |
+
"num_fewshot": 0,
|
1171 |
+
"metric_list": [
|
1172 |
+
{
|
1173 |
+
"metric": "acc"
|
1174 |
+
}
|
1175 |
+
],
|
1176 |
+
"output_type": "multiple_choice",
|
1177 |
+
"repeats": 1,
|
1178 |
+
"should_decontaminate": true,
|
1179 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1180 |
+
"metadata": {
|
1181 |
+
"version": 1.0
|
1182 |
+
}
|
1183 |
+
},
|
1184 |
+
"blimp_irregular_plural_subject_verb_agreement_2": {
|
1185 |
+
"task": "blimp_irregular_plural_subject_verb_agreement_2",
|
1186 |
+
"group": "blimp",
|
1187 |
+
"dataset_path": "blimp",
|
1188 |
+
"dataset_name": "irregular_plural_subject_verb_agreement_2",
|
1189 |
+
"validation_split": "train",
|
1190 |
+
"doc_to_text": "",
|
1191 |
+
"doc_to_target": 0,
|
1192 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1193 |
+
"description": "",
|
1194 |
+
"target_delimiter": " ",
|
1195 |
+
"fewshot_delimiter": "\n\n",
|
1196 |
+
"num_fewshot": 0,
|
1197 |
+
"metric_list": [
|
1198 |
+
{
|
1199 |
+
"metric": "acc"
|
1200 |
+
}
|
1201 |
+
],
|
1202 |
+
"output_type": "multiple_choice",
|
1203 |
+
"repeats": 1,
|
1204 |
+
"should_decontaminate": true,
|
1205 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1206 |
+
"metadata": {
|
1207 |
+
"version": 1.0
|
1208 |
+
}
|
1209 |
+
},
|
1210 |
+
"blimp_left_branch_island_echo_question": {
|
1211 |
+
"task": "blimp_left_branch_island_echo_question",
|
1212 |
+
"group": "blimp",
|
1213 |
+
"dataset_path": "blimp",
|
1214 |
+
"dataset_name": "left_branch_island_echo_question",
|
1215 |
+
"validation_split": "train",
|
1216 |
+
"doc_to_text": "",
|
1217 |
+
"doc_to_target": 0,
|
1218 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1219 |
+
"description": "",
|
1220 |
+
"target_delimiter": " ",
|
1221 |
+
"fewshot_delimiter": "\n\n",
|
1222 |
+
"num_fewshot": 0,
|
1223 |
+
"metric_list": [
|
1224 |
+
{
|
1225 |
+
"metric": "acc"
|
1226 |
+
}
|
1227 |
+
],
|
1228 |
+
"output_type": "multiple_choice",
|
1229 |
+
"repeats": 1,
|
1230 |
+
"should_decontaminate": true,
|
1231 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1232 |
+
"metadata": {
|
1233 |
+
"version": 1.0
|
1234 |
+
}
|
1235 |
+
},
|
1236 |
+
"blimp_left_branch_island_simple_question": {
|
1237 |
+
"task": "blimp_left_branch_island_simple_question",
|
1238 |
+
"group": "blimp",
|
1239 |
+
"dataset_path": "blimp",
|
1240 |
+
"dataset_name": "left_branch_island_simple_question",
|
1241 |
+
"validation_split": "train",
|
1242 |
+
"doc_to_text": "",
|
1243 |
+
"doc_to_target": 0,
|
1244 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1245 |
+
"description": "",
|
1246 |
+
"target_delimiter": " ",
|
1247 |
+
"fewshot_delimiter": "\n\n",
|
1248 |
+
"num_fewshot": 0,
|
1249 |
+
"metric_list": [
|
1250 |
+
{
|
1251 |
+
"metric": "acc"
|
1252 |
+
}
|
1253 |
+
],
|
1254 |
+
"output_type": "multiple_choice",
|
1255 |
+
"repeats": 1,
|
1256 |
+
"should_decontaminate": true,
|
1257 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1258 |
+
"metadata": {
|
1259 |
+
"version": 1.0
|
1260 |
+
}
|
1261 |
+
},
|
1262 |
+
"blimp_matrix_question_npi_licensor_present": {
|
1263 |
+
"task": "blimp_matrix_question_npi_licensor_present",
|
1264 |
+
"group": "blimp",
|
1265 |
+
"dataset_path": "blimp",
|
1266 |
+
"dataset_name": "matrix_question_npi_licensor_present",
|
1267 |
+
"validation_split": "train",
|
1268 |
+
"doc_to_text": "",
|
1269 |
+
"doc_to_target": 0,
|
1270 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1271 |
+
"description": "",
|
1272 |
+
"target_delimiter": " ",
|
1273 |
+
"fewshot_delimiter": "\n\n",
|
1274 |
+
"num_fewshot": 0,
|
1275 |
+
"metric_list": [
|
1276 |
+
{
|
1277 |
+
"metric": "acc"
|
1278 |
+
}
|
1279 |
+
],
|
1280 |
+
"output_type": "multiple_choice",
|
1281 |
+
"repeats": 1,
|
1282 |
+
"should_decontaminate": true,
|
1283 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1284 |
+
"metadata": {
|
1285 |
+
"version": 1.0
|
1286 |
+
}
|
1287 |
+
},
|
1288 |
+
"blimp_npi_present_1": {
|
1289 |
+
"task": "blimp_npi_present_1",
|
1290 |
+
"group": "blimp",
|
1291 |
+
"dataset_path": "blimp",
|
1292 |
+
"dataset_name": "npi_present_1",
|
1293 |
+
"validation_split": "train",
|
1294 |
+
"doc_to_text": "",
|
1295 |
+
"doc_to_target": 0,
|
1296 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1297 |
+
"description": "",
|
1298 |
+
"target_delimiter": " ",
|
1299 |
+
"fewshot_delimiter": "\n\n",
|
1300 |
+
"num_fewshot": 0,
|
1301 |
+
"metric_list": [
|
1302 |
+
{
|
1303 |
+
"metric": "acc"
|
1304 |
+
}
|
1305 |
+
],
|
1306 |
+
"output_type": "multiple_choice",
|
1307 |
+
"repeats": 1,
|
1308 |
+
"should_decontaminate": true,
|
1309 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1310 |
+
"metadata": {
|
1311 |
+
"version": 1.0
|
1312 |
+
}
|
1313 |
+
},
|
1314 |
+
"blimp_npi_present_2": {
|
1315 |
+
"task": "blimp_npi_present_2",
|
1316 |
+
"group": "blimp",
|
1317 |
+
"dataset_path": "blimp",
|
1318 |
+
"dataset_name": "npi_present_2",
|
1319 |
+
"validation_split": "train",
|
1320 |
+
"doc_to_text": "",
|
1321 |
+
"doc_to_target": 0,
|
1322 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1323 |
+
"description": "",
|
1324 |
+
"target_delimiter": " ",
|
1325 |
+
"fewshot_delimiter": "\n\n",
|
1326 |
+
"num_fewshot": 0,
|
1327 |
+
"metric_list": [
|
1328 |
+
{
|
1329 |
+
"metric": "acc"
|
1330 |
+
}
|
1331 |
+
],
|
1332 |
+
"output_type": "multiple_choice",
|
1333 |
+
"repeats": 1,
|
1334 |
+
"should_decontaminate": true,
|
1335 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1336 |
+
"metadata": {
|
1337 |
+
"version": 1.0
|
1338 |
+
}
|
1339 |
+
},
|
1340 |
+
"blimp_only_npi_licensor_present": {
|
1341 |
+
"task": "blimp_only_npi_licensor_present",
|
1342 |
+
"group": "blimp",
|
1343 |
+
"dataset_path": "blimp",
|
1344 |
+
"dataset_name": "only_npi_licensor_present",
|
1345 |
+
"validation_split": "train",
|
1346 |
+
"doc_to_text": "",
|
1347 |
+
"doc_to_target": 0,
|
1348 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1349 |
+
"description": "",
|
1350 |
+
"target_delimiter": " ",
|
1351 |
+
"fewshot_delimiter": "\n\n",
|
1352 |
+
"num_fewshot": 0,
|
1353 |
+
"metric_list": [
|
1354 |
+
{
|
1355 |
+
"metric": "acc"
|
1356 |
+
}
|
1357 |
+
],
|
1358 |
+
"output_type": "multiple_choice",
|
1359 |
+
"repeats": 1,
|
1360 |
+
"should_decontaminate": true,
|
1361 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1362 |
+
"metadata": {
|
1363 |
+
"version": 1.0
|
1364 |
+
}
|
1365 |
+
},
|
1366 |
+
"blimp_only_npi_scope": {
|
1367 |
+
"task": "blimp_only_npi_scope",
|
1368 |
+
"group": "blimp",
|
1369 |
+
"dataset_path": "blimp",
|
1370 |
+
"dataset_name": "only_npi_scope",
|
1371 |
+
"validation_split": "train",
|
1372 |
+
"doc_to_text": "",
|
1373 |
+
"doc_to_target": 0,
|
1374 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1375 |
+
"description": "",
|
1376 |
+
"target_delimiter": " ",
|
1377 |
+
"fewshot_delimiter": "\n\n",
|
1378 |
+
"num_fewshot": 0,
|
1379 |
+
"metric_list": [
|
1380 |
+
{
|
1381 |
+
"metric": "acc"
|
1382 |
+
}
|
1383 |
+
],
|
1384 |
+
"output_type": "multiple_choice",
|
1385 |
+
"repeats": 1,
|
1386 |
+
"should_decontaminate": true,
|
1387 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1388 |
+
"metadata": {
|
1389 |
+
"version": 1.0
|
1390 |
+
}
|
1391 |
+
},
|
1392 |
+
"blimp_passive_1": {
|
1393 |
+
"task": "blimp_passive_1",
|
1394 |
+
"group": "blimp",
|
1395 |
+
"dataset_path": "blimp",
|
1396 |
+
"dataset_name": "passive_1",
|
1397 |
+
"validation_split": "train",
|
1398 |
+
"doc_to_text": "",
|
1399 |
+
"doc_to_target": 0,
|
1400 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1401 |
+
"description": "",
|
1402 |
+
"target_delimiter": " ",
|
1403 |
+
"fewshot_delimiter": "\n\n",
|
1404 |
+
"num_fewshot": 0,
|
1405 |
+
"metric_list": [
|
1406 |
+
{
|
1407 |
+
"metric": "acc"
|
1408 |
+
}
|
1409 |
+
],
|
1410 |
+
"output_type": "multiple_choice",
|
1411 |
+
"repeats": 1,
|
1412 |
+
"should_decontaminate": true,
|
1413 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1414 |
+
"metadata": {
|
1415 |
+
"version": 1.0
|
1416 |
+
}
|
1417 |
+
},
|
1418 |
+
"blimp_passive_2": {
|
1419 |
+
"task": "blimp_passive_2",
|
1420 |
+
"group": "blimp",
|
1421 |
+
"dataset_path": "blimp",
|
1422 |
+
"dataset_name": "passive_2",
|
1423 |
+
"validation_split": "train",
|
1424 |
+
"doc_to_text": "",
|
1425 |
+
"doc_to_target": 0,
|
1426 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1427 |
+
"description": "",
|
1428 |
+
"target_delimiter": " ",
|
1429 |
+
"fewshot_delimiter": "\n\n",
|
1430 |
+
"num_fewshot": 0,
|
1431 |
+
"metric_list": [
|
1432 |
+
{
|
1433 |
+
"metric": "acc"
|
1434 |
+
}
|
1435 |
+
],
|
1436 |
+
"output_type": "multiple_choice",
|
1437 |
+
"repeats": 1,
|
1438 |
+
"should_decontaminate": true,
|
1439 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1440 |
+
"metadata": {
|
1441 |
+
"version": 1.0
|
1442 |
+
}
|
1443 |
+
},
|
1444 |
+
"blimp_principle_A_c_command": {
|
1445 |
+
"task": "blimp_principle_A_c_command",
|
1446 |
+
"group": "blimp",
|
1447 |
+
"dataset_path": "blimp",
|
1448 |
+
"dataset_name": "principle_A_c_command",
|
1449 |
+
"validation_split": "train",
|
1450 |
+
"doc_to_text": "",
|
1451 |
+
"doc_to_target": 0,
|
1452 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1453 |
+
"description": "",
|
1454 |
+
"target_delimiter": " ",
|
1455 |
+
"fewshot_delimiter": "\n\n",
|
1456 |
+
"num_fewshot": 0,
|
1457 |
+
"metric_list": [
|
1458 |
+
{
|
1459 |
+
"metric": "acc"
|
1460 |
+
}
|
1461 |
+
],
|
1462 |
+
"output_type": "multiple_choice",
|
1463 |
+
"repeats": 1,
|
1464 |
+
"should_decontaminate": true,
|
1465 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1466 |
+
"metadata": {
|
1467 |
+
"version": 1.0
|
1468 |
+
}
|
1469 |
+
},
|
1470 |
+
"blimp_principle_A_case_1": {
|
1471 |
+
"task": "blimp_principle_A_case_1",
|
1472 |
+
"group": "blimp",
|
1473 |
+
"dataset_path": "blimp",
|
1474 |
+
"dataset_name": "principle_A_case_1",
|
1475 |
+
"validation_split": "train",
|
1476 |
+
"doc_to_text": "",
|
1477 |
+
"doc_to_target": 0,
|
1478 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1479 |
+
"description": "",
|
1480 |
+
"target_delimiter": " ",
|
1481 |
+
"fewshot_delimiter": "\n\n",
|
1482 |
+
"num_fewshot": 0,
|
1483 |
+
"metric_list": [
|
1484 |
+
{
|
1485 |
+
"metric": "acc"
|
1486 |
+
}
|
1487 |
+
],
|
1488 |
+
"output_type": "multiple_choice",
|
1489 |
+
"repeats": 1,
|
1490 |
+
"should_decontaminate": true,
|
1491 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1492 |
+
"metadata": {
|
1493 |
+
"version": 1.0
|
1494 |
+
}
|
1495 |
+
},
|
1496 |
+
"blimp_principle_A_case_2": {
|
1497 |
+
"task": "blimp_principle_A_case_2",
|
1498 |
+
"group": "blimp",
|
1499 |
+
"dataset_path": "blimp",
|
1500 |
+
"dataset_name": "principle_A_case_2",
|
1501 |
+
"validation_split": "train",
|
1502 |
+
"doc_to_text": "",
|
1503 |
+
"doc_to_target": 0,
|
1504 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1505 |
+
"description": "",
|
1506 |
+
"target_delimiter": " ",
|
1507 |
+
"fewshot_delimiter": "\n\n",
|
1508 |
+
"num_fewshot": 0,
|
1509 |
+
"metric_list": [
|
1510 |
+
{
|
1511 |
+
"metric": "acc"
|
1512 |
+
}
|
1513 |
+
],
|
1514 |
+
"output_type": "multiple_choice",
|
1515 |
+
"repeats": 1,
|
1516 |
+
"should_decontaminate": true,
|
1517 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1518 |
+
"metadata": {
|
1519 |
+
"version": 1.0
|
1520 |
+
}
|
1521 |
+
},
|
1522 |
+
"blimp_principle_A_domain_1": {
|
1523 |
+
"task": "blimp_principle_A_domain_1",
|
1524 |
+
"group": "blimp",
|
1525 |
+
"dataset_path": "blimp",
|
1526 |
+
"dataset_name": "principle_A_domain_1",
|
1527 |
+
"validation_split": "train",
|
1528 |
+
"doc_to_text": "",
|
1529 |
+
"doc_to_target": 0,
|
1530 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1531 |
+
"description": "",
|
1532 |
+
"target_delimiter": " ",
|
1533 |
+
"fewshot_delimiter": "\n\n",
|
1534 |
+
"num_fewshot": 0,
|
1535 |
+
"metric_list": [
|
1536 |
+
{
|
1537 |
+
"metric": "acc"
|
1538 |
+
}
|
1539 |
+
],
|
1540 |
+
"output_type": "multiple_choice",
|
1541 |
+
"repeats": 1,
|
1542 |
+
"should_decontaminate": true,
|
1543 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1544 |
+
"metadata": {
|
1545 |
+
"version": 1.0
|
1546 |
+
}
|
1547 |
+
},
|
1548 |
+
"blimp_principle_A_domain_2": {
|
1549 |
+
"task": "blimp_principle_A_domain_2",
|
1550 |
+
"group": "blimp",
|
1551 |
+
"dataset_path": "blimp",
|
1552 |
+
"dataset_name": "principle_A_domain_2",
|
1553 |
+
"validation_split": "train",
|
1554 |
+
"doc_to_text": "",
|
1555 |
+
"doc_to_target": 0,
|
1556 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1557 |
+
"description": "",
|
1558 |
+
"target_delimiter": " ",
|
1559 |
+
"fewshot_delimiter": "\n\n",
|
1560 |
+
"num_fewshot": 0,
|
1561 |
+
"metric_list": [
|
1562 |
+
{
|
1563 |
+
"metric": "acc"
|
1564 |
+
}
|
1565 |
+
],
|
1566 |
+
"output_type": "multiple_choice",
|
1567 |
+
"repeats": 1,
|
1568 |
+
"should_decontaminate": true,
|
1569 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1570 |
+
"metadata": {
|
1571 |
+
"version": 1.0
|
1572 |
+
}
|
1573 |
+
},
|
1574 |
+
"blimp_principle_A_domain_3": {
|
1575 |
+
"task": "blimp_principle_A_domain_3",
|
1576 |
+
"group": "blimp",
|
1577 |
+
"dataset_path": "blimp",
|
1578 |
+
"dataset_name": "principle_A_domain_3",
|
1579 |
+
"validation_split": "train",
|
1580 |
+
"doc_to_text": "",
|
1581 |
+
"doc_to_target": 0,
|
1582 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1583 |
+
"description": "",
|
1584 |
+
"target_delimiter": " ",
|
1585 |
+
"fewshot_delimiter": "\n\n",
|
1586 |
+
"num_fewshot": 0,
|
1587 |
+
"metric_list": [
|
1588 |
+
{
|
1589 |
+
"metric": "acc"
|
1590 |
+
}
|
1591 |
+
],
|
1592 |
+
"output_type": "multiple_choice",
|
1593 |
+
"repeats": 1,
|
1594 |
+
"should_decontaminate": true,
|
1595 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1596 |
+
"metadata": {
|
1597 |
+
"version": 1.0
|
1598 |
+
}
|
1599 |
+
},
|
1600 |
+
"blimp_principle_A_reconstruction": {
|
1601 |
+
"task": "blimp_principle_A_reconstruction",
|
1602 |
+
"group": "blimp",
|
1603 |
+
"dataset_path": "blimp",
|
1604 |
+
"dataset_name": "principle_A_reconstruction",
|
1605 |
+
"validation_split": "train",
|
1606 |
+
"doc_to_text": "",
|
1607 |
+
"doc_to_target": 0,
|
1608 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1609 |
+
"description": "",
|
1610 |
+
"target_delimiter": " ",
|
1611 |
+
"fewshot_delimiter": "\n\n",
|
1612 |
+
"num_fewshot": 0,
|
1613 |
+
"metric_list": [
|
1614 |
+
{
|
1615 |
+
"metric": "acc"
|
1616 |
+
}
|
1617 |
+
],
|
1618 |
+
"output_type": "multiple_choice",
|
1619 |
+
"repeats": 1,
|
1620 |
+
"should_decontaminate": true,
|
1621 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1622 |
+
"metadata": {
|
1623 |
+
"version": 1.0
|
1624 |
+
}
|
1625 |
+
},
|
1626 |
+
"blimp_regular_plural_subject_verb_agreement_1": {
|
1627 |
+
"task": "blimp_regular_plural_subject_verb_agreement_1",
|
1628 |
+
"group": "blimp",
|
1629 |
+
"dataset_path": "blimp",
|
1630 |
+
"dataset_name": "regular_plural_subject_verb_agreement_1",
|
1631 |
+
"validation_split": "train",
|
1632 |
+
"doc_to_text": "",
|
1633 |
+
"doc_to_target": 0,
|
1634 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1635 |
+
"description": "",
|
1636 |
+
"target_delimiter": " ",
|
1637 |
+
"fewshot_delimiter": "\n\n",
|
1638 |
+
"num_fewshot": 0,
|
1639 |
+
"metric_list": [
|
1640 |
+
{
|
1641 |
+
"metric": "acc"
|
1642 |
+
}
|
1643 |
+
],
|
1644 |
+
"output_type": "multiple_choice",
|
1645 |
+
"repeats": 1,
|
1646 |
+
"should_decontaminate": true,
|
1647 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1648 |
+
"metadata": {
|
1649 |
+
"version": 1.0
|
1650 |
+
}
|
1651 |
+
},
|
1652 |
+
"blimp_regular_plural_subject_verb_agreement_2": {
|
1653 |
+
"task": "blimp_regular_plural_subject_verb_agreement_2",
|
1654 |
+
"group": "blimp",
|
1655 |
+
"dataset_path": "blimp",
|
1656 |
+
"dataset_name": "regular_plural_subject_verb_agreement_2",
|
1657 |
+
"validation_split": "train",
|
1658 |
+
"doc_to_text": "",
|
1659 |
+
"doc_to_target": 0,
|
1660 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1661 |
+
"description": "",
|
1662 |
+
"target_delimiter": " ",
|
1663 |
+
"fewshot_delimiter": "\n\n",
|
1664 |
+
"num_fewshot": 0,
|
1665 |
+
"metric_list": [
|
1666 |
+
{
|
1667 |
+
"metric": "acc"
|
1668 |
+
}
|
1669 |
+
],
|
1670 |
+
"output_type": "multiple_choice",
|
1671 |
+
"repeats": 1,
|
1672 |
+
"should_decontaminate": true,
|
1673 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1674 |
+
"metadata": {
|
1675 |
+
"version": 1.0
|
1676 |
+
}
|
1677 |
+
},
|
1678 |
+
"blimp_sentential_negation_npi_licensor_present": {
|
1679 |
+
"task": "blimp_sentential_negation_npi_licensor_present",
|
1680 |
+
"group": "blimp",
|
1681 |
+
"dataset_path": "blimp",
|
1682 |
+
"dataset_name": "sentential_negation_npi_licensor_present",
|
1683 |
+
"validation_split": "train",
|
1684 |
+
"doc_to_text": "",
|
1685 |
+
"doc_to_target": 0,
|
1686 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1687 |
+
"description": "",
|
1688 |
+
"target_delimiter": " ",
|
1689 |
+
"fewshot_delimiter": "\n\n",
|
1690 |
+
"num_fewshot": 0,
|
1691 |
+
"metric_list": [
|
1692 |
+
{
|
1693 |
+
"metric": "acc"
|
1694 |
+
}
|
1695 |
+
],
|
1696 |
+
"output_type": "multiple_choice",
|
1697 |
+
"repeats": 1,
|
1698 |
+
"should_decontaminate": true,
|
1699 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1700 |
+
"metadata": {
|
1701 |
+
"version": 1.0
|
1702 |
+
}
|
1703 |
+
},
|
1704 |
+
"blimp_sentential_negation_npi_scope": {
|
1705 |
+
"task": "blimp_sentential_negation_npi_scope",
|
1706 |
+
"group": "blimp",
|
1707 |
+
"dataset_path": "blimp",
|
1708 |
+
"dataset_name": "sentential_negation_npi_scope",
|
1709 |
+
"validation_split": "train",
|
1710 |
+
"doc_to_text": "",
|
1711 |
+
"doc_to_target": 0,
|
1712 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1713 |
+
"description": "",
|
1714 |
+
"target_delimiter": " ",
|
1715 |
+
"fewshot_delimiter": "\n\n",
|
1716 |
+
"num_fewshot": 0,
|
1717 |
+
"metric_list": [
|
1718 |
+
{
|
1719 |
+
"metric": "acc"
|
1720 |
+
}
|
1721 |
+
],
|
1722 |
+
"output_type": "multiple_choice",
|
1723 |
+
"repeats": 1,
|
1724 |
+
"should_decontaminate": true,
|
1725 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1726 |
+
"metadata": {
|
1727 |
+
"version": 1.0
|
1728 |
+
}
|
1729 |
+
},
|
1730 |
+
"blimp_sentential_subject_island": {
|
1731 |
+
"task": "blimp_sentential_subject_island",
|
1732 |
+
"group": "blimp",
|
1733 |
+
"dataset_path": "blimp",
|
1734 |
+
"dataset_name": "sentential_subject_island",
|
1735 |
+
"validation_split": "train",
|
1736 |
+
"doc_to_text": "",
|
1737 |
+
"doc_to_target": 0,
|
1738 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1739 |
+
"description": "",
|
1740 |
+
"target_delimiter": " ",
|
1741 |
+
"fewshot_delimiter": "\n\n",
|
1742 |
+
"num_fewshot": 0,
|
1743 |
+
"metric_list": [
|
1744 |
+
{
|
1745 |
+
"metric": "acc"
|
1746 |
+
}
|
1747 |
+
],
|
1748 |
+
"output_type": "multiple_choice",
|
1749 |
+
"repeats": 1,
|
1750 |
+
"should_decontaminate": true,
|
1751 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1752 |
+
"metadata": {
|
1753 |
+
"version": 1.0
|
1754 |
+
}
|
1755 |
+
},
|
1756 |
+
"blimp_superlative_quantifiers_1": {
|
1757 |
+
"task": "blimp_superlative_quantifiers_1",
|
1758 |
+
"group": "blimp",
|
1759 |
+
"dataset_path": "blimp",
|
1760 |
+
"dataset_name": "superlative_quantifiers_1",
|
1761 |
+
"validation_split": "train",
|
1762 |
+
"doc_to_text": "",
|
1763 |
+
"doc_to_target": 0,
|
1764 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1765 |
+
"description": "",
|
1766 |
+
"target_delimiter": " ",
|
1767 |
+
"fewshot_delimiter": "\n\n",
|
1768 |
+
"num_fewshot": 0,
|
1769 |
+
"metric_list": [
|
1770 |
+
{
|
1771 |
+
"metric": "acc"
|
1772 |
+
}
|
1773 |
+
],
|
1774 |
+
"output_type": "multiple_choice",
|
1775 |
+
"repeats": 1,
|
1776 |
+
"should_decontaminate": true,
|
1777 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1778 |
+
"metadata": {
|
1779 |
+
"version": 1.0
|
1780 |
+
}
|
1781 |
+
},
|
1782 |
+
"blimp_superlative_quantifiers_2": {
|
1783 |
+
"task": "blimp_superlative_quantifiers_2",
|
1784 |
+
"group": "blimp",
|
1785 |
+
"dataset_path": "blimp",
|
1786 |
+
"dataset_name": "superlative_quantifiers_2",
|
1787 |
+
"validation_split": "train",
|
1788 |
+
"doc_to_text": "",
|
1789 |
+
"doc_to_target": 0,
|
1790 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1791 |
+
"description": "",
|
1792 |
+
"target_delimiter": " ",
|
1793 |
+
"fewshot_delimiter": "\n\n",
|
1794 |
+
"num_fewshot": 0,
|
1795 |
+
"metric_list": [
|
1796 |
+
{
|
1797 |
+
"metric": "acc"
|
1798 |
+
}
|
1799 |
+
],
|
1800 |
+
"output_type": "multiple_choice",
|
1801 |
+
"repeats": 1,
|
1802 |
+
"should_decontaminate": true,
|
1803 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1804 |
+
"metadata": {
|
1805 |
+
"version": 1.0
|
1806 |
+
}
|
1807 |
+
},
|
1808 |
+
"blimp_tough_vs_raising_1": {
|
1809 |
+
"task": "blimp_tough_vs_raising_1",
|
1810 |
+
"group": "blimp",
|
1811 |
+
"dataset_path": "blimp",
|
1812 |
+
"dataset_name": "tough_vs_raising_1",
|
1813 |
+
"validation_split": "train",
|
1814 |
+
"doc_to_text": "",
|
1815 |
+
"doc_to_target": 0,
|
1816 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1817 |
+
"description": "",
|
1818 |
+
"target_delimiter": " ",
|
1819 |
+
"fewshot_delimiter": "\n\n",
|
1820 |
+
"num_fewshot": 0,
|
1821 |
+
"metric_list": [
|
1822 |
+
{
|
1823 |
+
"metric": "acc"
|
1824 |
+
}
|
1825 |
+
],
|
1826 |
+
"output_type": "multiple_choice",
|
1827 |
+
"repeats": 1,
|
1828 |
+
"should_decontaminate": true,
|
1829 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1830 |
+
"metadata": {
|
1831 |
+
"version": 1.0
|
1832 |
+
}
|
1833 |
+
},
|
1834 |
+
"blimp_tough_vs_raising_2": {
|
1835 |
+
"task": "blimp_tough_vs_raising_2",
|
1836 |
+
"group": "blimp",
|
1837 |
+
"dataset_path": "blimp",
|
1838 |
+
"dataset_name": "tough_vs_raising_2",
|
1839 |
+
"validation_split": "train",
|
1840 |
+
"doc_to_text": "",
|
1841 |
+
"doc_to_target": 0,
|
1842 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1843 |
+
"description": "",
|
1844 |
+
"target_delimiter": " ",
|
1845 |
+
"fewshot_delimiter": "\n\n",
|
1846 |
+
"num_fewshot": 0,
|
1847 |
+
"metric_list": [
|
1848 |
+
{
|
1849 |
+
"metric": "acc"
|
1850 |
+
}
|
1851 |
+
],
|
1852 |
+
"output_type": "multiple_choice",
|
1853 |
+
"repeats": 1,
|
1854 |
+
"should_decontaminate": true,
|
1855 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1856 |
+
"metadata": {
|
1857 |
+
"version": 1.0
|
1858 |
+
}
|
1859 |
+
},
|
1860 |
+
"blimp_transitive": {
|
1861 |
+
"task": "blimp_transitive",
|
1862 |
+
"group": "blimp",
|
1863 |
+
"dataset_path": "blimp",
|
1864 |
+
"dataset_name": "transitive",
|
1865 |
+
"validation_split": "train",
|
1866 |
+
"doc_to_text": "",
|
1867 |
+
"doc_to_target": 0,
|
1868 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1869 |
+
"description": "",
|
1870 |
+
"target_delimiter": " ",
|
1871 |
+
"fewshot_delimiter": "\n\n",
|
1872 |
+
"num_fewshot": 0,
|
1873 |
+
"metric_list": [
|
1874 |
+
{
|
1875 |
+
"metric": "acc"
|
1876 |
+
}
|
1877 |
+
],
|
1878 |
+
"output_type": "multiple_choice",
|
1879 |
+
"repeats": 1,
|
1880 |
+
"should_decontaminate": true,
|
1881 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1882 |
+
"metadata": {
|
1883 |
+
"version": 1.0
|
1884 |
+
}
|
1885 |
+
},
|
1886 |
+
"blimp_wh_island": {
|
1887 |
+
"task": "blimp_wh_island",
|
1888 |
+
"group": "blimp",
|
1889 |
+
"dataset_path": "blimp",
|
1890 |
+
"dataset_name": "wh_island",
|
1891 |
+
"validation_split": "train",
|
1892 |
+
"doc_to_text": "",
|
1893 |
+
"doc_to_target": 0,
|
1894 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1895 |
+
"description": "",
|
1896 |
+
"target_delimiter": " ",
|
1897 |
+
"fewshot_delimiter": "\n\n",
|
1898 |
+
"num_fewshot": 0,
|
1899 |
+
"metric_list": [
|
1900 |
+
{
|
1901 |
+
"metric": "acc"
|
1902 |
+
}
|
1903 |
+
],
|
1904 |
+
"output_type": "multiple_choice",
|
1905 |
+
"repeats": 1,
|
1906 |
+
"should_decontaminate": true,
|
1907 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1908 |
+
"metadata": {
|
1909 |
+
"version": 1.0
|
1910 |
+
}
|
1911 |
+
},
|
1912 |
+
"blimp_wh_questions_object_gap": {
|
1913 |
+
"task": "blimp_wh_questions_object_gap",
|
1914 |
+
"group": "blimp",
|
1915 |
+
"dataset_path": "blimp",
|
1916 |
+
"dataset_name": "wh_questions_object_gap",
|
1917 |
+
"validation_split": "train",
|
1918 |
+
"doc_to_text": "",
|
1919 |
+
"doc_to_target": 0,
|
1920 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1921 |
+
"description": "",
|
1922 |
+
"target_delimiter": " ",
|
1923 |
+
"fewshot_delimiter": "\n\n",
|
1924 |
+
"num_fewshot": 0,
|
1925 |
+
"metric_list": [
|
1926 |
+
{
|
1927 |
+
"metric": "acc"
|
1928 |
+
}
|
1929 |
+
],
|
1930 |
+
"output_type": "multiple_choice",
|
1931 |
+
"repeats": 1,
|
1932 |
+
"should_decontaminate": true,
|
1933 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1934 |
+
"metadata": {
|
1935 |
+
"version": 1.0
|
1936 |
+
}
|
1937 |
+
},
|
1938 |
+
"blimp_wh_questions_subject_gap": {
|
1939 |
+
"task": "blimp_wh_questions_subject_gap",
|
1940 |
+
"group": "blimp",
|
1941 |
+
"dataset_path": "blimp",
|
1942 |
+
"dataset_name": "wh_questions_subject_gap",
|
1943 |
+
"validation_split": "train",
|
1944 |
+
"doc_to_text": "",
|
1945 |
+
"doc_to_target": 0,
|
1946 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1947 |
+
"description": "",
|
1948 |
+
"target_delimiter": " ",
|
1949 |
+
"fewshot_delimiter": "\n\n",
|
1950 |
+
"num_fewshot": 0,
|
1951 |
+
"metric_list": [
|
1952 |
+
{
|
1953 |
+
"metric": "acc"
|
1954 |
+
}
|
1955 |
+
],
|
1956 |
+
"output_type": "multiple_choice",
|
1957 |
+
"repeats": 1,
|
1958 |
+
"should_decontaminate": true,
|
1959 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1960 |
+
"metadata": {
|
1961 |
+
"version": 1.0
|
1962 |
+
}
|
1963 |
+
},
|
1964 |
+
"blimp_wh_questions_subject_gap_long_distance": {
|
1965 |
+
"task": "blimp_wh_questions_subject_gap_long_distance",
|
1966 |
+
"group": "blimp",
|
1967 |
+
"dataset_path": "blimp",
|
1968 |
+
"dataset_name": "wh_questions_subject_gap_long_distance",
|
1969 |
+
"validation_split": "train",
|
1970 |
+
"doc_to_text": "",
|
1971 |
+
"doc_to_target": 0,
|
1972 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1973 |
+
"description": "",
|
1974 |
+
"target_delimiter": " ",
|
1975 |
+
"fewshot_delimiter": "\n\n",
|
1976 |
+
"num_fewshot": 0,
|
1977 |
+
"metric_list": [
|
1978 |
+
{
|
1979 |
+
"metric": "acc"
|
1980 |
+
}
|
1981 |
+
],
|
1982 |
+
"output_type": "multiple_choice",
|
1983 |
+
"repeats": 1,
|
1984 |
+
"should_decontaminate": true,
|
1985 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1986 |
+
"metadata": {
|
1987 |
+
"version": 1.0
|
1988 |
+
}
|
1989 |
+
},
|
1990 |
+
"blimp_wh_vs_that_no_gap": {
|
1991 |
+
"task": "blimp_wh_vs_that_no_gap",
|
1992 |
+
"group": "blimp",
|
1993 |
+
"dataset_path": "blimp",
|
1994 |
+
"dataset_name": "wh_vs_that_no_gap",
|
1995 |
+
"validation_split": "train",
|
1996 |
+
"doc_to_text": "",
|
1997 |
+
"doc_to_target": 0,
|
1998 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1999 |
+
"description": "",
|
2000 |
+
"target_delimiter": " ",
|
2001 |
+
"fewshot_delimiter": "\n\n",
|
2002 |
+
"num_fewshot": 0,
|
2003 |
+
"metric_list": [
|
2004 |
+
{
|
2005 |
+
"metric": "acc"
|
2006 |
+
}
|
2007 |
+
],
|
2008 |
+
"output_type": "multiple_choice",
|
2009 |
+
"repeats": 1,
|
2010 |
+
"should_decontaminate": true,
|
2011 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
2012 |
+
"metadata": {
|
2013 |
+
"version": 1.0
|
2014 |
+
}
|
2015 |
+
},
|
2016 |
+
"blimp_wh_vs_that_no_gap_long_distance": {
|
2017 |
+
"task": "blimp_wh_vs_that_no_gap_long_distance",
|
2018 |
+
"group": "blimp",
|
2019 |
+
"dataset_path": "blimp",
|
2020 |
+
"dataset_name": "wh_vs_that_no_gap_long_distance",
|
2021 |
+
"validation_split": "train",
|
2022 |
+
"doc_to_text": "",
|
2023 |
+
"doc_to_target": 0,
|
2024 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
2025 |
+
"description": "",
|
2026 |
+
"target_delimiter": " ",
|
2027 |
+
"fewshot_delimiter": "\n\n",
|
2028 |
+
"num_fewshot": 0,
|
2029 |
+
"metric_list": [
|
2030 |
+
{
|
2031 |
+
"metric": "acc"
|
2032 |
+
}
|
2033 |
+
],
|
2034 |
+
"output_type": "multiple_choice",
|
2035 |
+
"repeats": 1,
|
2036 |
+
"should_decontaminate": true,
|
2037 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
2038 |
+
"metadata": {
|
2039 |
+
"version": 1.0
|
2040 |
+
}
|
2041 |
+
},
|
2042 |
+
"blimp_wh_vs_that_with_gap": {
|
2043 |
+
"task": "blimp_wh_vs_that_with_gap",
|
2044 |
+
"group": "blimp",
|
2045 |
+
"dataset_path": "blimp",
|
2046 |
+
"dataset_name": "wh_vs_that_with_gap",
|
2047 |
+
"validation_split": "train",
|
2048 |
+
"doc_to_text": "",
|
2049 |
+
"doc_to_target": 0,
|
2050 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
2051 |
+
"description": "",
|
2052 |
+
"target_delimiter": " ",
|
2053 |
+
"fewshot_delimiter": "\n\n",
|
2054 |
+
"num_fewshot": 0,
|
2055 |
+
"metric_list": [
|
2056 |
+
{
|
2057 |
+
"metric": "acc"
|
2058 |
+
}
|
2059 |
+
],
|
2060 |
+
"output_type": "multiple_choice",
|
2061 |
+
"repeats": 1,
|
2062 |
+
"should_decontaminate": true,
|
2063 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
2064 |
+
"metadata": {
|
2065 |
+
"version": 1.0
|
2066 |
+
}
|
2067 |
+
},
|
2068 |
+
"blimp_wh_vs_that_with_gap_long_distance": {
|
2069 |
+
"task": "blimp_wh_vs_that_with_gap_long_distance",
|
2070 |
+
"group": "blimp",
|
2071 |
+
"dataset_path": "blimp",
|
2072 |
+
"dataset_name": "wh_vs_that_with_gap_long_distance",
|
2073 |
+
"validation_split": "train",
|
2074 |
+
"doc_to_text": "",
|
2075 |
+
"doc_to_target": 0,
|
2076 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
2077 |
+
"description": "",
|
2078 |
+
"target_delimiter": " ",
|
2079 |
+
"fewshot_delimiter": "\n\n",
|
2080 |
+
"num_fewshot": 0,
|
2081 |
+
"metric_list": [
|
2082 |
+
{
|
2083 |
+
"metric": "acc"
|
2084 |
+
}
|
2085 |
+
],
|
2086 |
+
"output_type": "multiple_choice",
|
2087 |
+
"repeats": 1,
|
2088 |
+
"should_decontaminate": true,
|
2089 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
2090 |
+
"metadata": {
|
2091 |
+
"version": 1.0
|
2092 |
+
}
|
2093 |
+
}
|
2094 |
+
},
|
2095 |
+
"versions": {
|
2096 |
+
"blimp": "N/A",
|
2097 |
+
"blimp_adjunct_island": 1.0,
|
2098 |
+
"blimp_anaphor_gender_agreement": 1.0,
|
2099 |
+
"blimp_anaphor_number_agreement": 1.0,
|
2100 |
+
"blimp_animate_subject_passive": 1.0,
|
2101 |
+
"blimp_animate_subject_trans": 1.0,
|
2102 |
+
"blimp_causative": 1.0,
|
2103 |
+
"blimp_complex_NP_island": 1.0,
|
2104 |
+
"blimp_coordinate_structure_constraint_complex_left_branch": 1.0,
|
2105 |
+
"blimp_coordinate_structure_constraint_object_extraction": 1.0,
|
2106 |
+
"blimp_determiner_noun_agreement_1": 1.0,
|
2107 |
+
"blimp_determiner_noun_agreement_2": 1.0,
|
2108 |
+
"blimp_determiner_noun_agreement_irregular_1": 1.0,
|
2109 |
+
"blimp_determiner_noun_agreement_irregular_2": 1.0,
|
2110 |
+
"blimp_determiner_noun_agreement_with_adj_2": 1.0,
|
2111 |
+
"blimp_determiner_noun_agreement_with_adj_irregular_1": 1.0,
|
2112 |
+
"blimp_determiner_noun_agreement_with_adj_irregular_2": 1.0,
|
2113 |
+
"blimp_determiner_noun_agreement_with_adjective_1": 1.0,
|
2114 |
+
"blimp_distractor_agreement_relational_noun": 1.0,
|
2115 |
+
"blimp_distractor_agreement_relative_clause": 1.0,
|
2116 |
+
"blimp_drop_argument": 1.0,
|
2117 |
+
"blimp_ellipsis_n_bar_1": 1.0,
|
2118 |
+
"blimp_ellipsis_n_bar_2": 1.0,
|
2119 |
+
"blimp_existential_there_object_raising": 1.0,
|
2120 |
+
"blimp_existential_there_quantifiers_1": 1.0,
|
2121 |
+
"blimp_existential_there_quantifiers_2": 1.0,
|
2122 |
+
"blimp_existential_there_subject_raising": 1.0,
|
2123 |
+
"blimp_expletive_it_object_raising": 1.0,
|
2124 |
+
"blimp_inchoative": 1.0,
|
2125 |
+
"blimp_intransitive": 1.0,
|
2126 |
+
"blimp_irregular_past_participle_adjectives": 1.0,
|
2127 |
+
"blimp_irregular_past_participle_verbs": 1.0,
|
2128 |
+
"blimp_irregular_plural_subject_verb_agreement_1": 1.0,
|
2129 |
+
"blimp_irregular_plural_subject_verb_agreement_2": 1.0,
|
2130 |
+
"blimp_left_branch_island_echo_question": 1.0,
|
2131 |
+
"blimp_left_branch_island_simple_question": 1.0,
|
2132 |
+
"blimp_matrix_question_npi_licensor_present": 1.0,
|
2133 |
+
"blimp_npi_present_1": 1.0,
|
2134 |
+
"blimp_npi_present_2": 1.0,
|
2135 |
+
"blimp_only_npi_licensor_present": 1.0,
|
2136 |
+
"blimp_only_npi_scope": 1.0,
|
2137 |
+
"blimp_passive_1": 1.0,
|
2138 |
+
"blimp_passive_2": 1.0,
|
2139 |
+
"blimp_principle_A_c_command": 1.0,
|
2140 |
+
"blimp_principle_A_case_1": 1.0,
|
2141 |
+
"blimp_principle_A_case_2": 1.0,
|
2142 |
+
"blimp_principle_A_domain_1": 1.0,
|
2143 |
+
"blimp_principle_A_domain_2": 1.0,
|
2144 |
+
"blimp_principle_A_domain_3": 1.0,
|
2145 |
+
"blimp_principle_A_reconstruction": 1.0,
|
2146 |
+
"blimp_regular_plural_subject_verb_agreement_1": 1.0,
|
2147 |
+
"blimp_regular_plural_subject_verb_agreement_2": 1.0,
|
2148 |
+
"blimp_sentential_negation_npi_licensor_present": 1.0,
|
2149 |
+
"blimp_sentential_negation_npi_scope": 1.0,
|
2150 |
+
"blimp_sentential_subject_island": 1.0,
|
2151 |
+
"blimp_superlative_quantifiers_1": 1.0,
|
2152 |
+
"blimp_superlative_quantifiers_2": 1.0,
|
2153 |
+
"blimp_tough_vs_raising_1": 1.0,
|
2154 |
+
"blimp_tough_vs_raising_2": 1.0,
|
2155 |
+
"blimp_transitive": 1.0,
|
2156 |
+
"blimp_wh_island": 1.0,
|
2157 |
+
"blimp_wh_questions_object_gap": 1.0,
|
2158 |
+
"blimp_wh_questions_subject_gap": 1.0,
|
2159 |
+
"blimp_wh_questions_subject_gap_long_distance": 1.0,
|
2160 |
+
"blimp_wh_vs_that_no_gap": 1.0,
|
2161 |
+
"blimp_wh_vs_that_no_gap_long_distance": 1.0,
|
2162 |
+
"blimp_wh_vs_that_with_gap": 1.0,
|
2163 |
+
"blimp_wh_vs_that_with_gap_long_distance": 1.0
|
2164 |
+
},
|
2165 |
+
"n-shot": {
|
2166 |
+
"blimp": 0,
|
2167 |
+
"blimp_adjunct_island": 0,
|
2168 |
+
"blimp_anaphor_gender_agreement": 0,
|
2169 |
+
"blimp_anaphor_number_agreement": 0,
|
2170 |
+
"blimp_animate_subject_passive": 0,
|
2171 |
+
"blimp_animate_subject_trans": 0,
|
2172 |
+
"blimp_causative": 0,
|
2173 |
+
"blimp_complex_NP_island": 0,
|
2174 |
+
"blimp_coordinate_structure_constraint_complex_left_branch": 0,
|
2175 |
+
"blimp_coordinate_structure_constraint_object_extraction": 0,
|
2176 |
+
"blimp_determiner_noun_agreement_1": 0,
|
2177 |
+
"blimp_determiner_noun_agreement_2": 0,
|
2178 |
+
"blimp_determiner_noun_agreement_irregular_1": 0,
|
2179 |
+
"blimp_determiner_noun_agreement_irregular_2": 0,
|
2180 |
+
"blimp_determiner_noun_agreement_with_adj_2": 0,
|
2181 |
+
"blimp_determiner_noun_agreement_with_adj_irregular_1": 0,
|
2182 |
+
"blimp_determiner_noun_agreement_with_adj_irregular_2": 0,
|
2183 |
+
"blimp_determiner_noun_agreement_with_adjective_1": 0,
|
2184 |
+
"blimp_distractor_agreement_relational_noun": 0,
|
2185 |
+
"blimp_distractor_agreement_relative_clause": 0,
|
2186 |
+
"blimp_drop_argument": 0,
|
2187 |
+
"blimp_ellipsis_n_bar_1": 0,
|
2188 |
+
"blimp_ellipsis_n_bar_2": 0,
|
2189 |
+
"blimp_existential_there_object_raising": 0,
|
2190 |
+
"blimp_existential_there_quantifiers_1": 0,
|
2191 |
+
"blimp_existential_there_quantifiers_2": 0,
|
2192 |
+
"blimp_existential_there_subject_raising": 0,
|
2193 |
+
"blimp_expletive_it_object_raising": 0,
|
2194 |
+
"blimp_inchoative": 0,
|
2195 |
+
"blimp_intransitive": 0,
|
2196 |
+
"blimp_irregular_past_participle_adjectives": 0,
|
2197 |
+
"blimp_irregular_past_participle_verbs": 0,
|
2198 |
+
"blimp_irregular_plural_subject_verb_agreement_1": 0,
|
2199 |
+
"blimp_irregular_plural_subject_verb_agreement_2": 0,
|
2200 |
+
"blimp_left_branch_island_echo_question": 0,
|
2201 |
+
"blimp_left_branch_island_simple_question": 0,
|
2202 |
+
"blimp_matrix_question_npi_licensor_present": 0,
|
2203 |
+
"blimp_npi_present_1": 0,
|
2204 |
+
"blimp_npi_present_2": 0,
|
2205 |
+
"blimp_only_npi_licensor_present": 0,
|
2206 |
+
"blimp_only_npi_scope": 0,
|
2207 |
+
"blimp_passive_1": 0,
|
2208 |
+
"blimp_passive_2": 0,
|
2209 |
+
"blimp_principle_A_c_command": 0,
|
2210 |
+
"blimp_principle_A_case_1": 0,
|
2211 |
+
"blimp_principle_A_case_2": 0,
|
2212 |
+
"blimp_principle_A_domain_1": 0,
|
2213 |
+
"blimp_principle_A_domain_2": 0,
|
2214 |
+
"blimp_principle_A_domain_3": 0,
|
2215 |
+
"blimp_principle_A_reconstruction": 0,
|
2216 |
+
"blimp_regular_plural_subject_verb_agreement_1": 0,
|
2217 |
+
"blimp_regular_plural_subject_verb_agreement_2": 0,
|
2218 |
+
"blimp_sentential_negation_npi_licensor_present": 0,
|
2219 |
+
"blimp_sentential_negation_npi_scope": 0,
|
2220 |
+
"blimp_sentential_subject_island": 0,
|
2221 |
+
"blimp_superlative_quantifiers_1": 0,
|
2222 |
+
"blimp_superlative_quantifiers_2": 0,
|
2223 |
+
"blimp_tough_vs_raising_1": 0,
|
2224 |
+
"blimp_tough_vs_raising_2": 0,
|
2225 |
+
"blimp_transitive": 0,
|
2226 |
+
"blimp_wh_island": 0,
|
2227 |
+
"blimp_wh_questions_object_gap": 0,
|
2228 |
+
"blimp_wh_questions_subject_gap": 0,
|
2229 |
+
"blimp_wh_questions_subject_gap_long_distance": 0,
|
2230 |
+
"blimp_wh_vs_that_no_gap": 0,
|
2231 |
+
"blimp_wh_vs_that_no_gap_long_distance": 0,
|
2232 |
+
"blimp_wh_vs_that_with_gap": 0,
|
2233 |
+
"blimp_wh_vs_that_with_gap_long_distance": 0
|
2234 |
+
},
|
2235 |
+
"config": {
|
2236 |
+
"model": "hf",
|
2237 |
+
"model_args": "pretrained=m8than/Finch-14B-Continued-10,dtype=bfloat16,trust_remote_code=True",
|
2238 |
+
"batch_size": "auto",
|
2239 |
+
"batch_sizes": [
|
2240 |
+
64
|
2241 |
+
],
|
2242 |
+
"device": null,
|
2243 |
+
"use_cache": null,
|
2244 |
+
"limit": null,
|
2245 |
+
"bootstrap_iters": 100000,
|
2246 |
+
"gen_kwargs": null
|
2247 |
+
},
|
2248 |
+
"git_hash": "97a2520"
|
2249 |
+
}
|
lm-eval-output/m8than/Finch-14B-Continued-10/blimp/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e0bc0923c0c60ebe28df88a4d78a8e14c02430d99f038f8eec969e4b95de7b6
|
3 |
+
size 264320
|
lm-eval-output/m8than/Finch-14B-Continued-10/cmmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c72c24031ba5ae9bbc98a82954626d68b0fcc9fb0eb194ab006e579f1aedb048
|
3 |
+
size 2346172
|
lm-eval-output/m8than/Finch-14B-Continued-10/cmmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
lm-eval-output/m8than/Finch-14B-Continued-10/cmmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0bf6969c750a384b8791352c5c38000daecd05a5e6b6447eef8a855f7ffe713
|
3 |
+
size 131088
|
lm-eval-output/m8than/Finch-14B-Continued-10/copa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2fda5c4fa79fdafa6cb9ebf26e3842687fc6bbc56f21a57dae359d2d3a0bc0a
|
3 |
+
size 10176
|
lm-eval-output/m8than/Finch-14B-Continued-10/copa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"copa": {
|
4 |
+
"acc,none": 0.87,
|
5 |
+
"acc_stderr,none": 0.033799766898963086,
|
6 |
+
"alias": "copa"
|
7 |
+
}
|
8 |
+
},
|
9 |
+
"configs": {
|
10 |
+
"copa": {
|
11 |
+
"task": "copa",
|
12 |
+
"group": [
|
13 |
+
"super-glue-lm-eval-v1"
|
14 |
+
],
|
15 |
+
"dataset_path": "super_glue",
|
16 |
+
"dataset_name": "copa",
|
17 |
+
"training_split": "train",
|
18 |
+
"validation_split": "validation",
|
19 |
+
"doc_to_text": "def doc_to_text(doc):\n # Drop the period\n connector = {\n \"cause\": \"because\",\n \"effect\": \"therefore\",\n }[doc[\"question\"]]\n return doc[\"premise\"].strip()[:-1] + f\" {connector}\"\n",
|
20 |
+
"doc_to_target": "def doc_to_target(doc):\n correct_choice = doc[\"choice1\"] if doc[\"label\"] == 0 else doc[\"choice2\"]\n # Connect the sentences\n return \" \" + convert_choice(correct_choice)\n",
|
21 |
+
"doc_to_choice": "def doc_to_choice(doc):\n return [\" \" + convert_choice(doc[\"choice1\"]), \" \" + convert_choice(doc[\"choice2\"])]\n",
|
22 |
+
"description": "",
|
23 |
+
"target_delimiter": " ",
|
24 |
+
"fewshot_delimiter": "\n\n",
|
25 |
+
"metric_list": [
|
26 |
+
{
|
27 |
+
"metric": "acc"
|
28 |
+
}
|
29 |
+
],
|
30 |
+
"output_type": "multiple_choice",
|
31 |
+
"repeats": 1,
|
32 |
+
"should_decontaminate": false,
|
33 |
+
"metadata": {
|
34 |
+
"version": 1.0
|
35 |
+
}
|
36 |
+
}
|
37 |
+
},
|
38 |
+
"versions": {
|
39 |
+
"copa": 1.0
|
40 |
+
},
|
41 |
+
"n-shot": {
|
42 |
+
"copa": 0
|
43 |
+
},
|
44 |
+
"config": {
|
45 |
+
"model": "hf",
|
46 |
+
"model_args": "pretrained=m8than/Finch-14B-Continued-10,dtype=bfloat16,trust_remote_code=True",
|
47 |
+
"batch_size": "auto",
|
48 |
+
"batch_sizes": [
|
49 |
+
64
|
50 |
+
],
|
51 |
+
"device": null,
|
52 |
+
"use_cache": null,
|
53 |
+
"limit": null,
|
54 |
+
"bootstrap_iters": 100000,
|
55 |
+
"gen_kwargs": null
|
56 |
+
},
|
57 |
+
"git_hash": "97a2520"
|
58 |
+
}
|
lm-eval-output/m8than/Finch-14B-Continued-10/copa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:655879fd66cf21e8862d5710cac4e5a3a33da6a6f609cb189829a45fb4a2ca04
|
3 |
+
size 17426
|
lm-eval-output/m8than/Finch-14B-Continued-10/glue/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f4cc588b8f519018e7354d410901927585484261d812063a11058db0afa832e
|
3 |
+
size 8325739
|
lm-eval-output/m8than/Finch-14B-Continued-10/glue/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"glue": {
|
4 |
+
"acc,none": 0.6522451167222487,
|
5 |
+
"acc_stderr,none": 0.006846274775420319,
|
6 |
+
"f1,none": 0.6456216077148048,
|
7 |
+
"f1_stderr,none": 0.0002505570191561242,
|
8 |
+
"mcc,none": 0.0,
|
9 |
+
"mcc_stderr,none": 0.0,
|
10 |
+
"alias": "glue"
|
11 |
+
},
|
12 |
+
"cola": {
|
13 |
+
"mcc,none": 0.0,
|
14 |
+
"mcc_stderr,none": 0.0,
|
15 |
+
"alias": " - cola"
|
16 |
+
},
|
17 |
+
"mnli": {
|
18 |
+
"acc,none": 0.801426388181355,
|
19 |
+
"acc_stderr,none": 0.004026888084487691,
|
20 |
+
"alias": " - mnli"
|
21 |
+
},
|
22 |
+
"mnli_mismatch": {
|
23 |
+
"acc,none": 0.7915988608624899,
|
24 |
+
"acc_stderr,none": 0.004096413384733941,
|
25 |
+
"alias": " - mnli_mismatch"
|
26 |
+
},
|
27 |
+
"mrpc": {
|
28 |
+
"acc,none": 0.6887254901960784,
|
29 |
+
"acc_stderr,none": 0.022950790715623736,
|
30 |
+
"f1,none": 0.8140556368960469,
|
31 |
+
"f1_stderr,none": 0.01619265753417425,
|
32 |
+
"alias": " - mrpc"
|
33 |
+
},
|
34 |
+
"qnli": {
|
35 |
+
"acc,none": 0.4946000366099213,
|
36 |
+
"acc_stderr,none": 0.00676501598687746,
|
37 |
+
"alias": " - qnli"
|
38 |
+
},
|
39 |
+
"qqp": {
|
40 |
+
"acc,none": 0.6018550581251546,
|
41 |
+
"acc_stderr,none": 0.0024345576278988323,
|
42 |
+
"f1,none": 0.6441629639454429,
|
43 |
+
"f1_stderr,none": 0.0026231073767726413,
|
44 |
+
"alias": " - qqp"
|
45 |
+
},
|
46 |
+
"rte": {
|
47 |
+
"acc,none": 0.7545126353790613,
|
48 |
+
"acc_stderr,none": 0.025905578160457157,
|
49 |
+
"alias": " - rte"
|
50 |
+
},
|
51 |
+
"sst2": {
|
52 |
+
"acc,none": 0.6869266055045872,
|
53 |
+
"acc_stderr,none": 0.015713364044401386,
|
54 |
+
"alias": " - sst2"
|
55 |
+
},
|
56 |
+
"wnli": {
|
57 |
+
"acc,none": 0.5211267605633803,
|
58 |
+
"acc_stderr,none": 0.05970805879899504,
|
59 |
+
"alias": " - wnli"
|
60 |
+
}
|
61 |
+
},
|
62 |
+
"groups": {
|
63 |
+
"glue": {
|
64 |
+
"acc,none": 0.6522451167222487,
|
65 |
+
"acc_stderr,none": 0.006846274775420319,
|
66 |
+
"f1,none": 0.6456216077148048,
|
67 |
+
"f1_stderr,none": 0.0002505570191561242,
|
68 |
+
"mcc,none": 0.0,
|
69 |
+
"mcc_stderr,none": 0.0,
|
70 |
+
"alias": "glue"
|
71 |
+
}
|
72 |
+
},
|
73 |
+
"configs": {
|
74 |
+
"cola": {
|
75 |
+
"task": "cola",
|
76 |
+
"group": "glue",
|
77 |
+
"dataset_path": "glue",
|
78 |
+
"dataset_name": "cola",
|
79 |
+
"training_split": "train",
|
80 |
+
"validation_split": "validation",
|
81 |
+
"doc_to_text": "{{sentence}}\nQuestion: Does this sentence make sense?\nAnswer:",
|
82 |
+
"doc_to_target": "label",
|
83 |
+
"doc_to_choice": [
|
84 |
+
"no",
|
85 |
+
"yes"
|
86 |
+
],
|
87 |
+
"description": "",
|
88 |
+
"target_delimiter": " ",
|
89 |
+
"fewshot_delimiter": "\n\n",
|
90 |
+
"metric_list": [
|
91 |
+
{
|
92 |
+
"metric": "mcc"
|
93 |
+
}
|
94 |
+
],
|
95 |
+
"output_type": "multiple_choice",
|
96 |
+
"repeats": 1,
|
97 |
+
"should_decontaminate": true,
|
98 |
+
"doc_to_decontamination_query": "sentence",
|
99 |
+
"metadata": {
|
100 |
+
"version": 1.0
|
101 |
+
}
|
102 |
+
},
|
103 |
+
"mnli": {
|
104 |
+
"task": "mnli",
|
105 |
+
"group": "glue",
|
106 |
+
"dataset_path": "glue",
|
107 |
+
"dataset_name": "mnli",
|
108 |
+
"training_split": "train",
|
109 |
+
"validation_split": "validation_matched",
|
110 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n return \"{}\\nQuestion: {} True, False or Neither?\\nAnswer:\".format(\n doc[\"premise\"],\n doc[\"hypothesis\"].strip()\n + (\"\" if doc[\"hypothesis\"].strip().endswith(\".\") else \".\"),\n )\n",
|
111 |
+
"doc_to_target": "label",
|
112 |
+
"doc_to_choice": [
|
113 |
+
"True",
|
114 |
+
"Neither",
|
115 |
+
"False"
|
116 |
+
],
|
117 |
+
"description": "",
|
118 |
+
"target_delimiter": " ",
|
119 |
+
"fewshot_delimiter": "\n\n",
|
120 |
+
"metric_list": [
|
121 |
+
{
|
122 |
+
"metric": "acc"
|
123 |
+
}
|
124 |
+
],
|
125 |
+
"output_type": "multiple_choice",
|
126 |
+
"repeats": 1,
|
127 |
+
"should_decontaminate": false,
|
128 |
+
"metadata": {
|
129 |
+
"version": 1.0
|
130 |
+
}
|
131 |
+
},
|
132 |
+
"mnli_mismatch": {
|
133 |
+
"task": "mnli_mismatch",
|
134 |
+
"group": "glue",
|
135 |
+
"dataset_path": "glue",
|
136 |
+
"dataset_name": "mnli",
|
137 |
+
"training_split": "train",
|
138 |
+
"validation_split": "validation_mismatched",
|
139 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n return \"{}\\nQuestion: {} True, False or Neither?\\nAnswer:\".format(\n doc[\"premise\"],\n doc[\"hypothesis\"].strip()\n + (\"\" if doc[\"hypothesis\"].strip().endswith(\".\") else \".\"),\n )\n",
|
140 |
+
"doc_to_target": "label",
|
141 |
+
"doc_to_choice": [
|
142 |
+
"True",
|
143 |
+
"Neither",
|
144 |
+
"False"
|
145 |
+
],
|
146 |
+
"description": "",
|
147 |
+
"target_delimiter": " ",
|
148 |
+
"fewshot_delimiter": "\n\n",
|
149 |
+
"metric_list": [
|
150 |
+
{
|
151 |
+
"metric": "acc"
|
152 |
+
}
|
153 |
+
],
|
154 |
+
"output_type": "multiple_choice",
|
155 |
+
"repeats": 1,
|
156 |
+
"should_decontaminate": false,
|
157 |
+
"metadata": {
|
158 |
+
"version": 1.0
|
159 |
+
}
|
160 |
+
},
|
161 |
+
"mrpc": {
|
162 |
+
"task": "mrpc",
|
163 |
+
"group": "glue",
|
164 |
+
"dataset_path": "glue",
|
165 |
+
"dataset_name": "mrpc",
|
166 |
+
"training_split": "train",
|
167 |
+
"validation_split": "validation",
|
168 |
+
"doc_to_text": "Sentence 1: {{sentence1}}\nSentence 2: {{sentence2}}\nQuestion: Do both sentences mean the same thing?\nAnswer:",
|
169 |
+
"doc_to_target": "label",
|
170 |
+
"doc_to_choice": [
|
171 |
+
"no",
|
172 |
+
"yes"
|
173 |
+
],
|
174 |
+
"description": "",
|
175 |
+
"target_delimiter": " ",
|
176 |
+
"fewshot_delimiter": "\n\n",
|
177 |
+
"metric_list": [
|
178 |
+
{
|
179 |
+
"metric": "acc"
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"metric": "f1"
|
183 |
+
}
|
184 |
+
],
|
185 |
+
"output_type": "multiple_choice",
|
186 |
+
"repeats": 1,
|
187 |
+
"should_decontaminate": false,
|
188 |
+
"metadata": {
|
189 |
+
"version": 1.0
|
190 |
+
}
|
191 |
+
},
|
192 |
+
"qnli": {
|
193 |
+
"task": "qnli",
|
194 |
+
"group": "glue",
|
195 |
+
"dataset_path": "glue",
|
196 |
+
"dataset_name": "qnli",
|
197 |
+
"training_split": "train",
|
198 |
+
"validation_split": "validation",
|
199 |
+
"doc_to_text": "{{question}}\n{{sentence}}\nQuestion: Does this response answer the question?\nAnswer:",
|
200 |
+
"doc_to_target": "label",
|
201 |
+
"doc_to_choice": [
|
202 |
+
"yes",
|
203 |
+
"no"
|
204 |
+
],
|
205 |
+
"description": "",
|
206 |
+
"target_delimiter": " ",
|
207 |
+
"fewshot_delimiter": "\n\n",
|
208 |
+
"metric_list": [
|
209 |
+
{
|
210 |
+
"metric": "acc"
|
211 |
+
}
|
212 |
+
],
|
213 |
+
"output_type": "multiple_choice",
|
214 |
+
"repeats": 1,
|
215 |
+
"should_decontaminate": false,
|
216 |
+
"metadata": {
|
217 |
+
"version": 1.0
|
218 |
+
}
|
219 |
+
},
|
220 |
+
"qqp": {
|
221 |
+
"task": "qqp",
|
222 |
+
"group": "glue",
|
223 |
+
"dataset_path": "glue",
|
224 |
+
"dataset_name": "qqp",
|
225 |
+
"training_split": "train",
|
226 |
+
"validation_split": "validation",
|
227 |
+
"doc_to_text": "\nSentence 1: {{question1}}\nSentence 2: {{question2}}\nAnswer:",
|
228 |
+
"doc_to_target": "label",
|
229 |
+
"doc_to_choice": [
|
230 |
+
"no",
|
231 |
+
"yes"
|
232 |
+
],
|
233 |
+
"description": "",
|
234 |
+
"target_delimiter": " ",
|
235 |
+
"fewshot_delimiter": "\n\n",
|
236 |
+
"metric_list": [
|
237 |
+
{
|
238 |
+
"metric": "acc"
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"metric": "f1"
|
242 |
+
}
|
243 |
+
],
|
244 |
+
"output_type": "multiple_choice",
|
245 |
+
"repeats": 1,
|
246 |
+
"should_decontaminate": false,
|
247 |
+
"metadata": {
|
248 |
+
"version": 1.0
|
249 |
+
}
|
250 |
+
},
|
251 |
+
"rte": {
|
252 |
+
"task": "rte",
|
253 |
+
"group": "glue",
|
254 |
+
"dataset_path": "glue",
|
255 |
+
"dataset_name": "rte",
|
256 |
+
"training_split": "train",
|
257 |
+
"validation_split": "validation",
|
258 |
+
"doc_to_text": "{{sentence1}}\nQuestion: {{sentence2}} True or False?\nAnswer:",
|
259 |
+
"doc_to_target": "label",
|
260 |
+
"doc_to_choice": [
|
261 |
+
"True",
|
262 |
+
"False"
|
263 |
+
],
|
264 |
+
"description": "",
|
265 |
+
"target_delimiter": " ",
|
266 |
+
"fewshot_delimiter": "\n\n",
|
267 |
+
"metric_list": [
|
268 |
+
{
|
269 |
+
"metric": "acc"
|
270 |
+
}
|
271 |
+
],
|
272 |
+
"output_type": "multiple_choice",
|
273 |
+
"repeats": 1,
|
274 |
+
"should_decontaminate": false,
|
275 |
+
"metadata": {
|
276 |
+
"version": 1.0
|
277 |
+
}
|
278 |
+
},
|
279 |
+
"sst2": {
|
280 |
+
"task": "sst2",
|
281 |
+
"group": "glue",
|
282 |
+
"dataset_path": "glue",
|
283 |
+
"dataset_name": "sst2",
|
284 |
+
"training_split": "train",
|
285 |
+
"validation_split": "validation",
|
286 |
+
"doc_to_text": "{{sentence}}\nQuestion: Is this sentence positive or negative?\nAnswer:",
|
287 |
+
"doc_to_target": "label",
|
288 |
+
"doc_to_choice": [
|
289 |
+
"negative",
|
290 |
+
"positive"
|
291 |
+
],
|
292 |
+
"description": "",
|
293 |
+
"target_delimiter": " ",
|
294 |
+
"fewshot_delimiter": "\n\n",
|
295 |
+
"metric_list": [
|
296 |
+
{
|
297 |
+
"metric": "acc"
|
298 |
+
}
|
299 |
+
],
|
300 |
+
"output_type": "multiple_choice",
|
301 |
+
"repeats": 1,
|
302 |
+
"should_decontaminate": false,
|
303 |
+
"metadata": {
|
304 |
+
"version": 1.0
|
305 |
+
}
|
306 |
+
},
|
307 |
+
"wnli": {
|
308 |
+
"task": "wnli",
|
309 |
+
"group": "glue",
|
310 |
+
"dataset_path": "glue",
|
311 |
+
"dataset_name": "wnli",
|
312 |
+
"training_split": "train",
|
313 |
+
"validation_split": "validation",
|
314 |
+
"doc_to_text": "{{sentence1}}\nQuestion: {{sentence2}} True or False?\nAnswer:",
|
315 |
+
"doc_to_target": "label",
|
316 |
+
"doc_to_choice": [
|
317 |
+
"False",
|
318 |
+
"True"
|
319 |
+
],
|
320 |
+
"description": "",
|
321 |
+
"target_delimiter": " ",
|
322 |
+
"fewshot_delimiter": "\n\n",
|
323 |
+
"metric_list": [
|
324 |
+
{
|
325 |
+
"metric": "acc"
|
326 |
+
}
|
327 |
+
],
|
328 |
+
"output_type": "multiple_choice",
|
329 |
+
"repeats": 1,
|
330 |
+
"should_decontaminate": false,
|
331 |
+
"metadata": {
|
332 |
+
"version": 2.0
|
333 |
+
}
|
334 |
+
}
|
335 |
+
},
|
336 |
+
"versions": {
|
337 |
+
"cola": 1.0,
|
338 |
+
"glue": "N/A",
|
339 |
+
"mnli": 1.0,
|
340 |
+
"mnli_mismatch": 1.0,
|
341 |
+
"mrpc": 1.0,
|
342 |
+
"qnli": 1.0,
|
343 |
+
"qqp": 1.0,
|
344 |
+
"rte": 1.0,
|
345 |
+
"sst2": 1.0,
|
346 |
+
"wnli": 2.0
|
347 |
+
},
|
348 |
+
"n-shot": {
|
349 |
+
"cola": 0,
|
350 |
+
"glue": 0,
|
351 |
+
"mnli": 0,
|
352 |
+
"mnli_mismatch": 0,
|
353 |
+
"mrpc": 0,
|
354 |
+
"qnli": 0,
|
355 |
+
"qqp": 0,
|
356 |
+
"rte": 0,
|
357 |
+
"sst2": 0,
|
358 |
+
"wnli": 0
|
359 |
+
},
|
360 |
+
"config": {
|
361 |
+
"model": "hf",
|
362 |
+
"model_args": "pretrained=m8than/Finch-14B-Continued-10,dtype=bfloat16,trust_remote_code=True",
|
363 |
+
"batch_size": "auto",
|
364 |
+
"batch_sizes": [
|
365 |
+
64
|
366 |
+
],
|
367 |
+
"device": null,
|
368 |
+
"use_cache": null,
|
369 |
+
"limit": null,
|
370 |
+
"bootstrap_iters": 100000,
|
371 |
+
"gen_kwargs": null
|
372 |
+
},
|
373 |
+
"git_hash": "97a2520"
|
374 |
+
}
|
lm-eval-output/m8than/Finch-14B-Continued-10/glue/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:320cf6b2c66c59982aa6b5b1d1d4945c463b48236498f4bb0880245480ff1fb2
|
3 |
+
size 78593
|
lm-eval-output/m8than/Finch-14B-Continued-10/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61d4282aa1d6ee9ee7c5786cdbefb7724311f470d5d1842653c50980f93341fd
|
3 |
+
size 4886702
|
lm-eval-output/m8than/Finch-14B-Continued-10/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.5891256721768572,
|
5 |
+
"acc_stderr,none": 0.004909870006388839,
|
6 |
+
"acc_norm,none": 0.7842063333997211,
|
7 |
+
"acc_norm_stderr,none": 0.004105310748596489,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"configs": {
|
12 |
+
"hellaswag": {
|
13 |
+
"task": "hellaswag",
|
14 |
+
"group": [
|
15 |
+
"multiple_choice"
|
16 |
+
],
|
17 |
+
"dataset_path": "hellaswag",
|
18 |
+
"training_split": "train",
|
19 |
+
"validation_split": "validation",
|
20 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
21 |
+
"doc_to_text": "{{query}}",
|
22 |
+
"doc_to_target": "{{label}}",
|
23 |
+
"doc_to_choice": "choices",
|
24 |
+
"description": "",
|
25 |
+
"target_delimiter": " ",
|
26 |
+
"fewshot_delimiter": "\n\n",
|
27 |
+
"metric_list": [
|
28 |
+
{
|
29 |
+
"metric": "acc",
|
30 |
+
"aggregation": "mean",
|
31 |
+
"higher_is_better": true
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"metric": "acc_norm",
|
35 |
+
"aggregation": "mean",
|
36 |
+
"higher_is_better": true
|
37 |
+
}
|
38 |
+
],
|
39 |
+
"output_type": "multiple_choice",
|
40 |
+
"repeats": 1,
|
41 |
+
"should_decontaminate": false,
|
42 |
+
"metadata": {
|
43 |
+
"version": 1.0
|
44 |
+
}
|
45 |
+
}
|
46 |
+
},
|
47 |
+
"versions": {
|
48 |
+
"hellaswag": 1.0
|
49 |
+
},
|
50 |
+
"n-shot": {
|
51 |
+
"hellaswag": 0
|
52 |
+
},
|
53 |
+
"config": {
|
54 |
+
"model": "hf",
|
55 |
+
"model_args": "pretrained=m8than/Finch-14B-Continued-10,dtype=bfloat16,trust_remote_code=True",
|
56 |
+
"batch_size": "auto",
|
57 |
+
"batch_sizes": [
|
58 |
+
64
|
59 |
+
],
|
60 |
+
"device": null,
|
61 |
+
"use_cache": null,
|
62 |
+
"limit": null,
|
63 |
+
"bootstrap_iters": 100000,
|
64 |
+
"gen_kwargs": null
|
65 |
+
},
|
66 |
+
"git_hash": "97a2520"
|
67 |
+
}
|
lm-eval-output/m8than/Finch-14B-Continued-10/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:204cf1d800824d486813106ffeaadc561d97d47ddc57b74a1a2bff61a1d2e338
|
3 |
+
size 60171
|
lm-eval-output/m8than/Finch-14B-Continued-10/lambada/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7b03775aa52bb8652e2f0f17c729cc6ae036972584cbc5b12524fb5dd65f9eb
|
3 |
+
size 1970918
|
lm-eval-output/m8than/Finch-14B-Continued-10/lambada/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"lambada": {
|
4 |
+
"perplexity,none": 3.277432397804061,
|
5 |
+
"perplexity_stderr,none": 0.14540231578208046,
|
6 |
+
"acc,none": 0.7308364059771008,
|
7 |
+
"acc_stderr,none": 0.017065519206547915,
|
8 |
+
"alias": "lambada"
|
9 |
+
},
|
10 |
+
"lambada_openai": {
|
11 |
+
"perplexity,none": 3.014627189664524,
|
12 |
+
"perplexity_stderr,none": 0.054847634258423886,
|
13 |
+
"acc,none": 0.7626625266834853,
|
14 |
+
"acc_stderr,none": 0.005927361760928846,
|
15 |
+
"alias": " - lambada_openai"
|
16 |
+
},
|
17 |
+
"lambada_standard": {
|
18 |
+
"perplexity,none": 3.5402376059435974,
|
19 |
+
"perplexity_stderr,none": 0.06884414208960295,
|
20 |
+
"acc,none": 0.6990102852707161,
|
21 |
+
"acc_stderr,none": 0.006390424136449911,
|
22 |
+
"alias": " - lambada_standard"
|
23 |
+
}
|
24 |
+
},
|
25 |
+
"groups": {
|
26 |
+
"lambada": {
|
27 |
+
"perplexity,none": 3.277432397804061,
|
28 |
+
"perplexity_stderr,none": 0.14540231578208046,
|
29 |
+
"acc,none": 0.7308364059771008,
|
30 |
+
"acc_stderr,none": 0.017065519206547915,
|
31 |
+
"alias": "lambada"
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"configs": {
|
35 |
+
"lambada_openai": {
|
36 |
+
"task": "lambada_openai",
|
37 |
+
"group": [
|
38 |
+
"lambada"
|
39 |
+
],
|
40 |
+
"dataset_path": "EleutherAI/lambada_openai",
|
41 |
+
"dataset_name": "default",
|
42 |
+
"test_split": "test",
|
43 |
+
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
44 |
+
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
45 |
+
"description": "",
|
46 |
+
"target_delimiter": " ",
|
47 |
+
"fewshot_delimiter": "\n\n",
|
48 |
+
"metric_list": [
|
49 |
+
{
|
50 |
+
"metric": "perplexity",
|
51 |
+
"aggregation": "perplexity",
|
52 |
+
"higher_is_better": false
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"metric": "acc",
|
56 |
+
"aggregation": "mean",
|
57 |
+
"higher_is_better": true
|
58 |
+
}
|
59 |
+
],
|
60 |
+
"output_type": "loglikelihood",
|
61 |
+
"repeats": 1,
|
62 |
+
"should_decontaminate": true,
|
63 |
+
"doc_to_decontamination_query": "{{text}}",
|
64 |
+
"metadata": {
|
65 |
+
"version": 1.0
|
66 |
+
}
|
67 |
+
},
|
68 |
+
"lambada_standard": {
|
69 |
+
"task": "lambada_standard",
|
70 |
+
"group": [
|
71 |
+
"lambada"
|
72 |
+
],
|
73 |
+
"dataset_path": "lambada",
|
74 |
+
"validation_split": "validation",
|
75 |
+
"test_split": "test",
|
76 |
+
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
77 |
+
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
78 |
+
"description": "",
|
79 |
+
"target_delimiter": " ",
|
80 |
+
"fewshot_delimiter": "\n\n",
|
81 |
+
"metric_list": [
|
82 |
+
{
|
83 |
+
"metric": "perplexity",
|
84 |
+
"aggregation": "perplexity",
|
85 |
+
"higher_is_better": false
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"metric": "acc",
|
89 |
+
"aggregation": "mean",
|
90 |
+
"higher_is_better": true
|
91 |
+
}
|
92 |
+
],
|
93 |
+
"output_type": "loglikelihood",
|
94 |
+
"repeats": 1,
|
95 |
+
"should_decontaminate": true,
|
96 |
+
"doc_to_decontamination_query": "{{text}}",
|
97 |
+
"metadata": {
|
98 |
+
"version": 1.0
|
99 |
+
}
|
100 |
+
}
|
101 |
+
},
|
102 |
+
"versions": {
|
103 |
+
"lambada": "N/A",
|
104 |
+
"lambada_openai": 1.0,
|
105 |
+
"lambada_standard": 1.0
|
106 |
+
},
|
107 |
+
"n-shot": {
|
108 |
+
"lambada": 0,
|
109 |
+
"lambada_openai": 0,
|
110 |
+
"lambada_standard": 0
|
111 |
+
},
|
112 |
+
"config": {
|
113 |
+
"model": "hf",
|
114 |
+
"model_args": "pretrained=m8than/Finch-14B-Continued-10,dtype=bfloat16,trust_remote_code=True",
|
115 |
+
"batch_size": "auto",
|
116 |
+
"batch_sizes": [
|
117 |
+
64
|
118 |
+
],
|
119 |
+
"device": null,
|
120 |
+
"use_cache": null,
|
121 |
+
"limit": null,
|
122 |
+
"bootstrap_iters": 100000,
|
123 |
+
"gen_kwargs": null
|
124 |
+
},
|
125 |
+
"git_hash": "97a2520"
|
126 |
+
}
|
lm-eval-output/m8than/Finch-14B-Continued-10/lambada/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4911c26fc9a0775aa726bc365d292cd7b23681f7a5adf2a9353bc0a930991ea
|
3 |
+
size 22119
|
lm-eval-output/m8than/Finch-14B-Continued-10/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48249a726591a47ba58f04ed4e9d0641c5a750ac1a6f4319b0a930c97a5c3a78
|
3 |
+
size 5221769
|
lm-eval-output/m8than/Finch-14B-Continued-10/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"lambada_multilingual": {
|
4 |
+
"perplexity,none": 16.57427443313553,
|
5 |
+
"perplexity_stderr,none": 6.396109588907219,
|
6 |
+
"acc,none": 0.570230933436833,
|
7 |
+
"acc_stderr,none": 0.08023321842466458,
|
8 |
+
"alias": "lambada_multilingual"
|
9 |
+
},
|
10 |
+
"lambada_openai_mt_de": {
|
11 |
+
"perplexity,none": 27.31172906921195,
|
12 |
+
"perplexity_stderr,none": 1.4878292833817073,
|
13 |
+
"acc,none": 0.46031437997283137,
|
14 |
+
"acc_stderr,none": 0.0069440008789686735,
|
15 |
+
"alias": " - lambada_openai_mt_de"
|
16 |
+
},
|
17 |
+
"lambada_openai_mt_en": {
|
18 |
+
"perplexity,none": 3.0157965175769377,
|
19 |
+
"perplexity_stderr,none": 0.05489109740466202,
|
20 |
+
"acc,none": 0.7622744032602368,
|
21 |
+
"acc_stderr,none": 0.0059306966971974595,
|
22 |
+
"alias": " - lambada_openai_mt_en"
|
23 |
+
},
|
24 |
+
"lambada_openai_mt_es": {
|
25 |
+
"perplexity,none": 22.615944887100966,
|
26 |
+
"perplexity_stderr,none": 1.0817049125217812,
|
27 |
+
"acc,none": 0.49039394527459734,
|
28 |
+
"acc_stderr,none": 0.006964691949428186,
|
29 |
+
"alias": " - lambada_openai_mt_es"
|
30 |
+
},
|
31 |
+
"lambada_openai_mt_fr": {
|
32 |
+
"perplexity,none": 13.102482530597442,
|
33 |
+
"perplexity_stderr,none": 0.6224812834214482,
|
34 |
+
"acc,none": 0.5862604308169999,
|
35 |
+
"acc_stderr,none": 0.006861528841487097,
|
36 |
+
"alias": " - lambada_openai_mt_fr"
|
37 |
+
},
|
38 |
+
"lambada_openai_mt_it": {
|
39 |
+
"perplexity,none": 16.825419161190336,
|
40 |
+
"perplexity_stderr,none": 0.8769978333971412,
|
41 |
+
"acc,none": 0.5519115078594993,
|
42 |
+
"acc_stderr,none": 0.00692833203679387,
|
43 |
+
"alias": " - lambada_openai_mt_it"
|
44 |
+
}
|
45 |
+
},
|
46 |
+
"groups": {
|
47 |
+
"lambada_multilingual": {
|
48 |
+
"perplexity,none": 16.57427443313553,
|
49 |
+
"perplexity_stderr,none": 6.396109588907219,
|
50 |
+
"acc,none": 0.570230933436833,
|
51 |
+
"acc_stderr,none": 0.08023321842466458,
|
52 |
+
"alias": "lambada_multilingual"
|
53 |
+
}
|
54 |
+
},
|
55 |
+
"configs": {
|
56 |
+
"lambada_openai_mt_de": {
|
57 |
+
"task": "lambada_openai_mt_de",
|
58 |
+
"group": [
|
59 |
+
"lambada_multilingual"
|
60 |
+
],
|
61 |
+
"dataset_path": "EleutherAI/lambada_openai",
|
62 |
+
"dataset_name": "de",
|
63 |
+
"test_split": "test",
|
64 |
+
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
65 |
+
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
66 |
+
"description": "",
|
67 |
+
"target_delimiter": " ",
|
68 |
+
"fewshot_delimiter": "\n\n",
|
69 |
+
"metric_list": [
|
70 |
+
{
|
71 |
+
"metric": "perplexity",
|
72 |
+
"aggregation": "perplexity",
|
73 |
+
"higher_is_better": false
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"metric": "acc",
|
77 |
+
"aggregation": "mean",
|
78 |
+
"higher_is_better": true
|
79 |
+
}
|
80 |
+
],
|
81 |
+
"output_type": "loglikelihood",
|
82 |
+
"repeats": 1,
|
83 |
+
"should_decontaminate": true,
|
84 |
+
"doc_to_decontamination_query": "{{text}}",
|
85 |
+
"metadata": {
|
86 |
+
"version": 1.0
|
87 |
+
}
|
88 |
+
},
|
89 |
+
"lambada_openai_mt_en": {
|
90 |
+
"task": "lambada_openai_mt_en",
|
91 |
+
"group": [
|
92 |
+
"lambada_multilingual"
|
93 |
+
],
|
94 |
+
"dataset_path": "EleutherAI/lambada_openai",
|
95 |
+
"dataset_name": "en",
|
96 |
+
"test_split": "test",
|
97 |
+
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
98 |
+
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
99 |
+
"description": "",
|
100 |
+
"target_delimiter": " ",
|
101 |
+
"fewshot_delimiter": "\n\n",
|
102 |
+
"metric_list": [
|
103 |
+
{
|
104 |
+
"metric": "perplexity",
|
105 |
+
"aggregation": "perplexity",
|
106 |
+
"higher_is_better": false
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"metric": "acc",
|
110 |
+
"aggregation": "mean",
|
111 |
+
"higher_is_better": true
|
112 |
+
}
|
113 |
+
],
|
114 |
+
"output_type": "loglikelihood",
|
115 |
+
"repeats": 1,
|
116 |
+
"should_decontaminate": true,
|
117 |
+
"doc_to_decontamination_query": "{{text}}",
|
118 |
+
"metadata": {
|
119 |
+
"version": 1.0
|
120 |
+
}
|
121 |
+
},
|
122 |
+
"lambada_openai_mt_es": {
|
123 |
+
"task": "lambada_openai_mt_es",
|
124 |
+
"group": [
|
125 |
+
"lambada_multilingual"
|
126 |
+
],
|
127 |
+
"dataset_path": "EleutherAI/lambada_openai",
|
128 |
+
"dataset_name": "es",
|
129 |
+
"test_split": "test",
|
130 |
+
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
131 |
+
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
132 |
+
"description": "",
|
133 |
+
"target_delimiter": " ",
|
134 |
+
"fewshot_delimiter": "\n\n",
|
135 |
+
"metric_list": [
|
136 |
+
{
|
137 |
+
"metric": "perplexity",
|
138 |
+
"aggregation": "perplexity",
|
139 |
+
"higher_is_better": false
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"metric": "acc",
|
143 |
+
"aggregation": "mean",
|
144 |
+
"higher_is_better": true
|
145 |
+
}
|
146 |
+
],
|
147 |
+
"output_type": "loglikelihood",
|
148 |
+
"repeats": 1,
|
149 |
+
"should_decontaminate": true,
|
150 |
+
"doc_to_decontamination_query": "{{text}}",
|
151 |
+
"metadata": {
|
152 |
+
"version": 1.0
|
153 |
+
}
|
154 |
+
},
|
155 |
+
"lambada_openai_mt_fr": {
|
156 |
+
"task": "lambada_openai_mt_fr",
|
157 |
+
"group": [
|
158 |
+
"lambada_multilingual"
|
159 |
+
],
|
160 |
+
"dataset_path": "EleutherAI/lambada_openai",
|
161 |
+
"dataset_name": "fr",
|
162 |
+
"test_split": "test",
|
163 |
+
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
164 |
+
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
165 |
+
"description": "",
|
166 |
+
"target_delimiter": " ",
|
167 |
+
"fewshot_delimiter": "\n\n",
|
168 |
+
"metric_list": [
|
169 |
+
{
|
170 |
+
"metric": "perplexity",
|
171 |
+
"aggregation": "perplexity",
|
172 |
+
"higher_is_better": false
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"metric": "acc",
|
176 |
+
"aggregation": "mean",
|
177 |
+
"higher_is_better": true
|
178 |
+
}
|
179 |
+
],
|
180 |
+
"output_type": "loglikelihood",
|
181 |
+
"repeats": 1,
|
182 |
+
"should_decontaminate": true,
|
183 |
+
"doc_to_decontamination_query": "{{text}}",
|
184 |
+
"metadata": {
|
185 |
+
"version": 1.0
|
186 |
+
}
|
187 |
+
},
|
188 |
+
"lambada_openai_mt_it": {
|
189 |
+
"task": "lambada_openai_mt_it",
|
190 |
+
"group": [
|
191 |
+
"lambada_multilingual"
|
192 |
+
],
|
193 |
+
"dataset_path": "EleutherAI/lambada_openai",
|
194 |
+
"dataset_name": "it",
|
195 |
+
"test_split": "test",
|
196 |
+
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
197 |
+
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
198 |
+
"description": "",
|
199 |
+
"target_delimiter": " ",
|
200 |
+
"fewshot_delimiter": "\n\n",
|
201 |
+
"metric_list": [
|
202 |
+
{
|
203 |
+
"metric": "perplexity",
|
204 |
+
"aggregation": "perplexity",
|
205 |
+
"higher_is_better": false
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"metric": "acc",
|
209 |
+
"aggregation": "mean",
|
210 |
+
"higher_is_better": true
|
211 |
+
}
|
212 |
+
],
|
213 |
+
"output_type": "loglikelihood",
|
214 |
+
"repeats": 1,
|
215 |
+
"should_decontaminate": true,
|
216 |
+
"doc_to_decontamination_query": "{{text}}",
|
217 |
+
"metadata": {
|
218 |
+
"version": 1.0
|
219 |
+
}
|
220 |
+
}
|
221 |
+
},
|
222 |
+
"versions": {
|
223 |
+
"lambada_multilingual": "N/A",
|
224 |
+
"lambada_openai_mt_de": 1.0,
|
225 |
+
"lambada_openai_mt_en": 1.0,
|
226 |
+
"lambada_openai_mt_es": 1.0,
|
227 |
+
"lambada_openai_mt_fr": 1.0,
|
228 |
+
"lambada_openai_mt_it": 1.0
|
229 |
+
},
|
230 |
+
"n-shot": {
|
231 |
+
"lambada_multilingual": 0,
|
232 |
+
"lambada_openai_mt_de": 0,
|
233 |
+
"lambada_openai_mt_en": 0,
|
234 |
+
"lambada_openai_mt_es": 0,
|
235 |
+
"lambada_openai_mt_fr": 0,
|
236 |
+
"lambada_openai_mt_it": 0
|
237 |
+
},
|
238 |
+
"config": {
|
239 |
+
"model": "hf",
|
240 |
+
"model_args": "pretrained=m8than/Finch-14B-Continued-10,dtype=bfloat16,trust_remote_code=True",
|
241 |
+
"batch_size": "auto",
|
242 |
+
"batch_sizes": [
|
243 |
+
64
|
244 |
+
],
|
245 |
+
"device": null,
|
246 |
+
"use_cache": null,
|
247 |
+
"limit": null,
|
248 |
+
"bootstrap_iters": 100000,
|
249 |
+
"gen_kwargs": null
|
250 |
+
},
|
251 |
+
"git_hash": "97a2520"
|
252 |
+
}
|
lm-eval-output/m8than/Finch-14B-Continued-10/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a3aae1cd22b66971d481723d757e110b01923c2c94c685398cfc1e1524673ca
|
3 |
+
size 36778
|
lm-eval-output/m8than/Finch-14B-Continued-10/logiqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a833d5fe4b937fe1a7d41f269e397e4ea6f89514e17b5b29d806505acc264dcf
|
3 |
+
size 309574
|
lm-eval-output/m8than/Finch-14B-Continued-10/logiqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"logiqa": {
|
4 |
+
"acc,none": 0.23963133640552994,
|
5 |
+
"acc_stderr,none": 0.016742766935101436,
|
6 |
+
"acc_norm,none": 0.2980030721966206,
|
7 |
+
"acc_norm_stderr,none": 0.0179399528838245,
|
8 |
+
"alias": "logiqa"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"configs": {
|
12 |
+
"logiqa": {
|
13 |
+
"task": "logiqa",
|
14 |
+
"dataset_path": "EleutherAI/logiqa",
|
15 |
+
"dataset_name": "logiqa",
|
16 |
+
"training_split": "train",
|
17 |
+
"validation_split": "validation",
|
18 |
+
"test_split": "test",
|
19 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Passage: <passage>\n Question: <question>\n Choices:\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n Answer:\n \"\"\"\n choices = [\"a\", \"b\", \"c\", \"d\"]\n prompt = \"Passage: \" + doc[\"context\"] + \"\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\nChoices:\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
20 |
+
"doc_to_target": "def doc_to_target(doc) -> int:\n choices = [\"a\", \"b\", \"c\", \"d\"]\n return choices.index(doc[\"label\"].strip())\n",
|
21 |
+
"doc_to_choice": "{{options}}",
|
22 |
+
"description": "",
|
23 |
+
"target_delimiter": " ",
|
24 |
+
"fewshot_delimiter": "\n\n",
|
25 |
+
"metric_list": [
|
26 |
+
{
|
27 |
+
"metric": "acc",
|
28 |
+
"aggregation": "mean",
|
29 |
+
"higher_is_better": true
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"metric": "acc_norm",
|
33 |
+
"aggregation": "mean",
|
34 |
+
"higher_is_better": true
|
35 |
+
}
|
36 |
+
],
|
37 |
+
"output_type": "multiple_choice",
|
38 |
+
"repeats": 1,
|
39 |
+
"should_decontaminate": true,
|
40 |
+
"doc_to_decontamination_query": "{{context}}",
|
41 |
+
"metadata": {
|
42 |
+
"version": 1.0
|
43 |
+
}
|
44 |
+
}
|
45 |
+
},
|
46 |
+
"versions": {
|
47 |
+
"logiqa": 1.0
|
48 |
+
},
|
49 |
+
"n-shot": {
|
50 |
+
"logiqa": 0
|
51 |
+
},
|
52 |
+
"config": {
|
53 |
+
"model": "hf",
|
54 |
+
"model_args": "pretrained=m8than/Finch-14B-Continued-10,dtype=bfloat16,trust_remote_code=True",
|
55 |
+
"batch_size": "auto",
|
56 |
+
"batch_sizes": [
|
57 |
+
64
|
58 |
+
],
|
59 |
+
"device": null,
|
60 |
+
"use_cache": null,
|
61 |
+
"limit": null,
|
62 |
+
"bootstrap_iters": 100000,
|
63 |
+
"gen_kwargs": null
|
64 |
+
},
|
65 |
+
"git_hash": "97a2520"
|
66 |
+
}
|
lm-eval-output/m8than/Finch-14B-Continued-10/logiqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b604b72aab371fba76802b55be66c88b15cc6cea0d633320ddc2baa1597c79c9
|
3 |
+
size 14633
|
lm-eval-output/m8than/Finch-14B-Continued-10/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79504d9215e173fc924c86a15c2f72f1e14a9e3edc1b34c0bc3ed91ccbd58df6
|
3 |
+
size 4072031
|
lm-eval-output/m8than/Finch-14B-Continued-10/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,2594 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"mmlu": {
|
4 |
+
"acc,none": 0.5616721264777097,
|
5 |
+
"acc_stderr,none": 0.12922245420838252,
|
6 |
+
"alias": "mmlu"
|
7 |
+
},
|
8 |
+
"mmlu_humanities": {
|
9 |
+
"alias": " - humanities",
|
10 |
+
"acc,none": 0.5094580233793836,
|
11 |
+
"acc_stderr,none": 0.1438564975883652
|
12 |
+
},
|
13 |
+
"mmlu_formal_logic": {
|
14 |
+
"alias": " - formal_logic",
|
15 |
+
"acc,none": 0.36507936507936506,
|
16 |
+
"acc_stderr,none": 0.04306241259127154
|
17 |
+
},
|
18 |
+
"mmlu_high_school_european_history": {
|
19 |
+
"alias": " - high_school_european_history",
|
20 |
+
"acc,none": 0.7212121212121212,
|
21 |
+
"acc_stderr,none": 0.0350143870629678
|
22 |
+
},
|
23 |
+
"mmlu_high_school_us_history": {
|
24 |
+
"alias": " - high_school_us_history",
|
25 |
+
"acc,none": 0.7401960784313726,
|
26 |
+
"acc_stderr,none": 0.03077855467869326
|
27 |
+
},
|
28 |
+
"mmlu_high_school_world_history": {
|
29 |
+
"alias": " - high_school_world_history",
|
30 |
+
"acc,none": 0.7468354430379747,
|
31 |
+
"acc_stderr,none": 0.028304657943035303
|
32 |
+
},
|
33 |
+
"mmlu_international_law": {
|
34 |
+
"alias": " - international_law",
|
35 |
+
"acc,none": 0.6942148760330579,
|
36 |
+
"acc_stderr,none": 0.04205953933884122
|
37 |
+
},
|
38 |
+
"mmlu_jurisprudence": {
|
39 |
+
"alias": " - jurisprudence",
|
40 |
+
"acc,none": 0.6851851851851852,
|
41 |
+
"acc_stderr,none": 0.04489931073591312
|
42 |
+
},
|
43 |
+
"mmlu_logical_fallacies": {
|
44 |
+
"alias": " - logical_fallacies",
|
45 |
+
"acc,none": 0.6625766871165644,
|
46 |
+
"acc_stderr,none": 0.037149084099355745
|
47 |
+
},
|
48 |
+
"mmlu_moral_disputes": {
|
49 |
+
"alias": " - moral_disputes",
|
50 |
+
"acc,none": 0.6329479768786127,
|
51 |
+
"acc_stderr,none": 0.025950054337654085
|
52 |
+
},
|
53 |
+
"mmlu_moral_scenarios": {
|
54 |
+
"alias": " - moral_scenarios",
|
55 |
+
"acc,none": 0.24022346368715083,
|
56 |
+
"acc_stderr,none": 0.014288343803925302
|
57 |
+
},
|
58 |
+
"mmlu_philosophy": {
|
59 |
+
"alias": " - philosophy",
|
60 |
+
"acc,none": 0.639871382636656,
|
61 |
+
"acc_stderr,none": 0.027264297599804015
|
62 |
+
},
|
63 |
+
"mmlu_prehistory": {
|
64 |
+
"alias": " - prehistory",
|
65 |
+
"acc,none": 0.6234567901234568,
|
66 |
+
"acc_stderr,none": 0.026959344518747787
|
67 |
+
},
|
68 |
+
"mmlu_professional_law": {
|
69 |
+
"alias": " - professional_law",
|
70 |
+
"acc,none": 0.43415906127770537,
|
71 |
+
"acc_stderr,none": 0.01265903323706725
|
72 |
+
},
|
73 |
+
"mmlu_world_religions": {
|
74 |
+
"alias": " - world_religions",
|
75 |
+
"acc,none": 0.8011695906432749,
|
76 |
+
"acc_stderr,none": 0.030611116557432528
|
77 |
+
},
|
78 |
+
"mmlu_other": {
|
79 |
+
"alias": " - other",
|
80 |
+
"acc,none": 0.6298680399098808,
|
81 |
+
"acc_stderr,none": 0.10072231796338442
|
82 |
+
},
|
83 |
+
"mmlu_business_ethics": {
|
84 |
+
"alias": " - business_ethics",
|
85 |
+
"acc,none": 0.57,
|
86 |
+
"acc_stderr,none": 0.04975698519562427
|
87 |
+
},
|
88 |
+
"mmlu_clinical_knowledge": {
|
89 |
+
"alias": " - clinical_knowledge",
|
90 |
+
"acc,none": 0.6113207547169811,
|
91 |
+
"acc_stderr,none": 0.030000485448675986
|
92 |
+
},
|
93 |
+
"mmlu_college_medicine": {
|
94 |
+
"alias": " - college_medicine",
|
95 |
+
"acc,none": 0.5780346820809249,
|
96 |
+
"acc_stderr,none": 0.03765746693865151
|
97 |
+
},
|
98 |
+
"mmlu_global_facts": {
|
99 |
+
"alias": " - global_facts",
|
100 |
+
"acc,none": 0.3,
|
101 |
+
"acc_stderr,none": 0.046056618647183814
|
102 |
+
},
|
103 |
+
"mmlu_human_aging": {
|
104 |
+
"alias": " - human_aging",
|
105 |
+
"acc,none": 0.6502242152466368,
|
106 |
+
"acc_stderr,none": 0.03200736719484503
|
107 |
+
},
|
108 |
+
"mmlu_management": {
|
109 |
+
"alias": " - management",
|
110 |
+
"acc,none": 0.6990291262135923,
|
111 |
+
"acc_stderr,none": 0.04541609446503948
|
112 |
+
},
|
113 |
+
"mmlu_marketing": {
|
114 |
+
"alias": " - marketing",
|
115 |
+
"acc,none": 0.8076923076923077,
|
116 |
+
"acc_stderr,none": 0.02581923325648375
|
117 |
+
},
|
118 |
+
"mmlu_medical_genetics": {
|
119 |
+
"alias": " - medical_genetics",
|
120 |
+
"acc,none": 0.72,
|
121 |
+
"acc_stderr,none": 0.045126085985421296
|
122 |
+
},
|
123 |
+
"mmlu_miscellaneous": {
|
124 |
+
"alias": " - miscellaneous",
|
125 |
+
"acc,none": 0.7484035759897829,
|
126 |
+
"acc_stderr,none": 0.015517322365529622
|
127 |
+
},
|
128 |
+
"mmlu_nutrition": {
|
129 |
+
"alias": " - nutrition",
|
130 |
+
"acc,none": 0.6339869281045751,
|
131 |
+
"acc_stderr,none": 0.02758281141515962
|
132 |
+
},
|
133 |
+
"mmlu_professional_accounting": {
|
134 |
+
"alias": " - professional_accounting",
|
135 |
+
"acc,none": 0.40425531914893614,
|
136 |
+
"acc_stderr,none": 0.029275532159704725
|
137 |
+
},
|
138 |
+
"mmlu_professional_medicine": {
|
139 |
+
"alias": " - professional_medicine",
|
140 |
+
"acc,none": 0.5845588235294118,
|
141 |
+
"acc_stderr,none": 0.02993534270787776
|
142 |
+
},
|
143 |
+
"mmlu_virology": {
|
144 |
+
"alias": " - virology",
|
145 |
+
"acc,none": 0.463855421686747,
|
146 |
+
"acc_stderr,none": 0.03882310850890594
|
147 |
+
},
|
148 |
+
"mmlu_social_sciences": {
|
149 |
+
"alias": " - social_sciences",
|
150 |
+
"acc,none": 0.6603834904127397,
|
151 |
+
"acc_stderr,none": 0.09514680794625115
|
152 |
+
},
|
153 |
+
"mmlu_econometrics": {
|
154 |
+
"alias": " - econometrics",
|
155 |
+
"acc,none": 0.3508771929824561,
|
156 |
+
"acc_stderr,none": 0.04489539350270698
|
157 |
+
},
|
158 |
+
"mmlu_high_school_geography": {
|
159 |
+
"alias": " - high_school_geography",
|
160 |
+
"acc,none": 0.7323232323232324,
|
161 |
+
"acc_stderr,none": 0.03154449888270286
|
162 |
+
},
|
163 |
+
"mmlu_high_school_government_and_politics": {
|
164 |
+
"alias": " - high_school_government_and_politics",
|
165 |
+
"acc,none": 0.7772020725388601,
|
166 |
+
"acc_stderr,none": 0.030031147977641545
|
167 |
+
},
|
168 |
+
"mmlu_high_school_macroeconomics": {
|
169 |
+
"alias": " - high_school_macroeconomics",
|
170 |
+
"acc,none": 0.5743589743589743,
|
171 |
+
"acc_stderr,none": 0.025069094387296535
|
172 |
+
},
|
173 |
+
"mmlu_high_school_microeconomics": {
|
174 |
+
"alias": " - high_school_microeconomics",
|
175 |
+
"acc,none": 0.5756302521008403,
|
176 |
+
"acc_stderr,none": 0.032104790510157764
|
177 |
+
},
|
178 |
+
"mmlu_high_school_psychology": {
|
179 |
+
"alias": " - high_school_psychology",
|
180 |
+
"acc,none": 0.7798165137614679,
|
181 |
+
"acc_stderr,none": 0.017765978652327576
|
182 |
+
},
|
183 |
+
"mmlu_human_sexuality": {
|
184 |
+
"alias": " - human_sexuality",
|
185 |
+
"acc,none": 0.6717557251908397,
|
186 |
+
"acc_stderr,none": 0.04118438565806298
|
187 |
+
},
|
188 |
+
"mmlu_professional_psychology": {
|
189 |
+
"alias": " - professional_psychology",
|
190 |
+
"acc,none": 0.5702614379084967,
|
191 |
+
"acc_stderr,none": 0.020027122784928547
|
192 |
+
},
|
193 |
+
"mmlu_public_relations": {
|
194 |
+
"alias": " - public_relations",
|
195 |
+
"acc,none": 0.6454545454545455,
|
196 |
+
"acc_stderr,none": 0.04582004841505415
|
197 |
+
},
|
198 |
+
"mmlu_security_studies": {
|
199 |
+
"alias": " - security_studies",
|
200 |
+
"acc,none": 0.6285714285714286,
|
201 |
+
"acc_stderr,none": 0.030932858792789855
|
202 |
+
},
|
203 |
+
"mmlu_sociology": {
|
204 |
+
"alias": " - sociology",
|
205 |
+
"acc,none": 0.8258706467661692,
|
206 |
+
"acc_stderr,none": 0.026814951200421606
|
207 |
+
},
|
208 |
+
"mmlu_us_foreign_policy": {
|
209 |
+
"alias": " - us_foreign_policy",
|
210 |
+
"acc,none": 0.83,
|
211 |
+
"acc_stderr,none": 0.03775251680686371
|
212 |
+
},
|
213 |
+
"mmlu_stem": {
|
214 |
+
"alias": " - stem",
|
215 |
+
"acc,none": 0.47605455122105933,
|
216 |
+
"acc_stderr,none": 0.11287864111088165
|
217 |
+
},
|
218 |
+
"mmlu_abstract_algebra": {
|
219 |
+
"alias": " - abstract_algebra",
|
220 |
+
"acc,none": 0.35,
|
221 |
+
"acc_stderr,none": 0.047937248544110196
|
222 |
+
},
|
223 |
+
"mmlu_anatomy": {
|
224 |
+
"alias": " - anatomy",
|
225 |
+
"acc,none": 0.5925925925925926,
|
226 |
+
"acc_stderr,none": 0.04244633238353228
|
227 |
+
},
|
228 |
+
"mmlu_astronomy": {
|
229 |
+
"alias": " - astronomy",
|
230 |
+
"acc,none": 0.5592105263157895,
|
231 |
+
"acc_stderr,none": 0.04040311062490436
|
232 |
+
},
|
233 |
+
"mmlu_college_biology": {
|
234 |
+
"alias": " - college_biology",
|
235 |
+
"acc,none": 0.625,
|
236 |
+
"acc_stderr,none": 0.04048439222695598
|
237 |
+
},
|
238 |
+
"mmlu_college_chemistry": {
|
239 |
+
"alias": " - college_chemistry",
|
240 |
+
"acc,none": 0.37,
|
241 |
+
"acc_stderr,none": 0.04852365870939099
|
242 |
+
},
|
243 |
+
"mmlu_college_computer_science": {
|
244 |
+
"alias": " - college_computer_science",
|
245 |
+
"acc,none": 0.47,
|
246 |
+
"acc_stderr,none": 0.05016135580465919
|
247 |
+
},
|
248 |
+
"mmlu_college_mathematics": {
|
249 |
+
"alias": " - college_mathematics",
|
250 |
+
"acc,none": 0.37,
|
251 |
+
"acc_stderr,none": 0.048523658709391
|
252 |
+
},
|
253 |
+
"mmlu_college_physics": {
|
254 |
+
"alias": " - college_physics",
|
255 |
+
"acc,none": 0.38235294117647056,
|
256 |
+
"acc_stderr,none": 0.04835503696107223
|
257 |
+
},
|
258 |
+
"mmlu_computer_security": {
|
259 |
+
"alias": " - computer_security",
|
260 |
+
"acc,none": 0.7,
|
261 |
+
"acc_stderr,none": 0.046056618647183814
|
262 |
+
},
|
263 |
+
"mmlu_conceptual_physics": {
|
264 |
+
"alias": " - conceptual_physics",
|
265 |
+
"acc,none": 0.43829787234042555,
|
266 |
+
"acc_stderr,none": 0.03243618636108101
|
267 |
+
},
|
268 |
+
"mmlu_electrical_engineering": {
|
269 |
+
"alias": " - electrical_engineering",
|
270 |
+
"acc,none": 0.5517241379310345,
|
271 |
+
"acc_stderr,none": 0.041443118108781526
|
272 |
+
},
|
273 |
+
"mmlu_elementary_mathematics": {
|
274 |
+
"alias": " - elementary_mathematics",
|
275 |
+
"acc,none": 0.36507936507936506,
|
276 |
+
"acc_stderr,none": 0.024796060602699958
|
277 |
+
},
|
278 |
+
"mmlu_high_school_biology": {
|
279 |
+
"alias": " - high_school_biology",
|
280 |
+
"acc,none": 0.7129032258064516,
|
281 |
+
"acc_stderr,none": 0.025736542745594528
|
282 |
+
},
|
283 |
+
"mmlu_high_school_chemistry": {
|
284 |
+
"alias": " - high_school_chemistry",
|
285 |
+
"acc,none": 0.4433497536945813,
|
286 |
+
"acc_stderr,none": 0.03495334582162933
|
287 |
+
},
|
288 |
+
"mmlu_high_school_computer_science": {
|
289 |
+
"alias": " - high_school_computer_science",
|
290 |
+
"acc,none": 0.57,
|
291 |
+
"acc_stderr,none": 0.04975698519562428
|
292 |
+
},
|
293 |
+
"mmlu_high_school_mathematics": {
|
294 |
+
"alias": " - high_school_mathematics",
|
295 |
+
"acc,none": 0.2962962962962963,
|
296 |
+
"acc_stderr,none": 0.027840811495871937
|
297 |
+
},
|
298 |
+
"mmlu_high_school_physics": {
|
299 |
+
"alias": " - high_school_physics",
|
300 |
+
"acc,none": 0.3509933774834437,
|
301 |
+
"acc_stderr,none": 0.03896981964257375
|
302 |
+
},
|
303 |
+
"mmlu_high_school_statistics": {
|
304 |
+
"alias": " - high_school_statistics",
|
305 |
+
"acc,none": 0.49537037037037035,
|
306 |
+
"acc_stderr,none": 0.03409825519163572
|
307 |
+
},
|
308 |
+
"mmlu_machine_learning": {
|
309 |
+
"alias": " - machine_learning",
|
310 |
+
"acc,none": 0.4642857142857143,
|
311 |
+
"acc_stderr,none": 0.04733667890053756
|
312 |
+
}
|
313 |
+
},
|
314 |
+
"groups": {
|
315 |
+
"mmlu": {
|
316 |
+
"acc,none": 0.5616721264777097,
|
317 |
+
"acc_stderr,none": 0.12922245420838252,
|
318 |
+
"alias": "mmlu"
|
319 |
+
},
|
320 |
+
"mmlu_humanities": {
|
321 |
+
"alias": " - humanities",
|
322 |
+
"acc,none": 0.5094580233793836,
|
323 |
+
"acc_stderr,none": 0.1438564975883652
|
324 |
+
},
|
325 |
+
"mmlu_other": {
|
326 |
+
"alias": " - other",
|
327 |
+
"acc,none": 0.6298680399098808,
|
328 |
+
"acc_stderr,none": 0.10072231796338442
|
329 |
+
},
|
330 |
+
"mmlu_social_sciences": {
|
331 |
+
"alias": " - social_sciences",
|
332 |
+
"acc,none": 0.6603834904127397,
|
333 |
+
"acc_stderr,none": 0.09514680794625115
|
334 |
+
},
|
335 |
+
"mmlu_stem": {
|
336 |
+
"alias": " - stem",
|
337 |
+
"acc,none": 0.47605455122105933,
|
338 |
+
"acc_stderr,none": 0.11287864111088165
|
339 |
+
}
|
340 |
+
},
|
341 |
+
"configs": {
|
342 |
+
"mmlu_abstract_algebra": {
|
343 |
+
"task": "mmlu_abstract_algebra",
|
344 |
+
"task_alias": "abstract_algebra",
|
345 |
+
"group": "mmlu_stem",
|
346 |
+
"group_alias": "stem",
|
347 |
+
"dataset_path": "hails/mmlu_no_train",
|
348 |
+
"dataset_name": "abstract_algebra",
|
349 |
+
"test_split": "test",
|
350 |
+
"fewshot_split": "dev",
|
351 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
352 |
+
"doc_to_target": "answer",
|
353 |
+
"doc_to_choice": [
|
354 |
+
"A",
|
355 |
+
"B",
|
356 |
+
"C",
|
357 |
+
"D"
|
358 |
+
],
|
359 |
+
"description": "The following are multiple choice questions (with answers) about abstract algebra.\n\n",
|
360 |
+
"target_delimiter": " ",
|
361 |
+
"fewshot_delimiter": "\n\n",
|
362 |
+
"fewshot_config": {
|
363 |
+
"sampler": "first_n"
|
364 |
+
},
|
365 |
+
"metric_list": [
|
366 |
+
{
|
367 |
+
"metric": "acc",
|
368 |
+
"aggregation": "mean",
|
369 |
+
"higher_is_better": true
|
370 |
+
}
|
371 |
+
],
|
372 |
+
"output_type": "multiple_choice",
|
373 |
+
"repeats": 1,
|
374 |
+
"should_decontaminate": false,
|
375 |
+
"metadata": {
|
376 |
+
"version": 0.0
|
377 |
+
}
|
378 |
+
},
|
379 |
+
"mmlu_anatomy": {
|
380 |
+
"task": "mmlu_anatomy",
|
381 |
+
"task_alias": "anatomy",
|
382 |
+
"group": "mmlu_stem",
|
383 |
+
"group_alias": "stem",
|
384 |
+
"dataset_path": "hails/mmlu_no_train",
|
385 |
+
"dataset_name": "anatomy",
|
386 |
+
"test_split": "test",
|
387 |
+
"fewshot_split": "dev",
|
388 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
389 |
+
"doc_to_target": "answer",
|
390 |
+
"doc_to_choice": [
|
391 |
+
"A",
|
392 |
+
"B",
|
393 |
+
"C",
|
394 |
+
"D"
|
395 |
+
],
|
396 |
+
"description": "The following are multiple choice questions (with answers) about anatomy.\n\n",
|
397 |
+
"target_delimiter": " ",
|
398 |
+
"fewshot_delimiter": "\n\n",
|
399 |
+
"fewshot_config": {
|
400 |
+
"sampler": "first_n"
|
401 |
+
},
|
402 |
+
"metric_list": [
|
403 |
+
{
|
404 |
+
"metric": "acc",
|
405 |
+
"aggregation": "mean",
|
406 |
+
"higher_is_better": true
|
407 |
+
}
|
408 |
+
],
|
409 |
+
"output_type": "multiple_choice",
|
410 |
+
"repeats": 1,
|
411 |
+
"should_decontaminate": false,
|
412 |
+
"metadata": {
|
413 |
+
"version": 0.0
|
414 |
+
}
|
415 |
+
},
|
416 |
+
"mmlu_astronomy": {
|
417 |
+
"task": "mmlu_astronomy",
|
418 |
+
"task_alias": "astronomy",
|
419 |
+
"group": "mmlu_stem",
|
420 |
+
"group_alias": "stem",
|
421 |
+
"dataset_path": "hails/mmlu_no_train",
|
422 |
+
"dataset_name": "astronomy",
|
423 |
+
"test_split": "test",
|
424 |
+
"fewshot_split": "dev",
|
425 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
426 |
+
"doc_to_target": "answer",
|
427 |
+
"doc_to_choice": [
|
428 |
+
"A",
|
429 |
+
"B",
|
430 |
+
"C",
|
431 |
+
"D"
|
432 |
+
],
|
433 |
+
"description": "The following are multiple choice questions (with answers) about astronomy.\n\n",
|
434 |
+
"target_delimiter": " ",
|
435 |
+
"fewshot_delimiter": "\n\n",
|
436 |
+
"fewshot_config": {
|
437 |
+
"sampler": "first_n"
|
438 |
+
},
|
439 |
+
"metric_list": [
|
440 |
+
{
|
441 |
+
"metric": "acc",
|
442 |
+
"aggregation": "mean",
|
443 |
+
"higher_is_better": true
|
444 |
+
}
|
445 |
+
],
|
446 |
+
"output_type": "multiple_choice",
|
447 |
+
"repeats": 1,
|
448 |
+
"should_decontaminate": false,
|
449 |
+
"metadata": {
|
450 |
+
"version": 0.0
|
451 |
+
}
|
452 |
+
},
|
453 |
+
"mmlu_business_ethics": {
|
454 |
+
"task": "mmlu_business_ethics",
|
455 |
+
"task_alias": "business_ethics",
|
456 |
+
"group": "mmlu_other",
|
457 |
+
"group_alias": "other",
|
458 |
+
"dataset_path": "hails/mmlu_no_train",
|
459 |
+
"dataset_name": "business_ethics",
|
460 |
+
"test_split": "test",
|
461 |
+
"fewshot_split": "dev",
|
462 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
463 |
+
"doc_to_target": "answer",
|
464 |
+
"doc_to_choice": [
|
465 |
+
"A",
|
466 |
+
"B",
|
467 |
+
"C",
|
468 |
+
"D"
|
469 |
+
],
|
470 |
+
"description": "The following are multiple choice questions (with answers) about business ethics.\n\n",
|
471 |
+
"target_delimiter": " ",
|
472 |
+
"fewshot_delimiter": "\n\n",
|
473 |
+
"fewshot_config": {
|
474 |
+
"sampler": "first_n"
|
475 |
+
},
|
476 |
+
"metric_list": [
|
477 |
+
{
|
478 |
+
"metric": "acc",
|
479 |
+
"aggregation": "mean",
|
480 |
+
"higher_is_better": true
|
481 |
+
}
|
482 |
+
],
|
483 |
+
"output_type": "multiple_choice",
|
484 |
+
"repeats": 1,
|
485 |
+
"should_decontaminate": false,
|
486 |
+
"metadata": {
|
487 |
+
"version": 0.0
|
488 |
+
}
|
489 |
+
},
|
490 |
+
"mmlu_clinical_knowledge": {
|
491 |
+
"task": "mmlu_clinical_knowledge",
|
492 |
+
"task_alias": "clinical_knowledge",
|
493 |
+
"group": "mmlu_other",
|
494 |
+
"group_alias": "other",
|
495 |
+
"dataset_path": "hails/mmlu_no_train",
|
496 |
+
"dataset_name": "clinical_knowledge",
|
497 |
+
"test_split": "test",
|
498 |
+
"fewshot_split": "dev",
|
499 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
500 |
+
"doc_to_target": "answer",
|
501 |
+
"doc_to_choice": [
|
502 |
+
"A",
|
503 |
+
"B",
|
504 |
+
"C",
|
505 |
+
"D"
|
506 |
+
],
|
507 |
+
"description": "The following are multiple choice questions (with answers) about clinical knowledge.\n\n",
|
508 |
+
"target_delimiter": " ",
|
509 |
+
"fewshot_delimiter": "\n\n",
|
510 |
+
"fewshot_config": {
|
511 |
+
"sampler": "first_n"
|
512 |
+
},
|
513 |
+
"metric_list": [
|
514 |
+
{
|
515 |
+
"metric": "acc",
|
516 |
+
"aggregation": "mean",
|
517 |
+
"higher_is_better": true
|
518 |
+
}
|
519 |
+
],
|
520 |
+
"output_type": "multiple_choice",
|
521 |
+
"repeats": 1,
|
522 |
+
"should_decontaminate": false,
|
523 |
+
"metadata": {
|
524 |
+
"version": 0.0
|
525 |
+
}
|
526 |
+
},
|
527 |
+
"mmlu_college_biology": {
|
528 |
+
"task": "mmlu_college_biology",
|
529 |
+
"task_alias": "college_biology",
|
530 |
+
"group": "mmlu_stem",
|
531 |
+
"group_alias": "stem",
|
532 |
+
"dataset_path": "hails/mmlu_no_train",
|
533 |
+
"dataset_name": "college_biology",
|
534 |
+
"test_split": "test",
|
535 |
+
"fewshot_split": "dev",
|
536 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
537 |
+
"doc_to_target": "answer",
|
538 |
+
"doc_to_choice": [
|
539 |
+
"A",
|
540 |
+
"B",
|
541 |
+
"C",
|
542 |
+
"D"
|
543 |
+
],
|
544 |
+
"description": "The following are multiple choice questions (with answers) about college biology.\n\n",
|
545 |
+
"target_delimiter": " ",
|
546 |
+
"fewshot_delimiter": "\n\n",
|
547 |
+
"fewshot_config": {
|
548 |
+
"sampler": "first_n"
|
549 |
+
},
|
550 |
+
"metric_list": [
|
551 |
+
{
|
552 |
+
"metric": "acc",
|
553 |
+
"aggregation": "mean",
|
554 |
+
"higher_is_better": true
|
555 |
+
}
|
556 |
+
],
|
557 |
+
"output_type": "multiple_choice",
|
558 |
+
"repeats": 1,
|
559 |
+
"should_decontaminate": false,
|
560 |
+
"metadata": {
|
561 |
+
"version": 0.0
|
562 |
+
}
|
563 |
+
},
|
564 |
+
"mmlu_college_chemistry": {
|
565 |
+
"task": "mmlu_college_chemistry",
|
566 |
+
"task_alias": "college_chemistry",
|
567 |
+
"group": "mmlu_stem",
|
568 |
+
"group_alias": "stem",
|
569 |
+
"dataset_path": "hails/mmlu_no_train",
|
570 |
+
"dataset_name": "college_chemistry",
|
571 |
+
"test_split": "test",
|
572 |
+
"fewshot_split": "dev",
|
573 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
574 |
+
"doc_to_target": "answer",
|
575 |
+
"doc_to_choice": [
|
576 |
+
"A",
|
577 |
+
"B",
|
578 |
+
"C",
|
579 |
+
"D"
|
580 |
+
],
|
581 |
+
"description": "The following are multiple choice questions (with answers) about college chemistry.\n\n",
|
582 |
+
"target_delimiter": " ",
|
583 |
+
"fewshot_delimiter": "\n\n",
|
584 |
+
"fewshot_config": {
|
585 |
+
"sampler": "first_n"
|
586 |
+
},
|
587 |
+
"metric_list": [
|
588 |
+
{
|
589 |
+
"metric": "acc",
|
590 |
+
"aggregation": "mean",
|
591 |
+
"higher_is_better": true
|
592 |
+
}
|
593 |
+
],
|
594 |
+
"output_type": "multiple_choice",
|
595 |
+
"repeats": 1,
|
596 |
+
"should_decontaminate": false,
|
597 |
+
"metadata": {
|
598 |
+
"version": 0.0
|
599 |
+
}
|
600 |
+
},
|
601 |
+
"mmlu_college_computer_science": {
|
602 |
+
"task": "mmlu_college_computer_science",
|
603 |
+
"task_alias": "college_computer_science",
|
604 |
+
"group": "mmlu_stem",
|
605 |
+
"group_alias": "stem",
|
606 |
+
"dataset_path": "hails/mmlu_no_train",
|
607 |
+
"dataset_name": "college_computer_science",
|
608 |
+
"test_split": "test",
|
609 |
+
"fewshot_split": "dev",
|
610 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
611 |
+
"doc_to_target": "answer",
|
612 |
+
"doc_to_choice": [
|
613 |
+
"A",
|
614 |
+
"B",
|
615 |
+
"C",
|
616 |
+
"D"
|
617 |
+
],
|
618 |
+
"description": "The following are multiple choice questions (with answers) about college computer science.\n\n",
|
619 |
+
"target_delimiter": " ",
|
620 |
+
"fewshot_delimiter": "\n\n",
|
621 |
+
"fewshot_config": {
|
622 |
+
"sampler": "first_n"
|
623 |
+
},
|
624 |
+
"metric_list": [
|
625 |
+
{
|
626 |
+
"metric": "acc",
|
627 |
+
"aggregation": "mean",
|
628 |
+
"higher_is_better": true
|
629 |
+
}
|
630 |
+
],
|
631 |
+
"output_type": "multiple_choice",
|
632 |
+
"repeats": 1,
|
633 |
+
"should_decontaminate": false,
|
634 |
+
"metadata": {
|
635 |
+
"version": 0.0
|
636 |
+
}
|
637 |
+
},
|
638 |
+
"mmlu_college_mathematics": {
|
639 |
+
"task": "mmlu_college_mathematics",
|
640 |
+
"task_alias": "college_mathematics",
|
641 |
+
"group": "mmlu_stem",
|
642 |
+
"group_alias": "stem",
|
643 |
+
"dataset_path": "hails/mmlu_no_train",
|
644 |
+
"dataset_name": "college_mathematics",
|
645 |
+
"test_split": "test",
|
646 |
+
"fewshot_split": "dev",
|
647 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
648 |
+
"doc_to_target": "answer",
|
649 |
+
"doc_to_choice": [
|
650 |
+
"A",
|
651 |
+
"B",
|
652 |
+
"C",
|
653 |
+
"D"
|
654 |
+
],
|
655 |
+
"description": "The following are multiple choice questions (with answers) about college mathematics.\n\n",
|
656 |
+
"target_delimiter": " ",
|
657 |
+
"fewshot_delimiter": "\n\n",
|
658 |
+
"fewshot_config": {
|
659 |
+
"sampler": "first_n"
|
660 |
+
},
|
661 |
+
"metric_list": [
|
662 |
+
{
|
663 |
+
"metric": "acc",
|
664 |
+
"aggregation": "mean",
|
665 |
+
"higher_is_better": true
|
666 |
+
}
|
667 |
+
],
|
668 |
+
"output_type": "multiple_choice",
|
669 |
+
"repeats": 1,
|
670 |
+
"should_decontaminate": false,
|
671 |
+
"metadata": {
|
672 |
+
"version": 0.0
|
673 |
+
}
|
674 |
+
},
|
675 |
+
"mmlu_college_medicine": {
|
676 |
+
"task": "mmlu_college_medicine",
|
677 |
+
"task_alias": "college_medicine",
|
678 |
+
"group": "mmlu_other",
|
679 |
+
"group_alias": "other",
|
680 |
+
"dataset_path": "hails/mmlu_no_train",
|
681 |
+
"dataset_name": "college_medicine",
|
682 |
+
"test_split": "test",
|
683 |
+
"fewshot_split": "dev",
|
684 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
685 |
+
"doc_to_target": "answer",
|
686 |
+
"doc_to_choice": [
|
687 |
+
"A",
|
688 |
+
"B",
|
689 |
+
"C",
|
690 |
+
"D"
|
691 |
+
],
|
692 |
+
"description": "The following are multiple choice questions (with answers) about college medicine.\n\n",
|
693 |
+
"target_delimiter": " ",
|
694 |
+
"fewshot_delimiter": "\n\n",
|
695 |
+
"fewshot_config": {
|
696 |
+
"sampler": "first_n"
|
697 |
+
},
|
698 |
+
"metric_list": [
|
699 |
+
{
|
700 |
+
"metric": "acc",
|
701 |
+
"aggregation": "mean",
|
702 |
+
"higher_is_better": true
|
703 |
+
}
|
704 |
+
],
|
705 |
+
"output_type": "multiple_choice",
|
706 |
+
"repeats": 1,
|
707 |
+
"should_decontaminate": false,
|
708 |
+
"metadata": {
|
709 |
+
"version": 0.0
|
710 |
+
}
|
711 |
+
},
|
712 |
+
"mmlu_college_physics": {
|
713 |
+
"task": "mmlu_college_physics",
|
714 |
+
"task_alias": "college_physics",
|
715 |
+
"group": "mmlu_stem",
|
716 |
+
"group_alias": "stem",
|
717 |
+
"dataset_path": "hails/mmlu_no_train",
|
718 |
+
"dataset_name": "college_physics",
|
719 |
+
"test_split": "test",
|
720 |
+
"fewshot_split": "dev",
|
721 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
722 |
+
"doc_to_target": "answer",
|
723 |
+
"doc_to_choice": [
|
724 |
+
"A",
|
725 |
+
"B",
|
726 |
+
"C",
|
727 |
+
"D"
|
728 |
+
],
|
729 |
+
"description": "The following are multiple choice questions (with answers) about college physics.\n\n",
|
730 |
+
"target_delimiter": " ",
|
731 |
+
"fewshot_delimiter": "\n\n",
|
732 |
+
"fewshot_config": {
|
733 |
+
"sampler": "first_n"
|
734 |
+
},
|
735 |
+
"metric_list": [
|
736 |
+
{
|
737 |
+
"metric": "acc",
|
738 |
+
"aggregation": "mean",
|
739 |
+
"higher_is_better": true
|
740 |
+
}
|
741 |
+
],
|
742 |
+
"output_type": "multiple_choice",
|
743 |
+
"repeats": 1,
|
744 |
+
"should_decontaminate": false,
|
745 |
+
"metadata": {
|
746 |
+
"version": 0.0
|
747 |
+
}
|
748 |
+
},
|
749 |
+
"mmlu_computer_security": {
|
750 |
+
"task": "mmlu_computer_security",
|
751 |
+
"task_alias": "computer_security",
|
752 |
+
"group": "mmlu_stem",
|
753 |
+
"group_alias": "stem",
|
754 |
+
"dataset_path": "hails/mmlu_no_train",
|
755 |
+
"dataset_name": "computer_security",
|
756 |
+
"test_split": "test",
|
757 |
+
"fewshot_split": "dev",
|
758 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
759 |
+
"doc_to_target": "answer",
|
760 |
+
"doc_to_choice": [
|
761 |
+
"A",
|
762 |
+
"B",
|
763 |
+
"C",
|
764 |
+
"D"
|
765 |
+
],
|
766 |
+
"description": "The following are multiple choice questions (with answers) about computer security.\n\n",
|
767 |
+
"target_delimiter": " ",
|
768 |
+
"fewshot_delimiter": "\n\n",
|
769 |
+
"fewshot_config": {
|
770 |
+
"sampler": "first_n"
|
771 |
+
},
|
772 |
+
"metric_list": [
|
773 |
+
{
|
774 |
+
"metric": "acc",
|
775 |
+
"aggregation": "mean",
|
776 |
+
"higher_is_better": true
|
777 |
+
}
|
778 |
+
],
|
779 |
+
"output_type": "multiple_choice",
|
780 |
+
"repeats": 1,
|
781 |
+
"should_decontaminate": false,
|
782 |
+
"metadata": {
|
783 |
+
"version": 0.0
|
784 |
+
}
|
785 |
+
},
|
786 |
+
"mmlu_conceptual_physics": {
|
787 |
+
"task": "mmlu_conceptual_physics",
|
788 |
+
"task_alias": "conceptual_physics",
|
789 |
+
"group": "mmlu_stem",
|
790 |
+
"group_alias": "stem",
|
791 |
+
"dataset_path": "hails/mmlu_no_train",
|
792 |
+
"dataset_name": "conceptual_physics",
|
793 |
+
"test_split": "test",
|
794 |
+
"fewshot_split": "dev",
|
795 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
796 |
+
"doc_to_target": "answer",
|
797 |
+
"doc_to_choice": [
|
798 |
+
"A",
|
799 |
+
"B",
|
800 |
+
"C",
|
801 |
+
"D"
|
802 |
+
],
|
803 |
+
"description": "The following are multiple choice questions (with answers) about conceptual physics.\n\n",
|
804 |
+
"target_delimiter": " ",
|
805 |
+
"fewshot_delimiter": "\n\n",
|
806 |
+
"fewshot_config": {
|
807 |
+
"sampler": "first_n"
|
808 |
+
},
|
809 |
+
"metric_list": [
|
810 |
+
{
|
811 |
+
"metric": "acc",
|
812 |
+
"aggregation": "mean",
|
813 |
+
"higher_is_better": true
|
814 |
+
}
|
815 |
+
],
|
816 |
+
"output_type": "multiple_choice",
|
817 |
+
"repeats": 1,
|
818 |
+
"should_decontaminate": false,
|
819 |
+
"metadata": {
|
820 |
+
"version": 0.0
|
821 |
+
}
|
822 |
+
},
|
823 |
+
"mmlu_econometrics": {
|
824 |
+
"task": "mmlu_econometrics",
|
825 |
+
"task_alias": "econometrics",
|
826 |
+
"group": "mmlu_social_sciences",
|
827 |
+
"group_alias": "social_sciences",
|
828 |
+
"dataset_path": "hails/mmlu_no_train",
|
829 |
+
"dataset_name": "econometrics",
|
830 |
+
"test_split": "test",
|
831 |
+
"fewshot_split": "dev",
|
832 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
833 |
+
"doc_to_target": "answer",
|
834 |
+
"doc_to_choice": [
|
835 |
+
"A",
|
836 |
+
"B",
|
837 |
+
"C",
|
838 |
+
"D"
|
839 |
+
],
|
840 |
+
"description": "The following are multiple choice questions (with answers) about econometrics.\n\n",
|
841 |
+
"target_delimiter": " ",
|
842 |
+
"fewshot_delimiter": "\n\n",
|
843 |
+
"fewshot_config": {
|
844 |
+
"sampler": "first_n"
|
845 |
+
},
|
846 |
+
"metric_list": [
|
847 |
+
{
|
848 |
+
"metric": "acc",
|
849 |
+
"aggregation": "mean",
|
850 |
+
"higher_is_better": true
|
851 |
+
}
|
852 |
+
],
|
853 |
+
"output_type": "multiple_choice",
|
854 |
+
"repeats": 1,
|
855 |
+
"should_decontaminate": false,
|
856 |
+
"metadata": {
|
857 |
+
"version": 0.0
|
858 |
+
}
|
859 |
+
},
|
860 |
+
"mmlu_electrical_engineering": {
|
861 |
+
"task": "mmlu_electrical_engineering",
|
862 |
+
"task_alias": "electrical_engineering",
|
863 |
+
"group": "mmlu_stem",
|
864 |
+
"group_alias": "stem",
|
865 |
+
"dataset_path": "hails/mmlu_no_train",
|
866 |
+
"dataset_name": "electrical_engineering",
|
867 |
+
"test_split": "test",
|
868 |
+
"fewshot_split": "dev",
|
869 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
870 |
+
"doc_to_target": "answer",
|
871 |
+
"doc_to_choice": [
|
872 |
+
"A",
|
873 |
+
"B",
|
874 |
+
"C",
|
875 |
+
"D"
|
876 |
+
],
|
877 |
+
"description": "The following are multiple choice questions (with answers) about electrical engineering.\n\n",
|
878 |
+
"target_delimiter": " ",
|
879 |
+
"fewshot_delimiter": "\n\n",
|
880 |
+
"fewshot_config": {
|
881 |
+
"sampler": "first_n"
|
882 |
+
},
|
883 |
+
"metric_list": [
|
884 |
+
{
|
885 |
+
"metric": "acc",
|
886 |
+
"aggregation": "mean",
|
887 |
+
"higher_is_better": true
|
888 |
+
}
|
889 |
+
],
|
890 |
+
"output_type": "multiple_choice",
|
891 |
+
"repeats": 1,
|
892 |
+
"should_decontaminate": false,
|
893 |
+
"metadata": {
|
894 |
+
"version": 0.0
|
895 |
+
}
|
896 |
+
},
|
897 |
+
"mmlu_elementary_mathematics": {
|
898 |
+
"task": "mmlu_elementary_mathematics",
|
899 |
+
"task_alias": "elementary_mathematics",
|
900 |
+
"group": "mmlu_stem",
|
901 |
+
"group_alias": "stem",
|
902 |
+
"dataset_path": "hails/mmlu_no_train",
|
903 |
+
"dataset_name": "elementary_mathematics",
|
904 |
+
"test_split": "test",
|
905 |
+
"fewshot_split": "dev",
|
906 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
907 |
+
"doc_to_target": "answer",
|
908 |
+
"doc_to_choice": [
|
909 |
+
"A",
|
910 |
+
"B",
|
911 |
+
"C",
|
912 |
+
"D"
|
913 |
+
],
|
914 |
+
"description": "The following are multiple choice questions (with answers) about elementary mathematics.\n\n",
|
915 |
+
"target_delimiter": " ",
|
916 |
+
"fewshot_delimiter": "\n\n",
|
917 |
+
"fewshot_config": {
|
918 |
+
"sampler": "first_n"
|
919 |
+
},
|
920 |
+
"metric_list": [
|
921 |
+
{
|
922 |
+
"metric": "acc",
|
923 |
+
"aggregation": "mean",
|
924 |
+
"higher_is_better": true
|
925 |
+
}
|
926 |
+
],
|
927 |
+
"output_type": "multiple_choice",
|
928 |
+
"repeats": 1,
|
929 |
+
"should_decontaminate": false,
|
930 |
+
"metadata": {
|
931 |
+
"version": 0.0
|
932 |
+
}
|
933 |
+
},
|
934 |
+
"mmlu_formal_logic": {
|
935 |
+
"task": "mmlu_formal_logic",
|
936 |
+
"task_alias": "formal_logic",
|
937 |
+
"group": "mmlu_humanities",
|
938 |
+
"group_alias": "humanities",
|
939 |
+
"dataset_path": "hails/mmlu_no_train",
|
940 |
+
"dataset_name": "formal_logic",
|
941 |
+
"test_split": "test",
|
942 |
+
"fewshot_split": "dev",
|
943 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
944 |
+
"doc_to_target": "answer",
|
945 |
+
"doc_to_choice": [
|
946 |
+
"A",
|
947 |
+
"B",
|
948 |
+
"C",
|
949 |
+
"D"
|
950 |
+
],
|
951 |
+
"description": "The following are multiple choice questions (with answers) about formal logic.\n\n",
|
952 |
+
"target_delimiter": " ",
|
953 |
+
"fewshot_delimiter": "\n\n",
|
954 |
+
"fewshot_config": {
|
955 |
+
"sampler": "first_n"
|
956 |
+
},
|
957 |
+
"metric_list": [
|
958 |
+
{
|
959 |
+
"metric": "acc",
|
960 |
+
"aggregation": "mean",
|
961 |
+
"higher_is_better": true
|
962 |
+
}
|
963 |
+
],
|
964 |
+
"output_type": "multiple_choice",
|
965 |
+
"repeats": 1,
|
966 |
+
"should_decontaminate": false,
|
967 |
+
"metadata": {
|
968 |
+
"version": 0.0
|
969 |
+
}
|
970 |
+
},
|
971 |
+
"mmlu_global_facts": {
|
972 |
+
"task": "mmlu_global_facts",
|
973 |
+
"task_alias": "global_facts",
|
974 |
+
"group": "mmlu_other",
|
975 |
+
"group_alias": "other",
|
976 |
+
"dataset_path": "hails/mmlu_no_train",
|
977 |
+
"dataset_name": "global_facts",
|
978 |
+
"test_split": "test",
|
979 |
+
"fewshot_split": "dev",
|
980 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
981 |
+
"doc_to_target": "answer",
|
982 |
+
"doc_to_choice": [
|
983 |
+
"A",
|
984 |
+
"B",
|
985 |
+
"C",
|
986 |
+
"D"
|
987 |
+
],
|
988 |
+
"description": "The following are multiple choice questions (with answers) about global facts.\n\n",
|
989 |
+
"target_delimiter": " ",
|
990 |
+
"fewshot_delimiter": "\n\n",
|
991 |
+
"fewshot_config": {
|
992 |
+
"sampler": "first_n"
|
993 |
+
},
|
994 |
+
"metric_list": [
|
995 |
+
{
|
996 |
+
"metric": "acc",
|
997 |
+
"aggregation": "mean",
|
998 |
+
"higher_is_better": true
|
999 |
+
}
|
1000 |
+
],
|
1001 |
+
"output_type": "multiple_choice",
|
1002 |
+
"repeats": 1,
|
1003 |
+
"should_decontaminate": false,
|
1004 |
+
"metadata": {
|
1005 |
+
"version": 0.0
|
1006 |
+
}
|
1007 |
+
},
|
1008 |
+
"mmlu_high_school_biology": {
|
1009 |
+
"task": "mmlu_high_school_biology",
|
1010 |
+
"task_alias": "high_school_biology",
|
1011 |
+
"group": "mmlu_stem",
|
1012 |
+
"group_alias": "stem",
|
1013 |
+
"dataset_path": "hails/mmlu_no_train",
|
1014 |
+
"dataset_name": "high_school_biology",
|
1015 |
+
"test_split": "test",
|
1016 |
+
"fewshot_split": "dev",
|
1017 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1018 |
+
"doc_to_target": "answer",
|
1019 |
+
"doc_to_choice": [
|
1020 |
+
"A",
|
1021 |
+
"B",
|
1022 |
+
"C",
|
1023 |
+
"D"
|
1024 |
+
],
|
1025 |
+
"description": "The following are multiple choice questions (with answers) about high school biology.\n\n",
|
1026 |
+
"target_delimiter": " ",
|
1027 |
+
"fewshot_delimiter": "\n\n",
|
1028 |
+
"fewshot_config": {
|
1029 |
+
"sampler": "first_n"
|
1030 |
+
},
|
1031 |
+
"metric_list": [
|
1032 |
+
{
|
1033 |
+
"metric": "acc",
|
1034 |
+
"aggregation": "mean",
|
1035 |
+
"higher_is_better": true
|
1036 |
+
}
|
1037 |
+
],
|
1038 |
+
"output_type": "multiple_choice",
|
1039 |
+
"repeats": 1,
|
1040 |
+
"should_decontaminate": false,
|
1041 |
+
"metadata": {
|
1042 |
+
"version": 0.0
|
1043 |
+
}
|
1044 |
+
},
|
1045 |
+
"mmlu_high_school_chemistry": {
|
1046 |
+
"task": "mmlu_high_school_chemistry",
|
1047 |
+
"task_alias": "high_school_chemistry",
|
1048 |
+
"group": "mmlu_stem",
|
1049 |
+
"group_alias": "stem",
|
1050 |
+
"dataset_path": "hails/mmlu_no_train",
|
1051 |
+
"dataset_name": "high_school_chemistry",
|
1052 |
+
"test_split": "test",
|
1053 |
+
"fewshot_split": "dev",
|
1054 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1055 |
+
"doc_to_target": "answer",
|
1056 |
+
"doc_to_choice": [
|
1057 |
+
"A",
|
1058 |
+
"B",
|
1059 |
+
"C",
|
1060 |
+
"D"
|
1061 |
+
],
|
1062 |
+
"description": "The following are multiple choice questions (with answers) about high school chemistry.\n\n",
|
1063 |
+
"target_delimiter": " ",
|
1064 |
+
"fewshot_delimiter": "\n\n",
|
1065 |
+
"fewshot_config": {
|
1066 |
+
"sampler": "first_n"
|
1067 |
+
},
|
1068 |
+
"metric_list": [
|
1069 |
+
{
|
1070 |
+
"metric": "acc",
|
1071 |
+
"aggregation": "mean",
|
1072 |
+
"higher_is_better": true
|
1073 |
+
}
|
1074 |
+
],
|
1075 |
+
"output_type": "multiple_choice",
|
1076 |
+
"repeats": 1,
|
1077 |
+
"should_decontaminate": false,
|
1078 |
+
"metadata": {
|
1079 |
+
"version": 0.0
|
1080 |
+
}
|
1081 |
+
},
|
1082 |
+
"mmlu_high_school_computer_science": {
|
1083 |
+
"task": "mmlu_high_school_computer_science",
|
1084 |
+
"task_alias": "high_school_computer_science",
|
1085 |
+
"group": "mmlu_stem",
|
1086 |
+
"group_alias": "stem",
|
1087 |
+
"dataset_path": "hails/mmlu_no_train",
|
1088 |
+
"dataset_name": "high_school_computer_science",
|
1089 |
+
"test_split": "test",
|
1090 |
+
"fewshot_split": "dev",
|
1091 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1092 |
+
"doc_to_target": "answer",
|
1093 |
+
"doc_to_choice": [
|
1094 |
+
"A",
|
1095 |
+
"B",
|
1096 |
+
"C",
|
1097 |
+
"D"
|
1098 |
+
],
|
1099 |
+
"description": "The following are multiple choice questions (with answers) about high school computer science.\n\n",
|
1100 |
+
"target_delimiter": " ",
|
1101 |
+
"fewshot_delimiter": "\n\n",
|
1102 |
+
"fewshot_config": {
|
1103 |
+
"sampler": "first_n"
|
1104 |
+
},
|
1105 |
+
"metric_list": [
|
1106 |
+
{
|
1107 |
+
"metric": "acc",
|
1108 |
+
"aggregation": "mean",
|
1109 |
+
"higher_is_better": true
|
1110 |
+
}
|
1111 |
+
],
|
1112 |
+
"output_type": "multiple_choice",
|
1113 |
+
"repeats": 1,
|
1114 |
+
"should_decontaminate": false,
|
1115 |
+
"metadata": {
|
1116 |
+
"version": 0.0
|
1117 |
+
}
|
1118 |
+
},
|
1119 |
+
"mmlu_high_school_european_history": {
|
1120 |
+
"task": "mmlu_high_school_european_history",
|
1121 |
+
"task_alias": "high_school_european_history",
|
1122 |
+
"group": "mmlu_humanities",
|
1123 |
+
"group_alias": "humanities",
|
1124 |
+
"dataset_path": "hails/mmlu_no_train",
|
1125 |
+
"dataset_name": "high_school_european_history",
|
1126 |
+
"test_split": "test",
|
1127 |
+
"fewshot_split": "dev",
|
1128 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1129 |
+
"doc_to_target": "answer",
|
1130 |
+
"doc_to_choice": [
|
1131 |
+
"A",
|
1132 |
+
"B",
|
1133 |
+
"C",
|
1134 |
+
"D"
|
1135 |
+
],
|
1136 |
+
"description": "The following are multiple choice questions (with answers) about high school european history.\n\n",
|
1137 |
+
"target_delimiter": " ",
|
1138 |
+
"fewshot_delimiter": "\n\n",
|
1139 |
+
"fewshot_config": {
|
1140 |
+
"sampler": "first_n"
|
1141 |
+
},
|
1142 |
+
"metric_list": [
|
1143 |
+
{
|
1144 |
+
"metric": "acc",
|
1145 |
+
"aggregation": "mean",
|
1146 |
+
"higher_is_better": true
|
1147 |
+
}
|
1148 |
+
],
|
1149 |
+
"output_type": "multiple_choice",
|
1150 |
+
"repeats": 1,
|
1151 |
+
"should_decontaminate": false,
|
1152 |
+
"metadata": {
|
1153 |
+
"version": 0.0
|
1154 |
+
}
|
1155 |
+
},
|
1156 |
+
"mmlu_high_school_geography": {
|
1157 |
+
"task": "mmlu_high_school_geography",
|
1158 |
+
"task_alias": "high_school_geography",
|
1159 |
+
"group": "mmlu_social_sciences",
|
1160 |
+
"group_alias": "social_sciences",
|
1161 |
+
"dataset_path": "hails/mmlu_no_train",
|
1162 |
+
"dataset_name": "high_school_geography",
|
1163 |
+
"test_split": "test",
|
1164 |
+
"fewshot_split": "dev",
|
1165 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1166 |
+
"doc_to_target": "answer",
|
1167 |
+
"doc_to_choice": [
|
1168 |
+
"A",
|
1169 |
+
"B",
|
1170 |
+
"C",
|
1171 |
+
"D"
|
1172 |
+
],
|
1173 |
+
"description": "The following are multiple choice questions (with answers) about high school geography.\n\n",
|
1174 |
+
"target_delimiter": " ",
|
1175 |
+
"fewshot_delimiter": "\n\n",
|
1176 |
+
"fewshot_config": {
|
1177 |
+
"sampler": "first_n"
|
1178 |
+
},
|
1179 |
+
"metric_list": [
|
1180 |
+
{
|
1181 |
+
"metric": "acc",
|
1182 |
+
"aggregation": "mean",
|
1183 |
+
"higher_is_better": true
|
1184 |
+
}
|
1185 |
+
],
|
1186 |
+
"output_type": "multiple_choice",
|
1187 |
+
"repeats": 1,
|
1188 |
+
"should_decontaminate": false,
|
1189 |
+
"metadata": {
|
1190 |
+
"version": 0.0
|
1191 |
+
}
|
1192 |
+
},
|
1193 |
+
"mmlu_high_school_government_and_politics": {
|
1194 |
+
"task": "mmlu_high_school_government_and_politics",
|
1195 |
+
"task_alias": "high_school_government_and_politics",
|
1196 |
+
"group": "mmlu_social_sciences",
|
1197 |
+
"group_alias": "social_sciences",
|
1198 |
+
"dataset_path": "hails/mmlu_no_train",
|
1199 |
+
"dataset_name": "high_school_government_and_politics",
|
1200 |
+
"test_split": "test",
|
1201 |
+
"fewshot_split": "dev",
|
1202 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1203 |
+
"doc_to_target": "answer",
|
1204 |
+
"doc_to_choice": [
|
1205 |
+
"A",
|
1206 |
+
"B",
|
1207 |
+
"C",
|
1208 |
+
"D"
|
1209 |
+
],
|
1210 |
+
"description": "The following are multiple choice questions (with answers) about high school government and politics.\n\n",
|
1211 |
+
"target_delimiter": " ",
|
1212 |
+
"fewshot_delimiter": "\n\n",
|
1213 |
+
"fewshot_config": {
|
1214 |
+
"sampler": "first_n"
|
1215 |
+
},
|
1216 |
+
"metric_list": [
|
1217 |
+
{
|
1218 |
+
"metric": "acc",
|
1219 |
+
"aggregation": "mean",
|
1220 |
+
"higher_is_better": true
|
1221 |
+
}
|
1222 |
+
],
|
1223 |
+
"output_type": "multiple_choice",
|
1224 |
+
"repeats": 1,
|
1225 |
+
"should_decontaminate": false,
|
1226 |
+
"metadata": {
|
1227 |
+
"version": 0.0
|
1228 |
+
}
|
1229 |
+
},
|
1230 |
+
"mmlu_high_school_macroeconomics": {
|
1231 |
+
"task": "mmlu_high_school_macroeconomics",
|
1232 |
+
"task_alias": "high_school_macroeconomics",
|
1233 |
+
"group": "mmlu_social_sciences",
|
1234 |
+
"group_alias": "social_sciences",
|
1235 |
+
"dataset_path": "hails/mmlu_no_train",
|
1236 |
+
"dataset_name": "high_school_macroeconomics",
|
1237 |
+
"test_split": "test",
|
1238 |
+
"fewshot_split": "dev",
|
1239 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1240 |
+
"doc_to_target": "answer",
|
1241 |
+
"doc_to_choice": [
|
1242 |
+
"A",
|
1243 |
+
"B",
|
1244 |
+
"C",
|
1245 |
+
"D"
|
1246 |
+
],
|
1247 |
+
"description": "The following are multiple choice questions (with answers) about high school macroeconomics.\n\n",
|
1248 |
+
"target_delimiter": " ",
|
1249 |
+
"fewshot_delimiter": "\n\n",
|
1250 |
+
"fewshot_config": {
|
1251 |
+
"sampler": "first_n"
|
1252 |
+
},
|
1253 |
+
"metric_list": [
|
1254 |
+
{
|
1255 |
+
"metric": "acc",
|
1256 |
+
"aggregation": "mean",
|
1257 |
+
"higher_is_better": true
|
1258 |
+
}
|
1259 |
+
],
|
1260 |
+
"output_type": "multiple_choice",
|
1261 |
+
"repeats": 1,
|
1262 |
+
"should_decontaminate": false,
|
1263 |
+
"metadata": {
|
1264 |
+
"version": 0.0
|
1265 |
+
}
|
1266 |
+
},
|
1267 |
+
"mmlu_high_school_mathematics": {
|
1268 |
+
"task": "mmlu_high_school_mathematics",
|
1269 |
+
"task_alias": "high_school_mathematics",
|
1270 |
+
"group": "mmlu_stem",
|
1271 |
+
"group_alias": "stem",
|
1272 |
+
"dataset_path": "hails/mmlu_no_train",
|
1273 |
+
"dataset_name": "high_school_mathematics",
|
1274 |
+
"test_split": "test",
|
1275 |
+
"fewshot_split": "dev",
|
1276 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1277 |
+
"doc_to_target": "answer",
|
1278 |
+
"doc_to_choice": [
|
1279 |
+
"A",
|
1280 |
+
"B",
|
1281 |
+
"C",
|
1282 |
+
"D"
|
1283 |
+
],
|
1284 |
+
"description": "The following are multiple choice questions (with answers) about high school mathematics.\n\n",
|
1285 |
+
"target_delimiter": " ",
|
1286 |
+
"fewshot_delimiter": "\n\n",
|
1287 |
+
"fewshot_config": {
|
1288 |
+
"sampler": "first_n"
|
1289 |
+
},
|
1290 |
+
"metric_list": [
|
1291 |
+
{
|
1292 |
+
"metric": "acc",
|
1293 |
+
"aggregation": "mean",
|
1294 |
+
"higher_is_better": true
|
1295 |
+
}
|
1296 |
+
],
|
1297 |
+
"output_type": "multiple_choice",
|
1298 |
+
"repeats": 1,
|
1299 |
+
"should_decontaminate": false,
|
1300 |
+
"metadata": {
|
1301 |
+
"version": 0.0
|
1302 |
+
}
|
1303 |
+
},
|
1304 |
+
"mmlu_high_school_microeconomics": {
|
1305 |
+
"task": "mmlu_high_school_microeconomics",
|
1306 |
+
"task_alias": "high_school_microeconomics",
|
1307 |
+
"group": "mmlu_social_sciences",
|
1308 |
+
"group_alias": "social_sciences",
|
1309 |
+
"dataset_path": "hails/mmlu_no_train",
|
1310 |
+
"dataset_name": "high_school_microeconomics",
|
1311 |
+
"test_split": "test",
|
1312 |
+
"fewshot_split": "dev",
|
1313 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1314 |
+
"doc_to_target": "answer",
|
1315 |
+
"doc_to_choice": [
|
1316 |
+
"A",
|
1317 |
+
"B",
|
1318 |
+
"C",
|
1319 |
+
"D"
|
1320 |
+
],
|
1321 |
+
"description": "The following are multiple choice questions (with answers) about high school microeconomics.\n\n",
|
1322 |
+
"target_delimiter": " ",
|
1323 |
+
"fewshot_delimiter": "\n\n",
|
1324 |
+
"fewshot_config": {
|
1325 |
+
"sampler": "first_n"
|
1326 |
+
},
|
1327 |
+
"metric_list": [
|
1328 |
+
{
|
1329 |
+
"metric": "acc",
|
1330 |
+
"aggregation": "mean",
|
1331 |
+
"higher_is_better": true
|
1332 |
+
}
|
1333 |
+
],
|
1334 |
+
"output_type": "multiple_choice",
|
1335 |
+
"repeats": 1,
|
1336 |
+
"should_decontaminate": false,
|
1337 |
+
"metadata": {
|
1338 |
+
"version": 0.0
|
1339 |
+
}
|
1340 |
+
},
|
1341 |
+
"mmlu_high_school_physics": {
|
1342 |
+
"task": "mmlu_high_school_physics",
|
1343 |
+
"task_alias": "high_school_physics",
|
1344 |
+
"group": "mmlu_stem",
|
1345 |
+
"group_alias": "stem",
|
1346 |
+
"dataset_path": "hails/mmlu_no_train",
|
1347 |
+
"dataset_name": "high_school_physics",
|
1348 |
+
"test_split": "test",
|
1349 |
+
"fewshot_split": "dev",
|
1350 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1351 |
+
"doc_to_target": "answer",
|
1352 |
+
"doc_to_choice": [
|
1353 |
+
"A",
|
1354 |
+
"B",
|
1355 |
+
"C",
|
1356 |
+
"D"
|
1357 |
+
],
|
1358 |
+
"description": "The following are multiple choice questions (with answers) about high school physics.\n\n",
|
1359 |
+
"target_delimiter": " ",
|
1360 |
+
"fewshot_delimiter": "\n\n",
|
1361 |
+
"fewshot_config": {
|
1362 |
+
"sampler": "first_n"
|
1363 |
+
},
|
1364 |
+
"metric_list": [
|
1365 |
+
{
|
1366 |
+
"metric": "acc",
|
1367 |
+
"aggregation": "mean",
|
1368 |
+
"higher_is_better": true
|
1369 |
+
}
|
1370 |
+
],
|
1371 |
+
"output_type": "multiple_choice",
|
1372 |
+
"repeats": 1,
|
1373 |
+
"should_decontaminate": false,
|
1374 |
+
"metadata": {
|
1375 |
+
"version": 0.0
|
1376 |
+
}
|
1377 |
+
},
|
1378 |
+
"mmlu_high_school_psychology": {
|
1379 |
+
"task": "mmlu_high_school_psychology",
|
1380 |
+
"task_alias": "high_school_psychology",
|
1381 |
+
"group": "mmlu_social_sciences",
|
1382 |
+
"group_alias": "social_sciences",
|
1383 |
+
"dataset_path": "hails/mmlu_no_train",
|
1384 |
+
"dataset_name": "high_school_psychology",
|
1385 |
+
"test_split": "test",
|
1386 |
+
"fewshot_split": "dev",
|
1387 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1388 |
+
"doc_to_target": "answer",
|
1389 |
+
"doc_to_choice": [
|
1390 |
+
"A",
|
1391 |
+
"B",
|
1392 |
+
"C",
|
1393 |
+
"D"
|
1394 |
+
],
|
1395 |
+
"description": "The following are multiple choice questions (with answers) about high school psychology.\n\n",
|
1396 |
+
"target_delimiter": " ",
|
1397 |
+
"fewshot_delimiter": "\n\n",
|
1398 |
+
"fewshot_config": {
|
1399 |
+
"sampler": "first_n"
|
1400 |
+
},
|
1401 |
+
"metric_list": [
|
1402 |
+
{
|
1403 |
+
"metric": "acc",
|
1404 |
+
"aggregation": "mean",
|
1405 |
+
"higher_is_better": true
|
1406 |
+
}
|
1407 |
+
],
|
1408 |
+
"output_type": "multiple_choice",
|
1409 |
+
"repeats": 1,
|
1410 |
+
"should_decontaminate": false,
|
1411 |
+
"metadata": {
|
1412 |
+
"version": 0.0
|
1413 |
+
}
|
1414 |
+
},
|
1415 |
+
"mmlu_high_school_statistics": {
|
1416 |
+
"task": "mmlu_high_school_statistics",
|
1417 |
+
"task_alias": "high_school_statistics",
|
1418 |
+
"group": "mmlu_stem",
|
1419 |
+
"group_alias": "stem",
|
1420 |
+
"dataset_path": "hails/mmlu_no_train",
|
1421 |
+
"dataset_name": "high_school_statistics",
|
1422 |
+
"test_split": "test",
|
1423 |
+
"fewshot_split": "dev",
|
1424 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1425 |
+
"doc_to_target": "answer",
|
1426 |
+
"doc_to_choice": [
|
1427 |
+
"A",
|
1428 |
+
"B",
|
1429 |
+
"C",
|
1430 |
+
"D"
|
1431 |
+
],
|
1432 |
+
"description": "The following are multiple choice questions (with answers) about high school statistics.\n\n",
|
1433 |
+
"target_delimiter": " ",
|
1434 |
+
"fewshot_delimiter": "\n\n",
|
1435 |
+
"fewshot_config": {
|
1436 |
+
"sampler": "first_n"
|
1437 |
+
},
|
1438 |
+
"metric_list": [
|
1439 |
+
{
|
1440 |
+
"metric": "acc",
|
1441 |
+
"aggregation": "mean",
|
1442 |
+
"higher_is_better": true
|
1443 |
+
}
|
1444 |
+
],
|
1445 |
+
"output_type": "multiple_choice",
|
1446 |
+
"repeats": 1,
|
1447 |
+
"should_decontaminate": false,
|
1448 |
+
"metadata": {
|
1449 |
+
"version": 0.0
|
1450 |
+
}
|
1451 |
+
},
|
1452 |
+
"mmlu_high_school_us_history": {
|
1453 |
+
"task": "mmlu_high_school_us_history",
|
1454 |
+
"task_alias": "high_school_us_history",
|
1455 |
+
"group": "mmlu_humanities",
|
1456 |
+
"group_alias": "humanities",
|
1457 |
+
"dataset_path": "hails/mmlu_no_train",
|
1458 |
+
"dataset_name": "high_school_us_history",
|
1459 |
+
"test_split": "test",
|
1460 |
+
"fewshot_split": "dev",
|
1461 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1462 |
+
"doc_to_target": "answer",
|
1463 |
+
"doc_to_choice": [
|
1464 |
+
"A",
|
1465 |
+
"B",
|
1466 |
+
"C",
|
1467 |
+
"D"
|
1468 |
+
],
|
1469 |
+
"description": "The following are multiple choice questions (with answers) about high school us history.\n\n",
|
1470 |
+
"target_delimiter": " ",
|
1471 |
+
"fewshot_delimiter": "\n\n",
|
1472 |
+
"fewshot_config": {
|
1473 |
+
"sampler": "first_n"
|
1474 |
+
},
|
1475 |
+
"metric_list": [
|
1476 |
+
{
|
1477 |
+
"metric": "acc",
|
1478 |
+
"aggregation": "mean",
|
1479 |
+
"higher_is_better": true
|
1480 |
+
}
|
1481 |
+
],
|
1482 |
+
"output_type": "multiple_choice",
|
1483 |
+
"repeats": 1,
|
1484 |
+
"should_decontaminate": false,
|
1485 |
+
"metadata": {
|
1486 |
+
"version": 0.0
|
1487 |
+
}
|
1488 |
+
},
|
1489 |
+
"mmlu_high_school_world_history": {
|
1490 |
+
"task": "mmlu_high_school_world_history",
|
1491 |
+
"task_alias": "high_school_world_history",
|
1492 |
+
"group": "mmlu_humanities",
|
1493 |
+
"group_alias": "humanities",
|
1494 |
+
"dataset_path": "hails/mmlu_no_train",
|
1495 |
+
"dataset_name": "high_school_world_history",
|
1496 |
+
"test_split": "test",
|
1497 |
+
"fewshot_split": "dev",
|
1498 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1499 |
+
"doc_to_target": "answer",
|
1500 |
+
"doc_to_choice": [
|
1501 |
+
"A",
|
1502 |
+
"B",
|
1503 |
+
"C",
|
1504 |
+
"D"
|
1505 |
+
],
|
1506 |
+
"description": "The following are multiple choice questions (with answers) about high school world history.\n\n",
|
1507 |
+
"target_delimiter": " ",
|
1508 |
+
"fewshot_delimiter": "\n\n",
|
1509 |
+
"fewshot_config": {
|
1510 |
+
"sampler": "first_n"
|
1511 |
+
},
|
1512 |
+
"metric_list": [
|
1513 |
+
{
|
1514 |
+
"metric": "acc",
|
1515 |
+
"aggregation": "mean",
|
1516 |
+
"higher_is_better": true
|
1517 |
+
}
|
1518 |
+
],
|
1519 |
+
"output_type": "multiple_choice",
|
1520 |
+
"repeats": 1,
|
1521 |
+
"should_decontaminate": false,
|
1522 |
+
"metadata": {
|
1523 |
+
"version": 0.0
|
1524 |
+
}
|
1525 |
+
},
|
1526 |
+
"mmlu_human_aging": {
|
1527 |
+
"task": "mmlu_human_aging",
|
1528 |
+
"task_alias": "human_aging",
|
1529 |
+
"group": "mmlu_other",
|
1530 |
+
"group_alias": "other",
|
1531 |
+
"dataset_path": "hails/mmlu_no_train",
|
1532 |
+
"dataset_name": "human_aging",
|
1533 |
+
"test_split": "test",
|
1534 |
+
"fewshot_split": "dev",
|
1535 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1536 |
+
"doc_to_target": "answer",
|
1537 |
+
"doc_to_choice": [
|
1538 |
+
"A",
|
1539 |
+
"B",
|
1540 |
+
"C",
|
1541 |
+
"D"
|
1542 |
+
],
|
1543 |
+
"description": "The following are multiple choice questions (with answers) about human aging.\n\n",
|
1544 |
+
"target_delimiter": " ",
|
1545 |
+
"fewshot_delimiter": "\n\n",
|
1546 |
+
"fewshot_config": {
|
1547 |
+
"sampler": "first_n"
|
1548 |
+
},
|
1549 |
+
"metric_list": [
|
1550 |
+
{
|
1551 |
+
"metric": "acc",
|
1552 |
+
"aggregation": "mean",
|
1553 |
+
"higher_is_better": true
|
1554 |
+
}
|
1555 |
+
],
|
1556 |
+
"output_type": "multiple_choice",
|
1557 |
+
"repeats": 1,
|
1558 |
+
"should_decontaminate": false,
|
1559 |
+
"metadata": {
|
1560 |
+
"version": 0.0
|
1561 |
+
}
|
1562 |
+
},
|
1563 |
+
"mmlu_human_sexuality": {
|
1564 |
+
"task": "mmlu_human_sexuality",
|
1565 |
+
"task_alias": "human_sexuality",
|
1566 |
+
"group": "mmlu_social_sciences",
|
1567 |
+
"group_alias": "social_sciences",
|
1568 |
+
"dataset_path": "hails/mmlu_no_train",
|
1569 |
+
"dataset_name": "human_sexuality",
|
1570 |
+
"test_split": "test",
|
1571 |
+
"fewshot_split": "dev",
|
1572 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1573 |
+
"doc_to_target": "answer",
|
1574 |
+
"doc_to_choice": [
|
1575 |
+
"A",
|
1576 |
+
"B",
|
1577 |
+
"C",
|
1578 |
+
"D"
|
1579 |
+
],
|
1580 |
+
"description": "The following are multiple choice questions (with answers) about human sexuality.\n\n",
|
1581 |
+
"target_delimiter": " ",
|
1582 |
+
"fewshot_delimiter": "\n\n",
|
1583 |
+
"fewshot_config": {
|
1584 |
+
"sampler": "first_n"
|
1585 |
+
},
|
1586 |
+
"metric_list": [
|
1587 |
+
{
|
1588 |
+
"metric": "acc",
|
1589 |
+
"aggregation": "mean",
|
1590 |
+
"higher_is_better": true
|
1591 |
+
}
|
1592 |
+
],
|
1593 |
+
"output_type": "multiple_choice",
|
1594 |
+
"repeats": 1,
|
1595 |
+
"should_decontaminate": false,
|
1596 |
+
"metadata": {
|
1597 |
+
"version": 0.0
|
1598 |
+
}
|
1599 |
+
},
|
1600 |
+
"mmlu_international_law": {
|
1601 |
+
"task": "mmlu_international_law",
|
1602 |
+
"task_alias": "international_law",
|
1603 |
+
"group": "mmlu_humanities",
|
1604 |
+
"group_alias": "humanities",
|
1605 |
+
"dataset_path": "hails/mmlu_no_train",
|
1606 |
+
"dataset_name": "international_law",
|
1607 |
+
"test_split": "test",
|
1608 |
+
"fewshot_split": "dev",
|
1609 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1610 |
+
"doc_to_target": "answer",
|
1611 |
+
"doc_to_choice": [
|
1612 |
+
"A",
|
1613 |
+
"B",
|
1614 |
+
"C",
|
1615 |
+
"D"
|
1616 |
+
],
|
1617 |
+
"description": "The following are multiple choice questions (with answers) about international law.\n\n",
|
1618 |
+
"target_delimiter": " ",
|
1619 |
+
"fewshot_delimiter": "\n\n",
|
1620 |
+
"fewshot_config": {
|
1621 |
+
"sampler": "first_n"
|
1622 |
+
},
|
1623 |
+
"metric_list": [
|
1624 |
+
{
|
1625 |
+
"metric": "acc",
|
1626 |
+
"aggregation": "mean",
|
1627 |
+
"higher_is_better": true
|
1628 |
+
}
|
1629 |
+
],
|
1630 |
+
"output_type": "multiple_choice",
|
1631 |
+
"repeats": 1,
|
1632 |
+
"should_decontaminate": false,
|
1633 |
+
"metadata": {
|
1634 |
+
"version": 0.0
|
1635 |
+
}
|
1636 |
+
},
|
1637 |
+
"mmlu_jurisprudence": {
|
1638 |
+
"task": "mmlu_jurisprudence",
|
1639 |
+
"task_alias": "jurisprudence",
|
1640 |
+
"group": "mmlu_humanities",
|
1641 |
+
"group_alias": "humanities",
|
1642 |
+
"dataset_path": "hails/mmlu_no_train",
|
1643 |
+
"dataset_name": "jurisprudence",
|
1644 |
+
"test_split": "test",
|
1645 |
+
"fewshot_split": "dev",
|
1646 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1647 |
+
"doc_to_target": "answer",
|
1648 |
+
"doc_to_choice": [
|
1649 |
+
"A",
|
1650 |
+
"B",
|
1651 |
+
"C",
|
1652 |
+
"D"
|
1653 |
+
],
|
1654 |
+
"description": "The following are multiple choice questions (with answers) about jurisprudence.\n\n",
|
1655 |
+
"target_delimiter": " ",
|
1656 |
+
"fewshot_delimiter": "\n\n",
|
1657 |
+
"fewshot_config": {
|
1658 |
+
"sampler": "first_n"
|
1659 |
+
},
|
1660 |
+
"metric_list": [
|
1661 |
+
{
|
1662 |
+
"metric": "acc",
|
1663 |
+
"aggregation": "mean",
|
1664 |
+
"higher_is_better": true
|
1665 |
+
}
|
1666 |
+
],
|
1667 |
+
"output_type": "multiple_choice",
|
1668 |
+
"repeats": 1,
|
1669 |
+
"should_decontaminate": false,
|
1670 |
+
"metadata": {
|
1671 |
+
"version": 0.0
|
1672 |
+
}
|
1673 |
+
},
|
1674 |
+
"mmlu_logical_fallacies": {
|
1675 |
+
"task": "mmlu_logical_fallacies",
|
1676 |
+
"task_alias": "logical_fallacies",
|
1677 |
+
"group": "mmlu_humanities",
|
1678 |
+
"group_alias": "humanities",
|
1679 |
+
"dataset_path": "hails/mmlu_no_train",
|
1680 |
+
"dataset_name": "logical_fallacies",
|
1681 |
+
"test_split": "test",
|
1682 |
+
"fewshot_split": "dev",
|
1683 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1684 |
+
"doc_to_target": "answer",
|
1685 |
+
"doc_to_choice": [
|
1686 |
+
"A",
|
1687 |
+
"B",
|
1688 |
+
"C",
|
1689 |
+
"D"
|
1690 |
+
],
|
1691 |
+
"description": "The following are multiple choice questions (with answers) about logical fallacies.\n\n",
|
1692 |
+
"target_delimiter": " ",
|
1693 |
+
"fewshot_delimiter": "\n\n",
|
1694 |
+
"fewshot_config": {
|
1695 |
+
"sampler": "first_n"
|
1696 |
+
},
|
1697 |
+
"metric_list": [
|
1698 |
+
{
|
1699 |
+
"metric": "acc",
|
1700 |
+
"aggregation": "mean",
|
1701 |
+
"higher_is_better": true
|
1702 |
+
}
|
1703 |
+
],
|
1704 |
+
"output_type": "multiple_choice",
|
1705 |
+
"repeats": 1,
|
1706 |
+
"should_decontaminate": false,
|
1707 |
+
"metadata": {
|
1708 |
+
"version": 0.0
|
1709 |
+
}
|
1710 |
+
},
|
1711 |
+
"mmlu_machine_learning": {
|
1712 |
+
"task": "mmlu_machine_learning",
|
1713 |
+
"task_alias": "machine_learning",
|
1714 |
+
"group": "mmlu_stem",
|
1715 |
+
"group_alias": "stem",
|
1716 |
+
"dataset_path": "hails/mmlu_no_train",
|
1717 |
+
"dataset_name": "machine_learning",
|
1718 |
+
"test_split": "test",
|
1719 |
+
"fewshot_split": "dev",
|
1720 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1721 |
+
"doc_to_target": "answer",
|
1722 |
+
"doc_to_choice": [
|
1723 |
+
"A",
|
1724 |
+
"B",
|
1725 |
+
"C",
|
1726 |
+
"D"
|
1727 |
+
],
|
1728 |
+
"description": "The following are multiple choice questions (with answers) about machine learning.\n\n",
|
1729 |
+
"target_delimiter": " ",
|
1730 |
+
"fewshot_delimiter": "\n\n",
|
1731 |
+
"fewshot_config": {
|
1732 |
+
"sampler": "first_n"
|
1733 |
+
},
|
1734 |
+
"metric_list": [
|
1735 |
+
{
|
1736 |
+
"metric": "acc",
|
1737 |
+
"aggregation": "mean",
|
1738 |
+
"higher_is_better": true
|
1739 |
+
}
|
1740 |
+
],
|
1741 |
+
"output_type": "multiple_choice",
|
1742 |
+
"repeats": 1,
|
1743 |
+
"should_decontaminate": false,
|
1744 |
+
"metadata": {
|
1745 |
+
"version": 0.0
|
1746 |
+
}
|
1747 |
+
},
|
1748 |
+
"mmlu_management": {
|
1749 |
+
"task": "mmlu_management",
|
1750 |
+
"task_alias": "management",
|
1751 |
+
"group": "mmlu_other",
|
1752 |
+
"group_alias": "other",
|
1753 |
+
"dataset_path": "hails/mmlu_no_train",
|
1754 |
+
"dataset_name": "management",
|
1755 |
+
"test_split": "test",
|
1756 |
+
"fewshot_split": "dev",
|
1757 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1758 |
+
"doc_to_target": "answer",
|
1759 |
+
"doc_to_choice": [
|
1760 |
+
"A",
|
1761 |
+
"B",
|
1762 |
+
"C",
|
1763 |
+
"D"
|
1764 |
+
],
|
1765 |
+
"description": "The following are multiple choice questions (with answers) about management.\n\n",
|
1766 |
+
"target_delimiter": " ",
|
1767 |
+
"fewshot_delimiter": "\n\n",
|
1768 |
+
"fewshot_config": {
|
1769 |
+
"sampler": "first_n"
|
1770 |
+
},
|
1771 |
+
"metric_list": [
|
1772 |
+
{
|
1773 |
+
"metric": "acc",
|
1774 |
+
"aggregation": "mean",
|
1775 |
+
"higher_is_better": true
|
1776 |
+
}
|
1777 |
+
],
|
1778 |
+
"output_type": "multiple_choice",
|
1779 |
+
"repeats": 1,
|
1780 |
+
"should_decontaminate": false,
|
1781 |
+
"metadata": {
|
1782 |
+
"version": 0.0
|
1783 |
+
}
|
1784 |
+
},
|
1785 |
+
"mmlu_marketing": {
|
1786 |
+
"task": "mmlu_marketing",
|
1787 |
+
"task_alias": "marketing",
|
1788 |
+
"group": "mmlu_other",
|
1789 |
+
"group_alias": "other",
|
1790 |
+
"dataset_path": "hails/mmlu_no_train",
|
1791 |
+
"dataset_name": "marketing",
|
1792 |
+
"test_split": "test",
|
1793 |
+
"fewshot_split": "dev",
|
1794 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1795 |
+
"doc_to_target": "answer",
|
1796 |
+
"doc_to_choice": [
|
1797 |
+
"A",
|
1798 |
+
"B",
|
1799 |
+
"C",
|
1800 |
+
"D"
|
1801 |
+
],
|
1802 |
+
"description": "The following are multiple choice questions (with answers) about marketing.\n\n",
|
1803 |
+
"target_delimiter": " ",
|
1804 |
+
"fewshot_delimiter": "\n\n",
|
1805 |
+
"fewshot_config": {
|
1806 |
+
"sampler": "first_n"
|
1807 |
+
},
|
1808 |
+
"metric_list": [
|
1809 |
+
{
|
1810 |
+
"metric": "acc",
|
1811 |
+
"aggregation": "mean",
|
1812 |
+
"higher_is_better": true
|
1813 |
+
}
|
1814 |
+
],
|
1815 |
+
"output_type": "multiple_choice",
|
1816 |
+
"repeats": 1,
|
1817 |
+
"should_decontaminate": false,
|
1818 |
+
"metadata": {
|
1819 |
+
"version": 0.0
|
1820 |
+
}
|
1821 |
+
},
|
1822 |
+
"mmlu_medical_genetics": {
|
1823 |
+
"task": "mmlu_medical_genetics",
|
1824 |
+
"task_alias": "medical_genetics",
|
1825 |
+
"group": "mmlu_other",
|
1826 |
+
"group_alias": "other",
|
1827 |
+
"dataset_path": "hails/mmlu_no_train",
|
1828 |
+
"dataset_name": "medical_genetics",
|
1829 |
+
"test_split": "test",
|
1830 |
+
"fewshot_split": "dev",
|
1831 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1832 |
+
"doc_to_target": "answer",
|
1833 |
+
"doc_to_choice": [
|
1834 |
+
"A",
|
1835 |
+
"B",
|
1836 |
+
"C",
|
1837 |
+
"D"
|
1838 |
+
],
|
1839 |
+
"description": "The following are multiple choice questions (with answers) about medical genetics.\n\n",
|
1840 |
+
"target_delimiter": " ",
|
1841 |
+
"fewshot_delimiter": "\n\n",
|
1842 |
+
"fewshot_config": {
|
1843 |
+
"sampler": "first_n"
|
1844 |
+
},
|
1845 |
+
"metric_list": [
|
1846 |
+
{
|
1847 |
+
"metric": "acc",
|
1848 |
+
"aggregation": "mean",
|
1849 |
+
"higher_is_better": true
|
1850 |
+
}
|
1851 |
+
],
|
1852 |
+
"output_type": "multiple_choice",
|
1853 |
+
"repeats": 1,
|
1854 |
+
"should_decontaminate": false,
|
1855 |
+
"metadata": {
|
1856 |
+
"version": 0.0
|
1857 |
+
}
|
1858 |
+
},
|
1859 |
+
"mmlu_miscellaneous": {
|
1860 |
+
"task": "mmlu_miscellaneous",
|
1861 |
+
"task_alias": "miscellaneous",
|
1862 |
+
"group": "mmlu_other",
|
1863 |
+
"group_alias": "other",
|
1864 |
+
"dataset_path": "hails/mmlu_no_train",
|
1865 |
+
"dataset_name": "miscellaneous",
|
1866 |
+
"test_split": "test",
|
1867 |
+
"fewshot_split": "dev",
|
1868 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1869 |
+
"doc_to_target": "answer",
|
1870 |
+
"doc_to_choice": [
|
1871 |
+
"A",
|
1872 |
+
"B",
|
1873 |
+
"C",
|
1874 |
+
"D"
|
1875 |
+
],
|
1876 |
+
"description": "The following are multiple choice questions (with answers) about miscellaneous.\n\n",
|
1877 |
+
"target_delimiter": " ",
|
1878 |
+
"fewshot_delimiter": "\n\n",
|
1879 |
+
"fewshot_config": {
|
1880 |
+
"sampler": "first_n"
|
1881 |
+
},
|
1882 |
+
"metric_list": [
|
1883 |
+
{
|
1884 |
+
"metric": "acc",
|
1885 |
+
"aggregation": "mean",
|
1886 |
+
"higher_is_better": true
|
1887 |
+
}
|
1888 |
+
],
|
1889 |
+
"output_type": "multiple_choice",
|
1890 |
+
"repeats": 1,
|
1891 |
+
"should_decontaminate": false,
|
1892 |
+
"metadata": {
|
1893 |
+
"version": 0.0
|
1894 |
+
}
|
1895 |
+
},
|
1896 |
+
"mmlu_moral_disputes": {
|
1897 |
+
"task": "mmlu_moral_disputes",
|
1898 |
+
"task_alias": "moral_disputes",
|
1899 |
+
"group": "mmlu_humanities",
|
1900 |
+
"group_alias": "humanities",
|
1901 |
+
"dataset_path": "hails/mmlu_no_train",
|
1902 |
+
"dataset_name": "moral_disputes",
|
1903 |
+
"test_split": "test",
|
1904 |
+
"fewshot_split": "dev",
|
1905 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1906 |
+
"doc_to_target": "answer",
|
1907 |
+
"doc_to_choice": [
|
1908 |
+
"A",
|
1909 |
+
"B",
|
1910 |
+
"C",
|
1911 |
+
"D"
|
1912 |
+
],
|
1913 |
+
"description": "The following are multiple choice questions (with answers) about moral disputes.\n\n",
|
1914 |
+
"target_delimiter": " ",
|
1915 |
+
"fewshot_delimiter": "\n\n",
|
1916 |
+
"fewshot_config": {
|
1917 |
+
"sampler": "first_n"
|
1918 |
+
},
|
1919 |
+
"metric_list": [
|
1920 |
+
{
|
1921 |
+
"metric": "acc",
|
1922 |
+
"aggregation": "mean",
|
1923 |
+
"higher_is_better": true
|
1924 |
+
}
|
1925 |
+
],
|
1926 |
+
"output_type": "multiple_choice",
|
1927 |
+
"repeats": 1,
|
1928 |
+
"should_decontaminate": false,
|
1929 |
+
"metadata": {
|
1930 |
+
"version": 0.0
|
1931 |
+
}
|
1932 |
+
},
|
1933 |
+
"mmlu_moral_scenarios": {
|
1934 |
+
"task": "mmlu_moral_scenarios",
|
1935 |
+
"task_alias": "moral_scenarios",
|
1936 |
+
"group": "mmlu_humanities",
|
1937 |
+
"group_alias": "humanities",
|
1938 |
+
"dataset_path": "hails/mmlu_no_train",
|
1939 |
+
"dataset_name": "moral_scenarios",
|
1940 |
+
"test_split": "test",
|
1941 |
+
"fewshot_split": "dev",
|
1942 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1943 |
+
"doc_to_target": "answer",
|
1944 |
+
"doc_to_choice": [
|
1945 |
+
"A",
|
1946 |
+
"B",
|
1947 |
+
"C",
|
1948 |
+
"D"
|
1949 |
+
],
|
1950 |
+
"description": "The following are multiple choice questions (with answers) about moral scenarios.\n\n",
|
1951 |
+
"target_delimiter": " ",
|
1952 |
+
"fewshot_delimiter": "\n\n",
|
1953 |
+
"fewshot_config": {
|
1954 |
+
"sampler": "first_n"
|
1955 |
+
},
|
1956 |
+
"metric_list": [
|
1957 |
+
{
|
1958 |
+
"metric": "acc",
|
1959 |
+
"aggregation": "mean",
|
1960 |
+
"higher_is_better": true
|
1961 |
+
}
|
1962 |
+
],
|
1963 |
+
"output_type": "multiple_choice",
|
1964 |
+
"repeats": 1,
|
1965 |
+
"should_decontaminate": false,
|
1966 |
+
"metadata": {
|
1967 |
+
"version": 0.0
|
1968 |
+
}
|
1969 |
+
},
|
1970 |
+
"mmlu_nutrition": {
|
1971 |
+
"task": "mmlu_nutrition",
|
1972 |
+
"task_alias": "nutrition",
|
1973 |
+
"group": "mmlu_other",
|
1974 |
+
"group_alias": "other",
|
1975 |
+
"dataset_path": "hails/mmlu_no_train",
|
1976 |
+
"dataset_name": "nutrition",
|
1977 |
+
"test_split": "test",
|
1978 |
+
"fewshot_split": "dev",
|
1979 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1980 |
+
"doc_to_target": "answer",
|
1981 |
+
"doc_to_choice": [
|
1982 |
+
"A",
|
1983 |
+
"B",
|
1984 |
+
"C",
|
1985 |
+
"D"
|
1986 |
+
],
|
1987 |
+
"description": "The following are multiple choice questions (with answers) about nutrition.\n\n",
|
1988 |
+
"target_delimiter": " ",
|
1989 |
+
"fewshot_delimiter": "\n\n",
|
1990 |
+
"fewshot_config": {
|
1991 |
+
"sampler": "first_n"
|
1992 |
+
},
|
1993 |
+
"metric_list": [
|
1994 |
+
{
|
1995 |
+
"metric": "acc",
|
1996 |
+
"aggregation": "mean",
|
1997 |
+
"higher_is_better": true
|
1998 |
+
}
|
1999 |
+
],
|
2000 |
+
"output_type": "multiple_choice",
|
2001 |
+
"repeats": 1,
|
2002 |
+
"should_decontaminate": false,
|
2003 |
+
"metadata": {
|
2004 |
+
"version": 0.0
|
2005 |
+
}
|
2006 |
+
},
|
2007 |
+
"mmlu_philosophy": {
|
2008 |
+
"task": "mmlu_philosophy",
|
2009 |
+
"task_alias": "philosophy",
|
2010 |
+
"group": "mmlu_humanities",
|
2011 |
+
"group_alias": "humanities",
|
2012 |
+
"dataset_path": "hails/mmlu_no_train",
|
2013 |
+
"dataset_name": "philosophy",
|
2014 |
+
"test_split": "test",
|
2015 |
+
"fewshot_split": "dev",
|
2016 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2017 |
+
"doc_to_target": "answer",
|
2018 |
+
"doc_to_choice": [
|
2019 |
+
"A",
|
2020 |
+
"B",
|
2021 |
+
"C",
|
2022 |
+
"D"
|
2023 |
+
],
|
2024 |
+
"description": "The following are multiple choice questions (with answers) about philosophy.\n\n",
|
2025 |
+
"target_delimiter": " ",
|
2026 |
+
"fewshot_delimiter": "\n\n",
|
2027 |
+
"fewshot_config": {
|
2028 |
+
"sampler": "first_n"
|
2029 |
+
},
|
2030 |
+
"metric_list": [
|
2031 |
+
{
|
2032 |
+
"metric": "acc",
|
2033 |
+
"aggregation": "mean",
|
2034 |
+
"higher_is_better": true
|
2035 |
+
}
|
2036 |
+
],
|
2037 |
+
"output_type": "multiple_choice",
|
2038 |
+
"repeats": 1,
|
2039 |
+
"should_decontaminate": false,
|
2040 |
+
"metadata": {
|
2041 |
+
"version": 0.0
|
2042 |
+
}
|
2043 |
+
},
|
2044 |
+
"mmlu_prehistory": {
|
2045 |
+
"task": "mmlu_prehistory",
|
2046 |
+
"task_alias": "prehistory",
|
2047 |
+
"group": "mmlu_humanities",
|
2048 |
+
"group_alias": "humanities",
|
2049 |
+
"dataset_path": "hails/mmlu_no_train",
|
2050 |
+
"dataset_name": "prehistory",
|
2051 |
+
"test_split": "test",
|
2052 |
+
"fewshot_split": "dev",
|
2053 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2054 |
+
"doc_to_target": "answer",
|
2055 |
+
"doc_to_choice": [
|
2056 |
+
"A",
|
2057 |
+
"B",
|
2058 |
+
"C",
|
2059 |
+
"D"
|
2060 |
+
],
|
2061 |
+
"description": "The following are multiple choice questions (with answers) about prehistory.\n\n",
|
2062 |
+
"target_delimiter": " ",
|
2063 |
+
"fewshot_delimiter": "\n\n",
|
2064 |
+
"fewshot_config": {
|
2065 |
+
"sampler": "first_n"
|
2066 |
+
},
|
2067 |
+
"metric_list": [
|
2068 |
+
{
|
2069 |
+
"metric": "acc",
|
2070 |
+
"aggregation": "mean",
|
2071 |
+
"higher_is_better": true
|
2072 |
+
}
|
2073 |
+
],
|
2074 |
+
"output_type": "multiple_choice",
|
2075 |
+
"repeats": 1,
|
2076 |
+
"should_decontaminate": false,
|
2077 |
+
"metadata": {
|
2078 |
+
"version": 0.0
|
2079 |
+
}
|
2080 |
+
},
|
2081 |
+
"mmlu_professional_accounting": {
|
2082 |
+
"task": "mmlu_professional_accounting",
|
2083 |
+
"task_alias": "professional_accounting",
|
2084 |
+
"group": "mmlu_other",
|
2085 |
+
"group_alias": "other",
|
2086 |
+
"dataset_path": "hails/mmlu_no_train",
|
2087 |
+
"dataset_name": "professional_accounting",
|
2088 |
+
"test_split": "test",
|
2089 |
+
"fewshot_split": "dev",
|
2090 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2091 |
+
"doc_to_target": "answer",
|
2092 |
+
"doc_to_choice": [
|
2093 |
+
"A",
|
2094 |
+
"B",
|
2095 |
+
"C",
|
2096 |
+
"D"
|
2097 |
+
],
|
2098 |
+
"description": "The following are multiple choice questions (with answers) about professional accounting.\n\n",
|
2099 |
+
"target_delimiter": " ",
|
2100 |
+
"fewshot_delimiter": "\n\n",
|
2101 |
+
"fewshot_config": {
|
2102 |
+
"sampler": "first_n"
|
2103 |
+
},
|
2104 |
+
"metric_list": [
|
2105 |
+
{
|
2106 |
+
"metric": "acc",
|
2107 |
+
"aggregation": "mean",
|
2108 |
+
"higher_is_better": true
|
2109 |
+
}
|
2110 |
+
],
|
2111 |
+
"output_type": "multiple_choice",
|
2112 |
+
"repeats": 1,
|
2113 |
+
"should_decontaminate": false,
|
2114 |
+
"metadata": {
|
2115 |
+
"version": 0.0
|
2116 |
+
}
|
2117 |
+
},
|
2118 |
+
"mmlu_professional_law": {
|
2119 |
+
"task": "mmlu_professional_law",
|
2120 |
+
"task_alias": "professional_law",
|
2121 |
+
"group": "mmlu_humanities",
|
2122 |
+
"group_alias": "humanities",
|
2123 |
+
"dataset_path": "hails/mmlu_no_train",
|
2124 |
+
"dataset_name": "professional_law",
|
2125 |
+
"test_split": "test",
|
2126 |
+
"fewshot_split": "dev",
|
2127 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2128 |
+
"doc_to_target": "answer",
|
2129 |
+
"doc_to_choice": [
|
2130 |
+
"A",
|
2131 |
+
"B",
|
2132 |
+
"C",
|
2133 |
+
"D"
|
2134 |
+
],
|
2135 |
+
"description": "The following are multiple choice questions (with answers) about professional law.\n\n",
|
2136 |
+
"target_delimiter": " ",
|
2137 |
+
"fewshot_delimiter": "\n\n",
|
2138 |
+
"fewshot_config": {
|
2139 |
+
"sampler": "first_n"
|
2140 |
+
},
|
2141 |
+
"metric_list": [
|
2142 |
+
{
|
2143 |
+
"metric": "acc",
|
2144 |
+
"aggregation": "mean",
|
2145 |
+
"higher_is_better": true
|
2146 |
+
}
|
2147 |
+
],
|
2148 |
+
"output_type": "multiple_choice",
|
2149 |
+
"repeats": 1,
|
2150 |
+
"should_decontaminate": false,
|
2151 |
+
"metadata": {
|
2152 |
+
"version": 0.0
|
2153 |
+
}
|
2154 |
+
},
|
2155 |
+
"mmlu_professional_medicine": {
|
2156 |
+
"task": "mmlu_professional_medicine",
|
2157 |
+
"task_alias": "professional_medicine",
|
2158 |
+
"group": "mmlu_other",
|
2159 |
+
"group_alias": "other",
|
2160 |
+
"dataset_path": "hails/mmlu_no_train",
|
2161 |
+
"dataset_name": "professional_medicine",
|
2162 |
+
"test_split": "test",
|
2163 |
+
"fewshot_split": "dev",
|
2164 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2165 |
+
"doc_to_target": "answer",
|
2166 |
+
"doc_to_choice": [
|
2167 |
+
"A",
|
2168 |
+
"B",
|
2169 |
+
"C",
|
2170 |
+
"D"
|
2171 |
+
],
|
2172 |
+
"description": "The following are multiple choice questions (with answers) about professional medicine.\n\n",
|
2173 |
+
"target_delimiter": " ",
|
2174 |
+
"fewshot_delimiter": "\n\n",
|
2175 |
+
"fewshot_config": {
|
2176 |
+
"sampler": "first_n"
|
2177 |
+
},
|
2178 |
+
"metric_list": [
|
2179 |
+
{
|
2180 |
+
"metric": "acc",
|
2181 |
+
"aggregation": "mean",
|
2182 |
+
"higher_is_better": true
|
2183 |
+
}
|
2184 |
+
],
|
2185 |
+
"output_type": "multiple_choice",
|
2186 |
+
"repeats": 1,
|
2187 |
+
"should_decontaminate": false,
|
2188 |
+
"metadata": {
|
2189 |
+
"version": 0.0
|
2190 |
+
}
|
2191 |
+
},
|
2192 |
+
"mmlu_professional_psychology": {
|
2193 |
+
"task": "mmlu_professional_psychology",
|
2194 |
+
"task_alias": "professional_psychology",
|
2195 |
+
"group": "mmlu_social_sciences",
|
2196 |
+
"group_alias": "social_sciences",
|
2197 |
+
"dataset_path": "hails/mmlu_no_train",
|
2198 |
+
"dataset_name": "professional_psychology",
|
2199 |
+
"test_split": "test",
|
2200 |
+
"fewshot_split": "dev",
|
2201 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2202 |
+
"doc_to_target": "answer",
|
2203 |
+
"doc_to_choice": [
|
2204 |
+
"A",
|
2205 |
+
"B",
|
2206 |
+
"C",
|
2207 |
+
"D"
|
2208 |
+
],
|
2209 |
+
"description": "The following are multiple choice questions (with answers) about professional psychology.\n\n",
|
2210 |
+
"target_delimiter": " ",
|
2211 |
+
"fewshot_delimiter": "\n\n",
|
2212 |
+
"fewshot_config": {
|
2213 |
+
"sampler": "first_n"
|
2214 |
+
},
|
2215 |
+
"metric_list": [
|
2216 |
+
{
|
2217 |
+
"metric": "acc",
|
2218 |
+
"aggregation": "mean",
|
2219 |
+
"higher_is_better": true
|
2220 |
+
}
|
2221 |
+
],
|
2222 |
+
"output_type": "multiple_choice",
|
2223 |
+
"repeats": 1,
|
2224 |
+
"should_decontaminate": false,
|
2225 |
+
"metadata": {
|
2226 |
+
"version": 0.0
|
2227 |
+
}
|
2228 |
+
},
|
2229 |
+
"mmlu_public_relations": {
|
2230 |
+
"task": "mmlu_public_relations",
|
2231 |
+
"task_alias": "public_relations",
|
2232 |
+
"group": "mmlu_social_sciences",
|
2233 |
+
"group_alias": "social_sciences",
|
2234 |
+
"dataset_path": "hails/mmlu_no_train",
|
2235 |
+
"dataset_name": "public_relations",
|
2236 |
+
"test_split": "test",
|
2237 |
+
"fewshot_split": "dev",
|
2238 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2239 |
+
"doc_to_target": "answer",
|
2240 |
+
"doc_to_choice": [
|
2241 |
+
"A",
|
2242 |
+
"B",
|
2243 |
+
"C",
|
2244 |
+
"D"
|
2245 |
+
],
|
2246 |
+
"description": "The following are multiple choice questions (with answers) about public relations.\n\n",
|
2247 |
+
"target_delimiter": " ",
|
2248 |
+
"fewshot_delimiter": "\n\n",
|
2249 |
+
"fewshot_config": {
|
2250 |
+
"sampler": "first_n"
|
2251 |
+
},
|
2252 |
+
"metric_list": [
|
2253 |
+
{
|
2254 |
+
"metric": "acc",
|
2255 |
+
"aggregation": "mean",
|
2256 |
+
"higher_is_better": true
|
2257 |
+
}
|
2258 |
+
],
|
2259 |
+
"output_type": "multiple_choice",
|
2260 |
+
"repeats": 1,
|
2261 |
+
"should_decontaminate": false,
|
2262 |
+
"metadata": {
|
2263 |
+
"version": 0.0
|
2264 |
+
}
|
2265 |
+
},
|
2266 |
+
"mmlu_security_studies": {
|
2267 |
+
"task": "mmlu_security_studies",
|
2268 |
+
"task_alias": "security_studies",
|
2269 |
+
"group": "mmlu_social_sciences",
|
2270 |
+
"group_alias": "social_sciences",
|
2271 |
+
"dataset_path": "hails/mmlu_no_train",
|
2272 |
+
"dataset_name": "security_studies",
|
2273 |
+
"test_split": "test",
|
2274 |
+
"fewshot_split": "dev",
|
2275 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2276 |
+
"doc_to_target": "answer",
|
2277 |
+
"doc_to_choice": [
|
2278 |
+
"A",
|
2279 |
+
"B",
|
2280 |
+
"C",
|
2281 |
+
"D"
|
2282 |
+
],
|
2283 |
+
"description": "The following are multiple choice questions (with answers) about security studies.\n\n",
|
2284 |
+
"target_delimiter": " ",
|
2285 |
+
"fewshot_delimiter": "\n\n",
|
2286 |
+
"fewshot_config": {
|
2287 |
+
"sampler": "first_n"
|
2288 |
+
},
|
2289 |
+
"metric_list": [
|
2290 |
+
{
|
2291 |
+
"metric": "acc",
|
2292 |
+
"aggregation": "mean",
|
2293 |
+
"higher_is_better": true
|
2294 |
+
}
|
2295 |
+
],
|
2296 |
+
"output_type": "multiple_choice",
|
2297 |
+
"repeats": 1,
|
2298 |
+
"should_decontaminate": false,
|
2299 |
+
"metadata": {
|
2300 |
+
"version": 0.0
|
2301 |
+
}
|
2302 |
+
},
|
2303 |
+
"mmlu_sociology": {
|
2304 |
+
"task": "mmlu_sociology",
|
2305 |
+
"task_alias": "sociology",
|
2306 |
+
"group": "mmlu_social_sciences",
|
2307 |
+
"group_alias": "social_sciences",
|
2308 |
+
"dataset_path": "hails/mmlu_no_train",
|
2309 |
+
"dataset_name": "sociology",
|
2310 |
+
"test_split": "test",
|
2311 |
+
"fewshot_split": "dev",
|
2312 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2313 |
+
"doc_to_target": "answer",
|
2314 |
+
"doc_to_choice": [
|
2315 |
+
"A",
|
2316 |
+
"B",
|
2317 |
+
"C",
|
2318 |
+
"D"
|
2319 |
+
],
|
2320 |
+
"description": "The following are multiple choice questions (with answers) about sociology.\n\n",
|
2321 |
+
"target_delimiter": " ",
|
2322 |
+
"fewshot_delimiter": "\n\n",
|
2323 |
+
"fewshot_config": {
|
2324 |
+
"sampler": "first_n"
|
2325 |
+
},
|
2326 |
+
"metric_list": [
|
2327 |
+
{
|
2328 |
+
"metric": "acc",
|
2329 |
+
"aggregation": "mean",
|
2330 |
+
"higher_is_better": true
|
2331 |
+
}
|
2332 |
+
],
|
2333 |
+
"output_type": "multiple_choice",
|
2334 |
+
"repeats": 1,
|
2335 |
+
"should_decontaminate": false,
|
2336 |
+
"metadata": {
|
2337 |
+
"version": 0.0
|
2338 |
+
}
|
2339 |
+
},
|
2340 |
+
"mmlu_us_foreign_policy": {
|
2341 |
+
"task": "mmlu_us_foreign_policy",
|
2342 |
+
"task_alias": "us_foreign_policy",
|
2343 |
+
"group": "mmlu_social_sciences",
|
2344 |
+
"group_alias": "social_sciences",
|
2345 |
+
"dataset_path": "hails/mmlu_no_train",
|
2346 |
+
"dataset_name": "us_foreign_policy",
|
2347 |
+
"test_split": "test",
|
2348 |
+
"fewshot_split": "dev",
|
2349 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2350 |
+
"doc_to_target": "answer",
|
2351 |
+
"doc_to_choice": [
|
2352 |
+
"A",
|
2353 |
+
"B",
|
2354 |
+
"C",
|
2355 |
+
"D"
|
2356 |
+
],
|
2357 |
+
"description": "The following are multiple choice questions (with answers) about us foreign policy.\n\n",
|
2358 |
+
"target_delimiter": " ",
|
2359 |
+
"fewshot_delimiter": "\n\n",
|
2360 |
+
"fewshot_config": {
|
2361 |
+
"sampler": "first_n"
|
2362 |
+
},
|
2363 |
+
"metric_list": [
|
2364 |
+
{
|
2365 |
+
"metric": "acc",
|
2366 |
+
"aggregation": "mean",
|
2367 |
+
"higher_is_better": true
|
2368 |
+
}
|
2369 |
+
],
|
2370 |
+
"output_type": "multiple_choice",
|
2371 |
+
"repeats": 1,
|
2372 |
+
"should_decontaminate": false,
|
2373 |
+
"metadata": {
|
2374 |
+
"version": 0.0
|
2375 |
+
}
|
2376 |
+
},
|
2377 |
+
"mmlu_virology": {
|
2378 |
+
"task": "mmlu_virology",
|
2379 |
+
"task_alias": "virology",
|
2380 |
+
"group": "mmlu_other",
|
2381 |
+
"group_alias": "other",
|
2382 |
+
"dataset_path": "hails/mmlu_no_train",
|
2383 |
+
"dataset_name": "virology",
|
2384 |
+
"test_split": "test",
|
2385 |
+
"fewshot_split": "dev",
|
2386 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2387 |
+
"doc_to_target": "answer",
|
2388 |
+
"doc_to_choice": [
|
2389 |
+
"A",
|
2390 |
+
"B",
|
2391 |
+
"C",
|
2392 |
+
"D"
|
2393 |
+
],
|
2394 |
+
"description": "The following are multiple choice questions (with answers) about virology.\n\n",
|
2395 |
+
"target_delimiter": " ",
|
2396 |
+
"fewshot_delimiter": "\n\n",
|
2397 |
+
"fewshot_config": {
|
2398 |
+
"sampler": "first_n"
|
2399 |
+
},
|
2400 |
+
"metric_list": [
|
2401 |
+
{
|
2402 |
+
"metric": "acc",
|
2403 |
+
"aggregation": "mean",
|
2404 |
+
"higher_is_better": true
|
2405 |
+
}
|
2406 |
+
],
|
2407 |
+
"output_type": "multiple_choice",
|
2408 |
+
"repeats": 1,
|
2409 |
+
"should_decontaminate": false,
|
2410 |
+
"metadata": {
|
2411 |
+
"version": 0.0
|
2412 |
+
}
|
2413 |
+
},
|
2414 |
+
"mmlu_world_religions": {
|
2415 |
+
"task": "mmlu_world_religions",
|
2416 |
+
"task_alias": "world_religions",
|
2417 |
+
"group": "mmlu_humanities",
|
2418 |
+
"group_alias": "humanities",
|
2419 |
+
"dataset_path": "hails/mmlu_no_train",
|
2420 |
+
"dataset_name": "world_religions",
|
2421 |
+
"test_split": "test",
|
2422 |
+
"fewshot_split": "dev",
|
2423 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2424 |
+
"doc_to_target": "answer",
|
2425 |
+
"doc_to_choice": [
|
2426 |
+
"A",
|
2427 |
+
"B",
|
2428 |
+
"C",
|
2429 |
+
"D"
|
2430 |
+
],
|
2431 |
+
"description": "The following are multiple choice questions (with answers) about world religions.\n\n",
|
2432 |
+
"target_delimiter": " ",
|
2433 |
+
"fewshot_delimiter": "\n\n",
|
2434 |
+
"fewshot_config": {
|
2435 |
+
"sampler": "first_n"
|
2436 |
+
},
|
2437 |
+
"metric_list": [
|
2438 |
+
{
|
2439 |
+
"metric": "acc",
|
2440 |
+
"aggregation": "mean",
|
2441 |
+
"higher_is_better": true
|
2442 |
+
}
|
2443 |
+
],
|
2444 |
+
"output_type": "multiple_choice",
|
2445 |
+
"repeats": 1,
|
2446 |
+
"should_decontaminate": false,
|
2447 |
+
"metadata": {
|
2448 |
+
"version": 0.0
|
2449 |
+
}
|
2450 |
+
}
|
2451 |
+
},
|
2452 |
+
"versions": {
|
2453 |
+
"mmlu": "N/A",
|
2454 |
+
"mmlu_abstract_algebra": 0.0,
|
2455 |
+
"mmlu_anatomy": 0.0,
|
2456 |
+
"mmlu_astronomy": 0.0,
|
2457 |
+
"mmlu_business_ethics": 0.0,
|
2458 |
+
"mmlu_clinical_knowledge": 0.0,
|
2459 |
+
"mmlu_college_biology": 0.0,
|
2460 |
+
"mmlu_college_chemistry": 0.0,
|
2461 |
+
"mmlu_college_computer_science": 0.0,
|
2462 |
+
"mmlu_college_mathematics": 0.0,
|
2463 |
+
"mmlu_college_medicine": 0.0,
|
2464 |
+
"mmlu_college_physics": 0.0,
|
2465 |
+
"mmlu_computer_security": 0.0,
|
2466 |
+
"mmlu_conceptual_physics": 0.0,
|
2467 |
+
"mmlu_econometrics": 0.0,
|
2468 |
+
"mmlu_electrical_engineering": 0.0,
|
2469 |
+
"mmlu_elementary_mathematics": 0.0,
|
2470 |
+
"mmlu_formal_logic": 0.0,
|
2471 |
+
"mmlu_global_facts": 0.0,
|
2472 |
+
"mmlu_high_school_biology": 0.0,
|
2473 |
+
"mmlu_high_school_chemistry": 0.0,
|
2474 |
+
"mmlu_high_school_computer_science": 0.0,
|
2475 |
+
"mmlu_high_school_european_history": 0.0,
|
2476 |
+
"mmlu_high_school_geography": 0.0,
|
2477 |
+
"mmlu_high_school_government_and_politics": 0.0,
|
2478 |
+
"mmlu_high_school_macroeconomics": 0.0,
|
2479 |
+
"mmlu_high_school_mathematics": 0.0,
|
2480 |
+
"mmlu_high_school_microeconomics": 0.0,
|
2481 |
+
"mmlu_high_school_physics": 0.0,
|
2482 |
+
"mmlu_high_school_psychology": 0.0,
|
2483 |
+
"mmlu_high_school_statistics": 0.0,
|
2484 |
+
"mmlu_high_school_us_history": 0.0,
|
2485 |
+
"mmlu_high_school_world_history": 0.0,
|
2486 |
+
"mmlu_human_aging": 0.0,
|
2487 |
+
"mmlu_human_sexuality": 0.0,
|
2488 |
+
"mmlu_humanities": "N/A",
|
2489 |
+
"mmlu_international_law": 0.0,
|
2490 |
+
"mmlu_jurisprudence": 0.0,
|
2491 |
+
"mmlu_logical_fallacies": 0.0,
|
2492 |
+
"mmlu_machine_learning": 0.0,
|
2493 |
+
"mmlu_management": 0.0,
|
2494 |
+
"mmlu_marketing": 0.0,
|
2495 |
+
"mmlu_medical_genetics": 0.0,
|
2496 |
+
"mmlu_miscellaneous": 0.0,
|
2497 |
+
"mmlu_moral_disputes": 0.0,
|
2498 |
+
"mmlu_moral_scenarios": 0.0,
|
2499 |
+
"mmlu_nutrition": 0.0,
|
2500 |
+
"mmlu_other": "N/A",
|
2501 |
+
"mmlu_philosophy": 0.0,
|
2502 |
+
"mmlu_prehistory": 0.0,
|
2503 |
+
"mmlu_professional_accounting": 0.0,
|
2504 |
+
"mmlu_professional_law": 0.0,
|
2505 |
+
"mmlu_professional_medicine": 0.0,
|
2506 |
+
"mmlu_professional_psychology": 0.0,
|
2507 |
+
"mmlu_public_relations": 0.0,
|
2508 |
+
"mmlu_security_studies": 0.0,
|
2509 |
+
"mmlu_social_sciences": "N/A",
|
2510 |
+
"mmlu_sociology": 0.0,
|
2511 |
+
"mmlu_stem": "N/A",
|
2512 |
+
"mmlu_us_foreign_policy": 0.0,
|
2513 |
+
"mmlu_virology": 0.0,
|
2514 |
+
"mmlu_world_religions": 0.0
|
2515 |
+
},
|
2516 |
+
"n-shot": {
|
2517 |
+
"mmlu": 0,
|
2518 |
+
"mmlu_abstract_algebra": 0,
|
2519 |
+
"mmlu_anatomy": 0,
|
2520 |
+
"mmlu_astronomy": 0,
|
2521 |
+
"mmlu_business_ethics": 0,
|
2522 |
+
"mmlu_clinical_knowledge": 0,
|
2523 |
+
"mmlu_college_biology": 0,
|
2524 |
+
"mmlu_college_chemistry": 0,
|
2525 |
+
"mmlu_college_computer_science": 0,
|
2526 |
+
"mmlu_college_mathematics": 0,
|
2527 |
+
"mmlu_college_medicine": 0,
|
2528 |
+
"mmlu_college_physics": 0,
|
2529 |
+
"mmlu_computer_security": 0,
|
2530 |
+
"mmlu_conceptual_physics": 0,
|
2531 |
+
"mmlu_econometrics": 0,
|
2532 |
+
"mmlu_electrical_engineering": 0,
|
2533 |
+
"mmlu_elementary_mathematics": 0,
|
2534 |
+
"mmlu_formal_logic": 0,
|
2535 |
+
"mmlu_global_facts": 0,
|
2536 |
+
"mmlu_high_school_biology": 0,
|
2537 |
+
"mmlu_high_school_chemistry": 0,
|
2538 |
+
"mmlu_high_school_computer_science": 0,
|
2539 |
+
"mmlu_high_school_european_history": 0,
|
2540 |
+
"mmlu_high_school_geography": 0,
|
2541 |
+
"mmlu_high_school_government_and_politics": 0,
|
2542 |
+
"mmlu_high_school_macroeconomics": 0,
|
2543 |
+
"mmlu_high_school_mathematics": 0,
|
2544 |
+
"mmlu_high_school_microeconomics": 0,
|
2545 |
+
"mmlu_high_school_physics": 0,
|
2546 |
+
"mmlu_high_school_psychology": 0,
|
2547 |
+
"mmlu_high_school_statistics": 0,
|
2548 |
+
"mmlu_high_school_us_history": 0,
|
2549 |
+
"mmlu_high_school_world_history": 0,
|
2550 |
+
"mmlu_human_aging": 0,
|
2551 |
+
"mmlu_human_sexuality": 0,
|
2552 |
+
"mmlu_humanities": 0,
|
2553 |
+
"mmlu_international_law": 0,
|
2554 |
+
"mmlu_jurisprudence": 0,
|
2555 |
+
"mmlu_logical_fallacies": 0,
|
2556 |
+
"mmlu_machine_learning": 0,
|
2557 |
+
"mmlu_management": 0,
|
2558 |
+
"mmlu_marketing": 0,
|
2559 |
+
"mmlu_medical_genetics": 0,
|
2560 |
+
"mmlu_miscellaneous": 0,
|
2561 |
+
"mmlu_moral_disputes": 0,
|
2562 |
+
"mmlu_moral_scenarios": 0,
|
2563 |
+
"mmlu_nutrition": 0,
|
2564 |
+
"mmlu_other": 0,
|
2565 |
+
"mmlu_philosophy": 0,
|
2566 |
+
"mmlu_prehistory": 0,
|
2567 |
+
"mmlu_professional_accounting": 0,
|
2568 |
+
"mmlu_professional_law": 0,
|
2569 |
+
"mmlu_professional_medicine": 0,
|
2570 |
+
"mmlu_professional_psychology": 0,
|
2571 |
+
"mmlu_public_relations": 0,
|
2572 |
+
"mmlu_security_studies": 0,
|
2573 |
+
"mmlu_social_sciences": 0,
|
2574 |
+
"mmlu_sociology": 0,
|
2575 |
+
"mmlu_stem": 0,
|
2576 |
+
"mmlu_us_foreign_policy": 0,
|
2577 |
+
"mmlu_virology": 0,
|
2578 |
+
"mmlu_world_religions": 0
|
2579 |
+
},
|
2580 |
+
"config": {
|
2581 |
+
"model": "hf",
|
2582 |
+
"model_args": "pretrained=m8than/Finch-14B-Continued-10,dtype=bfloat16,trust_remote_code=True",
|
2583 |
+
"batch_size": "auto",
|
2584 |
+
"batch_sizes": [
|
2585 |
+
32
|
2586 |
+
],
|
2587 |
+
"device": null,
|
2588 |
+
"use_cache": null,
|
2589 |
+
"limit": null,
|
2590 |
+
"bootstrap_iters": 100000,
|
2591 |
+
"gen_kwargs": null
|
2592 |
+
},
|
2593 |
+
"git_hash": "97a2520"
|
2594 |
+
}
|
lm-eval-output/m8than/Finch-14B-Continued-10/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34b8fd229d13f74a3422ed44e434abd2e88776291175d8c5a7c54708b41c86b2
|
3 |
+
size 96739
|
lm-eval-output/m8than/Finch-14B-Continued-10/openbookqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08e4cac2e3eb5f5313dbbeab1135c0391d876f94e964b4efcf714ad237ffa58c
|
3 |
+
size 74609
|
lm-eval-output/m8than/Finch-14B-Continued-10/openbookqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"openbookqa": {
|
4 |
+
"acc,none": 0.338,
|
5 |
+
"acc_stderr,none": 0.021175665695209407,
|
6 |
+
"acc_norm,none": 0.45,
|
7 |
+
"acc_norm_stderr,none": 0.022270877485360437,
|
8 |
+
"alias": "openbookqa"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"configs": {
|
12 |
+
"openbookqa": {
|
13 |
+
"task": "openbookqa",
|
14 |
+
"dataset_path": "openbookqa",
|
15 |
+
"dataset_name": "main",
|
16 |
+
"training_split": "train",
|
17 |
+
"validation_split": "validation",
|
18 |
+
"test_split": "test",
|
19 |
+
"doc_to_text": "question_stem",
|
20 |
+
"doc_to_target": "{{choices.label.index(answerKey.lstrip())}}",
|
21 |
+
"doc_to_choice": "{{choices.text}}",
|
22 |
+
"description": "",
|
23 |
+
"target_delimiter": " ",
|
24 |
+
"fewshot_delimiter": "\n\n",
|
25 |
+
"metric_list": [
|
26 |
+
{
|
27 |
+
"metric": "acc",
|
28 |
+
"aggregation": "mean",
|
29 |
+
"higher_is_better": true
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"metric": "acc_norm",
|
33 |
+
"aggregation": "mean",
|
34 |
+
"higher_is_better": true
|
35 |
+
}
|
36 |
+
],
|
37 |
+
"output_type": "multiple_choice",
|
38 |
+
"repeats": 1,
|
39 |
+
"should_decontaminate": true,
|
40 |
+
"doc_to_decontamination_query": "question_stem",
|
41 |
+
"metadata": {
|
42 |
+
"version": 1.0
|
43 |
+
}
|
44 |
+
}
|
45 |
+
},
|
46 |
+
"versions": {
|
47 |
+
"openbookqa": 1.0
|
48 |
+
},
|
49 |
+
"n-shot": {
|
50 |
+
"openbookqa": 0
|
51 |
+
},
|
52 |
+
"config": {
|
53 |
+
"model": "hf",
|
54 |
+
"model_args": "pretrained=m8than/Finch-14B-Continued-10,dtype=bfloat16,trust_remote_code=True",
|
55 |
+
"batch_size": "auto",
|
56 |
+
"batch_sizes": [
|
57 |
+
64
|
58 |
+
],
|
59 |
+
"device": null,
|
60 |
+
"use_cache": null,
|
61 |
+
"limit": null,
|
62 |
+
"bootstrap_iters": 100000,
|
63 |
+
"gen_kwargs": null
|
64 |
+
},
|
65 |
+
"git_hash": "97a2520"
|
66 |
+
}
|
lm-eval-output/m8than/Finch-14B-Continued-10/openbookqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de1ff1e7e313623869607929227ad148798b80bf380db5bfdc410f1de8641032
|
3 |
+
size 12033
|
lm-eval-output/m8than/Finch-14B-Continued-10/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c871153c88d9aad6aaaea9e3d70b967443f706fec60b0664f5be0f0cec7a31ef
|
3 |
+
size 2133413
|
lm-eval-output/m8than/Finch-14B-Continued-10/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"pawsx": {
|
4 |
+
"acc,none": 0.43635714285714283,
|
5 |
+
"acc_stderr,none": 0.05805845343398072,
|
6 |
+
"alias": "pawsx"
|
7 |
+
},
|
8 |
+
"paws_de": {
|
9 |
+
"acc,none": 0.416,
|
10 |
+
"acc_stderr,none": 0.011024190055654281,
|
11 |
+
"alias": " - paws_de"
|
12 |
+
},
|
13 |
+
"paws_en": {
|
14 |
+
"acc,none": 0.336,
|
15 |
+
"acc_stderr,none": 0.010564459470410665,
|
16 |
+
"alias": " - paws_en"
|
17 |
+
},
|
18 |
+
"paws_es": {
|
19 |
+
"acc,none": 0.351,
|
20 |
+
"acc_stderr,none": 0.010675039964286672,
|
21 |
+
"alias": " - paws_es"
|
22 |
+
},
|
23 |
+
"paws_fr": {
|
24 |
+
"acc,none": 0.5415,
|
25 |
+
"acc_stderr,none": 0.011144549137930353,
|
26 |
+
"alias": " - paws_fr"
|
27 |
+
},
|
28 |
+
"paws_ja": {
|
29 |
+
"acc,none": 0.52,
|
30 |
+
"acc_stderr,none": 0.011174185930778312,
|
31 |
+
"alias": " - paws_ja"
|
32 |
+
},
|
33 |
+
"paws_ko": {
|
34 |
+
"acc,none": 0.4495,
|
35 |
+
"acc_stderr,none": 0.011125950223877365,
|
36 |
+
"alias": " - paws_ko"
|
37 |
+
},
|
38 |
+
"paws_zh": {
|
39 |
+
"acc,none": 0.4405,
|
40 |
+
"acc_stderr,none": 0.011103671499120343,
|
41 |
+
"alias": " - paws_zh"
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"groups": {
|
45 |
+
"pawsx": {
|
46 |
+
"acc,none": 0.43635714285714283,
|
47 |
+
"acc_stderr,none": 0.05805845343398072,
|
48 |
+
"alias": "pawsx"
|
49 |
+
}
|
50 |
+
},
|
51 |
+
"configs": {
|
52 |
+
"paws_de": {
|
53 |
+
"task": "paws_de",
|
54 |
+
"group": "pawsx",
|
55 |
+
"dataset_path": "paws-x",
|
56 |
+
"dataset_name": "de",
|
57 |
+
"training_split": "train",
|
58 |
+
"validation_split": "validation",
|
59 |
+
"test_split": "test",
|
60 |
+
"doc_to_text": "",
|
61 |
+
"doc_to_target": "label",
|
62 |
+
"doc_to_choice": "{{[sentence1+\", richtig? Ja, \"+sentence2, sentence1+\", richtig? Nein, \"+sentence2]}}",
|
63 |
+
"description": "",
|
64 |
+
"target_delimiter": " ",
|
65 |
+
"fewshot_delimiter": "\n\n",
|
66 |
+
"metric_list": [
|
67 |
+
{
|
68 |
+
"metric": "acc",
|
69 |
+
"aggregation": "mean",
|
70 |
+
"higher_is_better": true
|
71 |
+
}
|
72 |
+
],
|
73 |
+
"output_type": "multiple_choice",
|
74 |
+
"repeats": 1,
|
75 |
+
"should_decontaminate": false,
|
76 |
+
"metadata": {
|
77 |
+
"version": 0.0
|
78 |
+
}
|
79 |
+
},
|
80 |
+
"paws_en": {
|
81 |
+
"task": "paws_en",
|
82 |
+
"group": "pawsx",
|
83 |
+
"dataset_path": "paws-x",
|
84 |
+
"dataset_name": "en",
|
85 |
+
"training_split": "train",
|
86 |
+
"validation_split": "validation",
|
87 |
+
"test_split": "test",
|
88 |
+
"doc_to_text": "",
|
89 |
+
"doc_to_target": "label",
|
90 |
+
"doc_to_choice": "{{[sentence1+\", right? Yes, \"+sentence2, sentence1+\", right? No, \"+sentence2]}}",
|
91 |
+
"description": "",
|
92 |
+
"target_delimiter": " ",
|
93 |
+
"fewshot_delimiter": "\n\n",
|
94 |
+
"metric_list": [
|
95 |
+
{
|
96 |
+
"metric": "acc",
|
97 |
+
"aggregation": "mean",
|
98 |
+
"higher_is_better": true
|
99 |
+
}
|
100 |
+
],
|
101 |
+
"output_type": "multiple_choice",
|
102 |
+
"repeats": 1,
|
103 |
+
"should_decontaminate": false,
|
104 |
+
"metadata": {
|
105 |
+
"version": 0.0
|
106 |
+
}
|
107 |
+
},
|
108 |
+
"paws_es": {
|
109 |
+
"task": "paws_es",
|
110 |
+
"group": "pawsx",
|
111 |
+
"dataset_path": "paws-x",
|
112 |
+
"dataset_name": "es",
|
113 |
+
"training_split": "train",
|
114 |
+
"validation_split": "validation",
|
115 |
+
"test_split": "test",
|
116 |
+
"doc_to_text": "",
|
117 |
+
"doc_to_target": "label",
|
118 |
+
"doc_to_choice": "{{[sentence1+\", verdad? Sí, \"+sentence2, sentence1+\", verdad? No, \"+sentence2]}}",
|
119 |
+
"description": "",
|
120 |
+
"target_delimiter": " ",
|
121 |
+
"fewshot_delimiter": "\n\n",
|
122 |
+
"metric_list": [
|
123 |
+
{
|
124 |
+
"metric": "acc",
|
125 |
+
"aggregation": "mean",
|
126 |
+
"higher_is_better": true
|
127 |
+
}
|
128 |
+
],
|
129 |
+
"output_type": "multiple_choice",
|
130 |
+
"repeats": 1,
|
131 |
+
"should_decontaminate": false,
|
132 |
+
"metadata": {
|
133 |
+
"version": 0.0
|
134 |
+
}
|
135 |
+
},
|
136 |
+
"paws_fr": {
|
137 |
+
"task": "paws_fr",
|
138 |
+
"group": "pawsx",
|
139 |
+
"dataset_path": "paws-x",
|
140 |
+
"dataset_name": "fr",
|
141 |
+
"training_split": "train",
|
142 |
+
"validation_split": "validation",
|
143 |
+
"test_split": "test",
|
144 |
+
"doc_to_text": "",
|
145 |
+
"doc_to_target": "label",
|
146 |
+
"doc_to_choice": "{{[sentence1+\", n'est-ce pas? Oui, \"+sentence2, sentence1+\", n'est-ce pas? No, \"+sentence2]}}",
|
147 |
+
"description": "",
|
148 |
+
"target_delimiter": " ",
|
149 |
+
"fewshot_delimiter": "\n\n",
|
150 |
+
"metric_list": [
|
151 |
+
{
|
152 |
+
"metric": "acc",
|
153 |
+
"aggregation": "mean",
|
154 |
+
"higher_is_better": true
|
155 |
+
}
|
156 |
+
],
|
157 |
+
"output_type": "multiple_choice",
|
158 |
+
"repeats": 1,
|
159 |
+
"should_decontaminate": false,
|
160 |
+
"metadata": {
|
161 |
+
"version": 0.0
|
162 |
+
}
|
163 |
+
},
|
164 |
+
"paws_ja": {
|
165 |
+
"task": "paws_ja",
|
166 |
+
"group": "pawsx",
|
167 |
+
"dataset_path": "paws-x",
|
168 |
+
"dataset_name": "ja",
|
169 |
+
"training_split": "train",
|
170 |
+
"validation_split": "validation",
|
171 |
+
"test_split": "test",
|
172 |
+
"doc_to_text": "",
|
173 |
+
"doc_to_target": "label",
|
174 |
+
"doc_to_choice": "{{[sentence1+\", ですね? はい, \"+sentence2, sentence1+\", ですね? いいえ, \"+sentence2]}}",
|
175 |
+
"description": "",
|
176 |
+
"target_delimiter": " ",
|
177 |
+
"fewshot_delimiter": "\n\n",
|
178 |
+
"metric_list": [
|
179 |
+
{
|
180 |
+
"metric": "acc",
|
181 |
+
"aggregation": "mean",
|
182 |
+
"higher_is_better": true
|
183 |
+
}
|
184 |
+
],
|
185 |
+
"output_type": "multiple_choice",
|
186 |
+
"repeats": 1,
|
187 |
+
"should_decontaminate": false,
|
188 |
+
"metadata": {
|
189 |
+
"version": 0.0
|
190 |
+
}
|
191 |
+
},
|
192 |
+
"paws_ko": {
|
193 |
+
"task": "paws_ko",
|
194 |
+
"group": "pawsx",
|
195 |
+
"dataset_path": "paws-x",
|
196 |
+
"dataset_name": "ko",
|
197 |
+
"training_split": "train",
|
198 |
+
"validation_split": "validation",
|
199 |
+
"test_split": "test",
|
200 |
+
"doc_to_text": "",
|
201 |
+
"doc_to_target": "label",
|
202 |
+
"doc_to_choice": "{{[sentence1+\", 맞죠? 예, \"+sentence2, sentence1+\", 맞죠? 아니요, \"+sentence2]}}",
|
203 |
+
"description": "",
|
204 |
+
"target_delimiter": " ",
|
205 |
+
"fewshot_delimiter": "\n\n",
|
206 |
+
"metric_list": [
|
207 |
+
{
|
208 |
+
"metric": "acc",
|
209 |
+
"aggregation": "mean",
|
210 |
+
"higher_is_better": true
|
211 |
+
}
|
212 |
+
],
|
213 |
+
"output_type": "multiple_choice",
|
214 |
+
"repeats": 1,
|
215 |
+
"should_decontaminate": false,
|
216 |
+
"metadata": {
|
217 |
+
"version": 0.0
|
218 |
+
}
|
219 |
+
},
|
220 |
+
"paws_zh": {
|
221 |
+
"task": "paws_zh",
|
222 |
+
"group": "pawsx",
|
223 |
+
"dataset_path": "paws-x",
|
224 |
+
"dataset_name": "zh",
|
225 |
+
"training_split": "train",
|
226 |
+
"validation_split": "validation",
|
227 |
+
"test_split": "test",
|
228 |
+
"doc_to_text": "",
|
229 |
+
"doc_to_target": "label",
|
230 |
+
"doc_to_choice": "{{[sentence1+\", 对吧? 是, \"+sentence2, sentence1+\", 对吧? 不是, \"+sentence2]}}",
|
231 |
+
"description": "",
|
232 |
+
"target_delimiter": " ",
|
233 |
+
"fewshot_delimiter": "\n\n",
|
234 |
+
"metric_list": [
|
235 |
+
{
|
236 |
+
"metric": "acc",
|
237 |
+
"aggregation": "mean",
|
238 |
+
"higher_is_better": true
|
239 |
+
}
|
240 |
+
],
|
241 |
+
"output_type": "multiple_choice",
|
242 |
+
"repeats": 1,
|
243 |
+
"should_decontaminate": false,
|
244 |
+
"metadata": {
|
245 |
+
"version": 0.0
|
246 |
+
}
|
247 |
+
}
|
248 |
+
},
|
249 |
+
"versions": {
|
250 |
+
"paws_de": 0.0,
|
251 |
+
"paws_en": 0.0,
|
252 |
+
"paws_es": 0.0,
|
253 |
+
"paws_fr": 0.0,
|
254 |
+
"paws_ja": 0.0,
|
255 |
+
"paws_ko": 0.0,
|
256 |
+
"paws_zh": 0.0,
|
257 |
+
"pawsx": "N/A"
|
258 |
+
},
|
259 |
+
"n-shot": {
|
260 |
+
"paws_de": 0,
|
261 |
+
"paws_en": 0,
|
262 |
+
"paws_es": 0,
|
263 |
+
"paws_fr": 0,
|
264 |
+
"paws_ja": 0,
|
265 |
+
"paws_ko": 0,
|
266 |
+
"paws_zh": 0,
|
267 |
+
"pawsx": 0
|
268 |
+
},
|
269 |
+
"config": {
|
270 |
+
"model": "hf",
|
271 |
+
"model_args": "pretrained=m8than/Finch-14B-Continued-10,dtype=bfloat16,trust_remote_code=True",
|
272 |
+
"batch_size": "auto",
|
273 |
+
"batch_sizes": [
|
274 |
+
64
|
275 |
+
],
|
276 |
+
"device": null,
|
277 |
+
"use_cache": null,
|
278 |
+
"limit": null,
|
279 |
+
"bootstrap_iters": 100000,
|
280 |
+
"gen_kwargs": null
|
281 |
+
},
|
282 |
+
"git_hash": "97a2520"
|
283 |
+
}
|
lm-eval-output/m8than/Finch-14B-Continued-10/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8ee152c496a75dda2bca1e03f0e11cb5f1f70d26c6136b6d1cc3aea3ff4d4b5
|
3 |
+
size 28205
|
lm-eval-output/m8than/Finch-14B-Continued-10/piqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9314e122db708bbb9824245e8e1d629e68ff805c6fca1c62c1ccabb67d107c29
|
3 |
+
size 238859
|
lm-eval-output/m8than/Finch-14B-Continued-10/piqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"piqa": {
|
4 |
+
"acc,none": 0.8025027203482046,
|
5 |
+
"acc_stderr,none": 0.00928857810852327,
|
6 |
+
"acc_norm,none": 0.8035908596300326,
|
7 |
+
"acc_norm_stderr,none": 0.00926923223767992,
|
8 |
+
"alias": "piqa"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"configs": {
|
12 |
+
"piqa": {
|
13 |
+
"task": "piqa",
|
14 |
+
"dataset_path": "piqa",
|
15 |
+
"training_split": "train",
|
16 |
+
"validation_split": "validation",
|
17 |
+
"doc_to_text": "Question: {{goal}}\nAnswer:",
|
18 |
+
"doc_to_target": "label",
|
19 |
+
"doc_to_choice": "{{[sol1, sol2]}}",
|
20 |
+
"description": "",
|
21 |
+
"target_delimiter": " ",
|
22 |
+
"fewshot_delimiter": "\n\n",
|
23 |
+
"metric_list": [
|
24 |
+
{
|
25 |
+
"metric": "acc",
|
26 |
+
"aggregation": "mean",
|
27 |
+
"higher_is_better": true
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"metric": "acc_norm",
|
31 |
+
"aggregation": "mean",
|
32 |
+
"higher_is_better": true
|
33 |
+
}
|
34 |
+
],
|
35 |
+
"output_type": "multiple_choice",
|
36 |
+
"repeats": 1,
|
37 |
+
"should_decontaminate": true,
|
38 |
+
"doc_to_decontamination_query": "goal",
|
39 |
+
"metadata": {
|
40 |
+
"version": 1.0
|
41 |
+
}
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"versions": {
|
45 |
+
"piqa": 1.0
|
46 |
+
},
|
47 |
+
"n-shot": {
|
48 |
+
"piqa": 0
|
49 |
+
},
|
50 |
+
"config": {
|
51 |
+
"model": "hf",
|
52 |
+
"model_args": "pretrained=m8than/Finch-14B-Continued-10,dtype=bfloat16,trust_remote_code=True",
|
53 |
+
"batch_size": "auto",
|
54 |
+
"batch_sizes": [
|
55 |
+
64
|
56 |
+
],
|
57 |
+
"device": null,
|
58 |
+
"use_cache": null,
|
59 |
+
"limit": null,
|
60 |
+
"bootstrap_iters": 100000,
|
61 |
+
"gen_kwargs": null
|
62 |
+
},
|
63 |
+
"git_hash": "97a2520"
|
64 |
+
}
|
lm-eval-output/m8than/Finch-14B-Continued-10/piqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4248118222c9a95807af5f276617900a69a01ca5ea8eb4f8b3756d4c8cdc8857
|
3 |
+
size 16359
|
lm-eval-output/m8than/Finch-14B-Continued-10/pythia/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47e98b55c12181af66586f54f408411af0a07b71f8c7bd59c332d2feb1cde5a4
|
3 |
+
size 11980040
|
lm-eval-output/m8than/Finch-14B-Continued-10/pythia/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
lm-eval-output/m8than/Finch-14B-Continued-10/pythia/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be4d055747640f9c02bfe93fcd367e27dfd0f7edd040225a5397f3857f40aaa8
|
3 |
+
size 437076
|
lm-eval-output/m8than/Finch-14B-Continued-10/record/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39add6cd660c1d2cb82f0e8f2ca1956cc6d9c161f0994939a7be74a0bb7942fa
|
3 |
+
size 11106481
|
lm-eval-output/m8than/Finch-14B-Continued-10/record/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"record": {
|
4 |
+
"f1,none": 0.2822200002551079,
|
5 |
+
"f1_stderr,none": 0.004461487034085861,
|
6 |
+
"em,none": 0.272,
|
7 |
+
"em_stderr,none": 0.004450121386888205,
|
8 |
+
"alias": "record"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"configs": {
|
12 |
+
"record": {
|
13 |
+
"task": "record",
|
14 |
+
"group": [
|
15 |
+
"super-glue-lm-eval-v1"
|
16 |
+
],
|
17 |
+
"dataset_path": "super_glue",
|
18 |
+
"dataset_name": "record",
|
19 |
+
"training_split": "train",
|
20 |
+
"validation_split": "validation",
|
21 |
+
"doc_to_text": "def doc_to_text(doc):\n initial_text, *highlights = doc[\"passage\"].strip().split(\"\\n@highlight\\n\")\n text = initial_text + \"\\n\\n\"\n for highlight in highlights:\n text += f\" - {highlight}.\\n\"\n return text\n",
|
22 |
+
"doc_to_target": "{{answers}}",
|
23 |
+
"doc_to_choice": "{{entities}}",
|
24 |
+
"process_results": "def process_results(doc, results):\n # ReCoRD's evaluation is actually deceptively simple:\n # - Pick the maximum likelihood prediction entity\n # - Evaluate the accuracy and token F1 PER EXAMPLE\n # - Average over all examples\n max_idx = np.argmax(np.array([result[0] for result in results]))\n\n prediction = doc[\"entities\"][max_idx]\n gold_label_set = doc[\"answers\"]\n f1 = metric_max_over_ground_truths(\n squad_metrics.compute_f1, prediction, gold_label_set\n )\n em = metric_max_over_ground_truths(\n squad_metrics.compute_exact, prediction, gold_label_set\n )\n\n return {\n \"f1\": f1,\n \"em\": em,\n }\n",
|
25 |
+
"description": "",
|
26 |
+
"target_delimiter": " ",
|
27 |
+
"fewshot_delimiter": "\n\n",
|
28 |
+
"metric_list": [
|
29 |
+
{
|
30 |
+
"metric": "f1",
|
31 |
+
"aggregation": "mean"
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"metric": "em",
|
35 |
+
"higher_is_better": true,
|
36 |
+
"aggregation": "mean"
|
37 |
+
}
|
38 |
+
],
|
39 |
+
"output_type": "multiple_choice",
|
40 |
+
"repeats": 1,
|
41 |
+
"should_decontaminate": false,
|
42 |
+
"metadata": {
|
43 |
+
"version": 1.0
|
44 |
+
}
|
45 |
+
}
|
46 |
+
},
|
47 |
+
"versions": {
|
48 |
+
"record": 1.0
|
49 |
+
},
|
50 |
+
"n-shot": {
|
51 |
+
"record": 0
|
52 |
+
},
|
53 |
+
"config": {
|
54 |
+
"model": "hf",
|
55 |
+
"model_args": "pretrained=m8than/Finch-14B-Continued-10,dtype=bfloat16,trust_remote_code=True",
|
56 |
+
"batch_size": "auto",
|
57 |
+
"batch_sizes": [
|
58 |
+
32
|
59 |
+
],
|
60 |
+
"device": null,
|
61 |
+
"use_cache": null,
|
62 |
+
"limit": null,
|
63 |
+
"bootstrap_iters": 100000,
|
64 |
+
"gen_kwargs": null
|
65 |
+
},
|
66 |
+
"git_hash": "97a2520"
|
67 |
+
}
|