|
"""SNAP dataset"""
|
|
|
|
import datasets
|
|
|
|
_CITATION = """
|
|
@inproceedings{celebi2016segmenting,
|
|
title={Segmenting hashtags using automatically created training data},
|
|
author={Celebi, Arda and {\"O}zg{\"u}r, Arzucan},
|
|
booktitle={Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)},
|
|
pages={2981--2985},
|
|
year={2016}
|
|
}
|
|
"""
|
|
|
|
_DESCRIPTION = """
|
|
Automatically segmented 803K SNAP Twitter Data Set hashtags with the heuristic described in the paper "Segmenting hashtags using automatically created training data".
|
|
"""
|
|
_URL = "https://raw.githubusercontent.com/ruanchaves/hashformers/master/datasets/SNAP.Hashtags.Segmented.w.Heuristics.txt"
|
|
|
|
class Snap(datasets.GeneratorBasedBuilder):
|
|
|
|
VERSION = datasets.Version("1.0.0")
|
|
|
|
def _info(self):
|
|
return datasets.DatasetInfo(
|
|
description=_DESCRIPTION,
|
|
features=datasets.Features(
|
|
{
|
|
"index": datasets.Value("int32"),
|
|
"hashtag": datasets.Value("string"),
|
|
"segmentation": datasets.Value("string")
|
|
}
|
|
),
|
|
supervised_keys=None,
|
|
homepage="https://github.com/ardax/hashtag-segmentor",
|
|
citation=_CITATION,
|
|
)
|
|
|
|
def _split_generators(self, dl_manager):
|
|
downloaded_files = dl_manager.download(_URL)
|
|
return [
|
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files}),
|
|
]
|
|
|
|
def _generate_examples(self, filepath):
|
|
|
|
with open(filepath, 'r') as f:
|
|
for idx, line in enumerate(f):
|
|
yield idx, {
|
|
"index": idx,
|
|
"hashtag": line.strip().replace(" ", ""),
|
|
"segmentation": line.strip()
|
|
} |