ruanchaves commited on
Commit
71893f0
·
1 Parent(s): 009405f

Create nru_hse.py

Browse files
Files changed (1) hide show
  1. nru_hse.py +63 -0
nru_hse.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """HSE Russian dataset by Glushkova et al.."""
2
+
3
+ import datasets
4
+ import pandas as pd
5
+ from functools import reduce
6
+
7
+ _CITATION = """
8
+ @article{glushkova2019char,
9
+ title={Char-RNN and Active Learning for Hashtag Segmentation},
10
+ author={Glushkova, Taisiya and Artemova, Ekaterina},
11
+ journal={arXiv preprint arXiv:1911.03270},
12
+ year={2019}
13
+ }
14
+ """
15
+
16
+ _DESCRIPTION = """
17
+ 2000 real hashtags collected from several pages about civil services on vk.com (a Russian social network)
18
+ and then segmented manually.
19
+ """
20
+ _URL = "https://raw.githubusercontent.com/glushkovato/hashtag_segmentation/master/data/test_rus.csv"
21
+
22
+
23
+ class HSE(datasets.GeneratorBasedBuilder):
24
+
25
+ VERSION = datasets.Version("1.0.0")
26
+
27
+ def _info(self):
28
+ return datasets.DatasetInfo(
29
+ description=_DESCRIPTION,
30
+ features=datasets.Features(
31
+ {
32
+ "index": datasets.Value("int32"),
33
+ "hashtag": datasets.Value("string"),
34
+ "segmentation": datasets.Value("string")
35
+ }
36
+ ),
37
+ supervised_keys=None,
38
+ homepage="https://github.com/glushkovato/hashtag_segmentation",
39
+ citation=_CITATION,
40
+ )
41
+
42
+ def _split_generators(self, dl_manager):
43
+ downloaded_files = dl_manager.download(_URL)
44
+ return [
45
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files }),
46
+ ]
47
+
48
+ def _generate_examples(self, filepath):
49
+
50
+ df = pd.read_csv(filepath)
51
+ records = df.to_dict("records")
52
+
53
+ def get_segmentation(a, b):
54
+ return "".join(reduce(lambda x,y: x + y, list(zip(a,b)))).replace("0","").replace("1"," ").strip()
55
+
56
+ for idx, row in enumerate(records):
57
+ yield idx, {
58
+ "index": idx,
59
+ "hashtag": row["hashtag"],
60
+ "segmentation": get_segmentation(
61
+ row["hashtag"],
62
+ row["true_segmentation"]
63
+ )}