Update renovation.py
Browse files- renovation.py +34 -28
renovation.py
CHANGED
@@ -3,6 +3,7 @@ import random
|
|
3 |
import datasets
|
4 |
import requests
|
5 |
import os
|
|
|
6 |
|
7 |
from PIL import Image
|
8 |
from io import BytesIO
|
@@ -24,7 +25,11 @@ _DESCRIPTION = """\
|
|
24 |
This dataset contains images of various properties, along with labels indicating the quality of renovation - 'cheap', 'average', 'expensive'.
|
25 |
"""
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
28 |
|
29 |
_NAMES = ["cheap", "average", "expensive"]
|
30 |
|
@@ -50,54 +55,55 @@ class RenovationQualityDataset(datasets.GeneratorBasedBuilder):
|
|
50 |
)
|
51 |
|
52 |
def _split_generators(self, dl_manager):
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
# 80% for training, 10% for validation, 10% for testing
|
63 |
-
train_end = int(0.8 * len(
|
64 |
-
val_end = int(0.9 * len(
|
65 |
|
66 |
return [
|
67 |
datasets.SplitGenerator(
|
68 |
name=datasets.Split.TRAIN,
|
69 |
gen_kwargs={
|
70 |
-
"rows":
|
71 |
},
|
72 |
),
|
73 |
datasets.SplitGenerator(
|
74 |
name=datasets.Split.VALIDATION,
|
75 |
gen_kwargs={
|
76 |
-
"rows":
|
77 |
},
|
78 |
),
|
79 |
datasets.SplitGenerator(
|
80 |
name=datasets.Split.TEST,
|
81 |
gen_kwargs={
|
82 |
-
"rows":
|
83 |
},
|
84 |
),
|
85 |
]
|
86 |
|
87 |
def _generate_examples(self, rows):
|
88 |
-
def
|
89 |
-
|
90 |
-
img = Image.open(BytesIO(response.content))
|
91 |
return img
|
92 |
|
93 |
-
for id_,
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
'image_file_path': image_file_path,
|
101 |
-
'image': image,
|
102 |
-
'labels': row[1],
|
103 |
-
}
|
|
|
3 |
import datasets
|
4 |
import requests
|
5 |
import os
|
6 |
+
import py7zr # for extracting .7z files
|
7 |
|
8 |
from PIL import Image
|
9 |
from io import BytesIO
|
|
|
25 |
This dataset contains images of various properties, along with labels indicating the quality of renovation - 'cheap', 'average', 'expensive'.
|
26 |
"""
|
27 |
|
28 |
+
_URLS = {
|
29 |
+
"cheap": "https://huggingface.co/datasets/rshrott/renovation/raw/main/cheap.7z",
|
30 |
+
"average": "https://huggingface.co/datasets/rshrott/renovation/raw/main/average.7z",
|
31 |
+
"expensive": "https://huggingface.co/datasets/rshrott/renovation/raw/main/expensive.7z",
|
32 |
+
}
|
33 |
|
34 |
_NAMES = ["cheap", "average", "expensive"]
|
35 |
|
|
|
55 |
)
|
56 |
|
57 |
def _split_generators(self, dl_manager):
|
58 |
+
# Download and extract images
|
59 |
+
image_paths = []
|
60 |
+
for label, url in _URLS.items():
|
61 |
+
download_path = dl_manager.download(url)
|
62 |
+
extract_path = dl_manager.extract(download_path)
|
63 |
+
|
64 |
+
# Get image paths
|
65 |
+
for root, _, files in os.walk(extract_path):
|
66 |
+
for file in files:
|
67 |
+
if file.endswith(".jpeg"): # Assuming all images are .jpeg
|
68 |
+
image_paths.append((os.path.join(root, file), label))
|
69 |
+
|
70 |
+
# Shuffle image paths
|
71 |
+
random.shuffle(image_paths)
|
72 |
|
73 |
# 80% for training, 10% for validation, 10% for testing
|
74 |
+
train_end = int(0.8 * len(image_paths))
|
75 |
+
val_end = int(0.9 * len(image_paths))
|
76 |
|
77 |
return [
|
78 |
datasets.SplitGenerator(
|
79 |
name=datasets.Split.TRAIN,
|
80 |
gen_kwargs={
|
81 |
+
"rows": image_paths[:train_end],
|
82 |
},
|
83 |
),
|
84 |
datasets.SplitGenerator(
|
85 |
name=datasets.Split.VALIDATION,
|
86 |
gen_kwargs={
|
87 |
+
"rows": image_paths[train_end:val_end],
|
88 |
},
|
89 |
),
|
90 |
datasets.SplitGenerator(
|
91 |
name=datasets.Split.TEST,
|
92 |
gen_kwargs={
|
93 |
+
"rows": image_paths[val_end:],
|
94 |
},
|
95 |
),
|
96 |
]
|
97 |
|
98 |
def _generate_examples(self, rows):
|
99 |
+
def file_to_image(file_path):
|
100 |
+
img = Image.open(file_path)
|
|
|
101 |
return img
|
102 |
|
103 |
+
for id_, (image_file_path, label) in enumerate(rows):
|
104 |
+
image = file_to_image(image_file_path)
|
105 |
+
yield id_, {
|
106 |
+
'image_file_path': image_file_path,
|
107 |
+
'image': image,
|
108 |
+
'labels': label,
|
109 |
+
}
|
|
|
|
|
|
|
|