|
import os |
|
import glob |
|
import random |
|
|
|
import datasets |
|
from datasets.tasks import ImageClassification |
|
from datasets import load_dataset |
|
import os |
|
from huggingface_hub import login |
|
_HOMEPAGE = "https://github.com/your-github/renovation" |
|
|
|
_CITATION = """\ |
|
@ONLINE {renovationdata, |
|
author="Your Name", |
|
title="Renovation dataset", |
|
month="January", |
|
year="2023", |
|
url="https://github.com/your-github/renovation" |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Renovations is a dataset of images of houses taken in the field using smartphone |
|
cameras. It consists of 7 classes: Not Applicable, Poor, Fair, Good, and Great renovations. |
|
Data was collected by the your research lab. |
|
""" |
|
|
|
_URLS = { |
|
"Not Applicable": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/Not Applicable.zip", |
|
"Poor": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/Poor.zip", |
|
"Fair": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/Fair.zip", |
|
"Good": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/Good.zip", |
|
"Great": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/Great.zip", |
|
} |
|
|
|
_NAMES = ["Not Applicable", "Poor", "Fair", "Good", "Great"] |
|
class Renovations(datasets.GeneratorBasedBuilder): |
|
"""Renovations house images dataset.""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"image_file_path": datasets.Value("string"), |
|
"image": datasets.Image(), |
|
"labels": datasets.features.ClassLabel(names=_NAMES), |
|
} |
|
), |
|
supervised_keys=("image", "labels"), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
task_templates=[ImageClassification(image_column="image", label_column="labels")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_files = dl_manager.download_and_extract(_URLS) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_files": data_files, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"data_files": data_files, |
|
"split": "val", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_files": data_files, |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_files, split): |
|
|
|
data_by_class = {label: [] for label in _NAMES} |
|
allowed_extensions = {'.jpeg', '.jpg'} |
|
for label, path in data_files.items(): |
|
files = [os.path.join(path, f) for f in os.listdir(path) if os.path.isfile(os.path.join(path, f)) and os.path.splitext(f)[1] in allowed_extensions] |
|
data_by_class[label].extend((file, label) for file in files) |
|
|
|
|
|
|
|
random.seed(43) |
|
train_data, test_data, val_data = [], [], [] |
|
for label, files_and_labels in data_by_class.items(): |
|
random.shuffle(files_and_labels) |
|
num_files = len(files_and_labels) |
|
train_end = int(num_files * 0.8) |
|
test_end = int(num_files * 0.9) |
|
train_data.extend(files_and_labels[:train_end]) |
|
test_data.extend(files_and_labels[train_end:test_end]) |
|
val_data.extend(files_and_labels[test_end:]) |
|
|
|
|
|
if split == "train": |
|
data_to_use = train_data |
|
elif split == "test": |
|
data_to_use = test_data |
|
else: |
|
data_to_use = val_data |
|
|
|
|
|
for idx, (file, label) in enumerate(data_to_use): |
|
yield idx, { |
|
"image_file_path": file, |
|
"image": file, |
|
"labels": label, |
|
} |
|
|
|
|
|
|
|
|