rjac commited on
Commit
022ef34
1 Parent(s): 1fc5503

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -5
README.md CHANGED
@@ -6,8 +6,8 @@ language:
6
  tags:
7
  - translation
8
  license:
9
- - Database Open Database
10
- - Contents Database Contents
11
  ---
12
 
13
  **Date**: 2022-07-10<br/>
@@ -17,19 +17,20 @@ license:
17
 
18
  # About Dataset
19
  [**from Kaggle Datasets**](https://www.kaggle.com/datasets/abhinavwalia95/entity-annotated-corpus)
20
- ## Context:
 
21
  Annotated Corpus for Named Entity Recognition using GMB(Groningen Meaning Bank) corpus for entity classification with enhanced and popular features by Natural Language Processing applied to the data set.
22
 
23
  Tip: Use Pandas Dataframe to load dataset if using Python for convenience.
24
 
25
- ## Content:
26
  This is the extract from GMB corpus which is tagged, annotated and built specifically to train the classifier to predict named entities such as name, location, etc.
27
 
28
  Number of tagged entities:
29
 
30
  'O': 1146068', geo-nam': 58388, 'org-nam': 48034, 'per-nam': 23790, 'gpe-nam': 20680, 'tim-dat': 12786, 'tim-dow': 11404, 'per-tit': 9800, 'per-fam': 8152, 'tim-yoc': 5290, 'tim-moy': 4262, 'per-giv': 2413, 'tim-clo': 891, 'art-nam': 866, 'eve-nam': 602, 'nat-nam': 300, 'tim-nam': 146, 'eve-ord': 107, 'per-ini': 60, 'org-leg': 60, 'per-ord': 38, 'tim-dom': 10, 'per-mid': 1, 'art-add': 1
31
 
32
- ## Essential info about entities:
33
 
34
  * geo = Geographical Entity
35
  * org = Organization
 
6
  tags:
7
  - translation
8
  license:
9
+ - Database Open Database
10
+ - Contents Database Contents
11
  ---
12
 
13
  **Date**: 2022-07-10<br/>
 
17
 
18
  # About Dataset
19
  [**from Kaggle Datasets**](https://www.kaggle.com/datasets/abhinavwalia95/entity-annotated-corpus)
20
+ ## Context
21
+
22
  Annotated Corpus for Named Entity Recognition using GMB(Groningen Meaning Bank) corpus for entity classification with enhanced and popular features by Natural Language Processing applied to the data set.
23
 
24
  Tip: Use Pandas Dataframe to load dataset if using Python for convenience.
25
 
26
+ ## Content
27
  This is the extract from GMB corpus which is tagged, annotated and built specifically to train the classifier to predict named entities such as name, location, etc.
28
 
29
  Number of tagged entities:
30
 
31
  'O': 1146068', geo-nam': 58388, 'org-nam': 48034, 'per-nam': 23790, 'gpe-nam': 20680, 'tim-dat': 12786, 'tim-dow': 11404, 'per-tit': 9800, 'per-fam': 8152, 'tim-yoc': 5290, 'tim-moy': 4262, 'per-giv': 2413, 'tim-clo': 891, 'art-nam': 866, 'eve-nam': 602, 'nat-nam': 300, 'tim-nam': 146, 'eve-ord': 107, 'per-ini': 60, 'org-leg': 60, 'per-ord': 38, 'tim-dom': 10, 'per-mid': 1, 'art-add': 1
32
 
33
+ ## Essential info about entities
34
 
35
  * geo = Geographical Entity
36
  * org = Organization