Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -6,8 +6,8 @@ language:
|
|
6 |
tags:
|
7 |
- translation
|
8 |
license:
|
9 |
-
|
10 |
-
|
11 |
---
|
12 |
|
13 |
**Date**: 2022-07-10<br/>
|
@@ -17,19 +17,20 @@ license:
|
|
17 |
|
18 |
# About Dataset
|
19 |
[**from Kaggle Datasets**](https://www.kaggle.com/datasets/abhinavwalia95/entity-annotated-corpus)
|
20 |
-
## Context
|
|
|
21 |
Annotated Corpus for Named Entity Recognition using GMB(Groningen Meaning Bank) corpus for entity classification with enhanced and popular features by Natural Language Processing applied to the data set.
|
22 |
|
23 |
Tip: Use Pandas Dataframe to load dataset if using Python for convenience.
|
24 |
|
25 |
-
## Content
|
26 |
This is the extract from GMB corpus which is tagged, annotated and built specifically to train the classifier to predict named entities such as name, location, etc.
|
27 |
|
28 |
Number of tagged entities:
|
29 |
|
30 |
'O': 1146068', geo-nam': 58388, 'org-nam': 48034, 'per-nam': 23790, 'gpe-nam': 20680, 'tim-dat': 12786, 'tim-dow': 11404, 'per-tit': 9800, 'per-fam': 8152, 'tim-yoc': 5290, 'tim-moy': 4262, 'per-giv': 2413, 'tim-clo': 891, 'art-nam': 866, 'eve-nam': 602, 'nat-nam': 300, 'tim-nam': 146, 'eve-ord': 107, 'per-ini': 60, 'org-leg': 60, 'per-ord': 38, 'tim-dom': 10, 'per-mid': 1, 'art-add': 1
|
31 |
|
32 |
-
## Essential info about entities
|
33 |
|
34 |
* geo = Geographical Entity
|
35 |
* org = Organization
|
|
|
6 |
tags:
|
7 |
- translation
|
8 |
license:
|
9 |
+
- Database Open Database
|
10 |
+
- Contents Database Contents
|
11 |
---
|
12 |
|
13 |
**Date**: 2022-07-10<br/>
|
|
|
17 |
|
18 |
# About Dataset
|
19 |
[**from Kaggle Datasets**](https://www.kaggle.com/datasets/abhinavwalia95/entity-annotated-corpus)
|
20 |
+
## Context
|
21 |
+
|
22 |
Annotated Corpus for Named Entity Recognition using GMB(Groningen Meaning Bank) corpus for entity classification with enhanced and popular features by Natural Language Processing applied to the data set.
|
23 |
|
24 |
Tip: Use Pandas Dataframe to load dataset if using Python for convenience.
|
25 |
|
26 |
+
## Content
|
27 |
This is the extract from GMB corpus which is tagged, annotated and built specifically to train the classifier to predict named entities such as name, location, etc.
|
28 |
|
29 |
Number of tagged entities:
|
30 |
|
31 |
'O': 1146068', geo-nam': 58388, 'org-nam': 48034, 'per-nam': 23790, 'gpe-nam': 20680, 'tim-dat': 12786, 'tim-dow': 11404, 'per-tit': 9800, 'per-fam': 8152, 'tim-yoc': 5290, 'tim-moy': 4262, 'per-giv': 2413, 'tim-clo': 891, 'art-nam': 866, 'eve-nam': 602, 'nat-nam': 300, 'tim-nam': 146, 'eve-ord': 107, 'per-ini': 60, 'org-leg': 60, 'per-ord': 38, 'tim-dom': 10, 'per-mid': 1, 'art-add': 1
|
32 |
|
33 |
+
## Essential info about entities
|
34 |
|
35 |
* geo = Geographical Entity
|
36 |
* org = Organization
|