|
import json |
|
import os |
|
from itertools import product |
|
from statistics import mean |
|
|
|
import pandas as pd |
|
from datasets import load_dataset |
|
|
|
|
|
def process(split, output): |
|
data = load_dataset("relbert/t_rex", split=split) |
|
df = data.to_pandas() |
|
df.pop('text') |
|
df.pop('title') |
|
df['pairs'] = [[i, j] for i, j in zip(df.pop('head'), df.pop('tail'))] |
|
rel_sim_data = [{ |
|
"relation_type": pred, |
|
"positives": g['pairs'].values.tolist(), |
|
"negatives": [] |
|
} for pred, g in df.groupby("relation") if len(g) >= 2] |
|
with open(output, "w") as f: |
|
f.write('\n'.join([json.dumps(i) for i in rel_sim_data])) |
|
|
|
|
|
os.makedirs("data", exist_ok=True) |
|
|
|
for s in ['train', 'validation', 'test']: |
|
process(split=s, output=f"data/filter_unified.{s}.jsonl") |
|
|
|
|
|
|