|
from itertools import chain |
|
|
|
import pandas as pd |
|
from datasets import load_dataset |
|
|
|
|
|
def get_stats(): |
|
relation = [] |
|
entity = [] |
|
size = [] |
|
data = load_dataset("relbert/nell") |
|
splits = data.keys() |
|
for split in splits: |
|
df = data[split].to_pandas() |
|
size.append({ |
|
"number of pairs": len(df), |
|
"number of unique relation types": len(df["relation"].unique()) |
|
}) |
|
relation.append(df.groupby('relation')['head'].count().to_dict()) |
|
entity += [df.groupby('head_type')['head'].count().to_dict(), df.groupby('tail_type')['tail'].count().to_dict()] |
|
relation = pd.DataFrame(relation, index=[f"number of pairs ({s})" for s in splits]).T |
|
relation = relation.fillna(0).astype(int) |
|
entity = pd.DataFrame(entity, index=list(chain(*[[f"head ({s})", f"tail ({s})"] for s in splits]))).T |
|
entity = entity.fillna(0).astype(int) |
|
size = pd.DataFrame(size, index=splits).T |
|
return relation, entity, size |
|
|
|
df_relation, df_entity, df_size = get_stats() |
|
print(f"\n- Number of instances\n\n {df_size.to_markdown()}") |
|
print(f"\n- Number of pairs in each relation type\n\n {df_relation.to_markdown()}") |
|
print(f"\n- Number of entity types\n\n {df_entity.to_markdown()}") |
|
|
|
|