Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
nell / process.py
asahi417's picture
fix readme
e480913
"""
- Wiki-One https://sites.cs.ucsb.edu/~xwhan/datasets/wiki.tar.gz
- NELL-One https://sites.cs.ucsb.edu/~xwhan/datasets/nell.tar.gz
wget https://sites.cs.ucsb.edu/~xwhan/datasets/nell.tar.gz
tar -xzf nell.tar.gz
wget https://sites.cs.ucsb.edu/~xwhan/datasets/wiki.tar.gz
tar -xzf wiki.tar.gz
"""
import os
import json
import re
from itertools import chain
data_dir_nell = "NELL"
os.makedirs("data", exist_ok=True)
short = ['alcs', "uk", "us", "usa", "npr", "nbc", "bbc", "cnn", "abc", "cbs", "nfl", "mlb", "nba", "nhl", "pga", "ncaa",
"wjhu", "pbs", "un"]
non_entity_types = [
'academicfield',
'agent',
'agriculturalproduct',
'amphibian',
'animal',
'aquarium',
'arachnid',
'architect',
'arthropod',
'bakedgood',
'bathroomitem',
'bedroomitem',
'beverage',
'bird',
'blog',
'bodypart',
'bone',
'candy',
'cave',
'chemical',
'clothing',
'coffeedrink',
'condiment',
'crimeorcharge',
'crustacean',
'date',
'dateliteral',
'economicsector',
'fish',
'food',
'fruit',
'fungus',
'furniture',
'grain',
'hallwayitem',
'hobby',
'insect',
'invertebrate',
'jobposition',
'kitchenitem',
'landscapefeatures',
'legume',
'location',
'mammal',
'meat',
'mlsoftware',
'mollusk',
'month',
'nut',
'officebuildingroom',
'physiologicalcondition',
'plant',
'politicsissue',
'profession',
'professionalorganization',
'reptile',
'room',
'sport',
'tableitem',
'tradeunion',
'vegetable',
'vehicle',
'vertebrate',
'weapon',
'wine'
]
def clean(token):
_, _type, token = token.split(":")
token = token.replace("_", " ")
token = token.replace("__", "")
token = re.sub(r"00\d\Z", "", token)
token = re.sub(r"\An(\d+)", r"\1", token)
if _type in non_entity_types:
return token, _type
new_token = []
for _t in token.split(" "):
if len(_t) == 0:
continue
if _t in short:
_t = _t.upper()
else:
_t = _t.capitalize()
new_token.append(_t)
return " ".join(new_token), _type
if not os.path.exists(data_dir_nell):
raise ValueError("Please download the dataset first\n"
"wget https://sites.cs.ucsb.edu/~xwhan/datasets/nell.tar.gz\n"
"tar -xzf nell.tar.gz")
def read_file(_file):
with open(_file, 'r') as f_reader:
tmp = json.load(f_reader)
flatten = list(chain(*[[{"relation": r, "head": h, "tail": t} for (h, r, t) in v] for v in tmp.values()]))
return flatten
def read_vocab(_file):
with open(_file) as f_reader:
ent2ids = json.load(f_reader)
return sorted(list(ent2ids.keys()))
if __name__ == '__main__':
# Process raw data
vocab = read_vocab(f"{data_dir_nell}/ent2ids")
vocab = [clean(i) for i in vocab if len(i.split(":")) > 2]
vocab = ["\t".join(i) for i in vocab if len(i[0]) > 0 and len(i[1]) > 0]
with open("data/nell.vocab.txt", 'w') as f:
f.write("\n".join(vocab))
vocab_term = [i.split('\t')[0] for i in vocab]
for i, s in zip(['dev_tasks.json', 'test_tasks.json', 'train_tasks.json'], ['validation', 'test', 'train']):
d = read_file(f"{data_dir_nell}/{i}")
for _d in d:
head = _d.pop("head")
tail = _d.pop("tail")
head_entity, head_type = clean(head)
_d['head'] = head_entity
_d['head_type'] = head_type
assert head_entity in vocab_term, head_entity
tail_entity, tail_type = clean(tail)
_d['tail'] = tail_entity
_d['tail_type'] = tail_type
assert tail_entity in vocab_term, tail_entity
with open(f"data/nell.{s}.jsonl", "w") as f:
f.write("\n".join([json.dumps(_d) for _d in d]))
# Filter entity relation
full_data = {}
for s in ["train", "validation", "test"]:
with open(f"data/nell.{s}.jsonl") as f:
data = [json.loads(i) for i in f.read().split('\n') if len(i) > 0]
data = [i for i in data if i['head_type'] not in non_entity_types and i['tail_type'] not in non_entity_types]
with open(f"data/nell_filter.{s}.jsonl", "w") as f:
f.write('\n'.join([json.dumps(i) for i in data]))
with open("data/nell.vocab.txt") as f:
vocab = [i.split("\t") for i in f.read().split('\n')]
vocab = ["\t".join([a, b]) for a, b in vocab if b not in non_entity_types]
with open("data/nell_filter.vocab.txt", 'w') as f:
f.write('\n'.join(vocab))