README
Browse files- .gitignore +1 -0
- README.md +82 -0
- augment_negative.py +12 -0
- conceptnet_high_confidence_v2.py +86 -0
- dataset/train.jsonl +0 -0
- dataset/valid.jsonl +0 -0
- get_stats.py +35 -0
- process.py +74 -0
- stats.csv +24 -0
- stats.md +25 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
cache
|
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license:
|
5 |
+
- other
|
6 |
+
multilinguality:
|
7 |
+
- monolingual
|
8 |
+
size_categories:
|
9 |
+
- 1K<n<10K
|
10 |
+
pretty_name: ConceptNet with High Confidence
|
11 |
+
---
|
12 |
+
# Dataset Card for "relbert/conceptnet_high_confidence"
|
13 |
+
## Dataset Description
|
14 |
+
- **Repository:** [RelBERT](https://github.com/asahi417/relbert)
|
15 |
+
- **Paper:** [https://home.ttic.edu/~kgimpel/commonsense.html](https://home.ttic.edu/~kgimpel/commonsense.html)
|
16 |
+
- **Dataset:** High Confidence Subset of ConceptNet
|
17 |
+
|
18 |
+
### Dataset Summary
|
19 |
+
The selected subset of ConceptNet used in [this work](https://home.ttic.edu/~kgimpel/commonsense.html), which compiled
|
20 |
+
to fine-tune [RelBERT](https://github.com/asahi417/relbert) model.
|
21 |
+
|
22 |
+
## Dataset Structure
|
23 |
+
### Data Instances
|
24 |
+
An example of `train` looks as follows.
|
25 |
+
```
|
26 |
+
{
|
27 |
+
"relation_type": "AtLocation",
|
28 |
+
"positives": [["fish", "water"], ["cloud", "sky"], ["child", "school"], ... ],
|
29 |
+
"negatives": [["pen", "write"], ["sex", "fun"], ["soccer", "sport"], ["fish", "school"], ... ]
|
30 |
+
}
|
31 |
+
```
|
32 |
+
|
33 |
+
### Data Splits
|
34 |
+
| name |train|validation|
|
35 |
+
|---------|----:|---------:|
|
36 |
+
|conceptnet_high_confidence| 25 | 24|
|
37 |
+
|
38 |
+
### Number of Positive/Negative Word-pairs in each Split
|
39 |
+
|
40 |
+
| relation_type | positive (train) | negative (train) | positive (validation) | negative (validation) |
|
41 |
+
|:-----------------|-------------------:|-------------------:|------------------------:|------------------------:|
|
42 |
+
| AtLocation | 383 | 1768 | 97 | 578 |
|
43 |
+
| CapableOf | 195 | 1790 | 73 | 600 |
|
44 |
+
| Causes | 71 | 1797 | 26 | 595 |
|
45 |
+
| CausesDesire | 9 | 1793 | 11 | 595 |
|
46 |
+
| CreatedBy | 2 | 1796 | 0 | 0 |
|
47 |
+
| DefinedAs | 0 | 0 | 2 | 595 |
|
48 |
+
| Desires | 16 | 1794 | 12 | 595 |
|
49 |
+
| HasA | 67 | 1814 | 17 | 595 |
|
50 |
+
| HasFirstSubevent | 2 | 1796 | 0 | 0 |
|
51 |
+
| HasLastSubevent | 2 | 1796 | 3 | 593 |
|
52 |
+
| HasPrerequisite | 168 | 1803 | 57 | 592 |
|
53 |
+
| HasProperty | 94 | 1801 | 39 | 605 |
|
54 |
+
| HasSubevent | 125 | 1798 | 40 | 609 |
|
55 |
+
| IsA | 310 | 1764 | 98 | 603 |
|
56 |
+
| MadeOf | 17 | 1793 | 7 | 593 |
|
57 |
+
| MotivatedByGoal | 14 | 1796 | 11 | 595 |
|
58 |
+
| NotCapableOf | 15 | 1793 | 0 | 0 |
|
59 |
+
| NotDesires | 4 | 1795 | 4 | 592 |
|
60 |
+
| PartOf | 34 | 1801 | 7 | 593 |
|
61 |
+
| ReceivesAction | 18 | 1793 | 8 | 593 |
|
62 |
+
| SymbolOf | 0 | 0 | 2 | 596 |
|
63 |
+
| UsedFor | 249 | 1815 | 81 | 588 |
|
64 |
+
| SUM | 1795 | 35896 | 595 | 11305 |
|
65 |
+
|
66 |
+
### Citation Information
|
67 |
+
```
|
68 |
+
@InProceedings{P16-1137,
|
69 |
+
author = "Li, Xiang
|
70 |
+
and Taheri, Aynaz
|
71 |
+
and Tu, Lifu
|
72 |
+
and Gimpel, Kevin",
|
73 |
+
title = "Commonsense Knowledge Base Completion",
|
74 |
+
booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) ",
|
75 |
+
year = "2016",
|
76 |
+
publisher = "Association for Computational Linguistics",
|
77 |
+
pages = "1445--1455",
|
78 |
+
location = "Berlin, Germany",
|
79 |
+
doi = "10.18653/v1/P16-1137",
|
80 |
+
url = "http://aclweb.org/anthology/P16-1137"
|
81 |
+
}
|
82 |
+
```
|
augment_negative.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from glob import glob
|
3 |
+
from itertools import chain
|
4 |
+
|
5 |
+
for i in glob("dataset/*.jsonl"):
|
6 |
+
with open(i) as f:
|
7 |
+
tmp = [json.loads(o) for o in f.read().split('\n') if len(o) > 0]
|
8 |
+
for r in tmp:
|
9 |
+
r['negatives'] = r['negatives'] + list(
|
10 |
+
chain(*[o['positives'] for o in tmp if o['relation_type'] != r['relation_type']]))
|
11 |
+
with open(i, 'w') as f:
|
12 |
+
f.write('\n'.join([json.dumps(r) for r in tmp]))
|
conceptnet_high_confidence_v2.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import datasets
|
3 |
+
|
4 |
+
logger = datasets.logging.get_logger(__name__)
|
5 |
+
_DESCRIPTION = """[ConceptNet with high confidence](https://home.ttic.edu/~kgimpel/commonsense.html)"""
|
6 |
+
_NAME = "conceptnet_high_confidence"
|
7 |
+
_VERSION = "2.0.0"
|
8 |
+
_CITATION = """
|
9 |
+
@inproceedings{li-16,
|
10 |
+
title = {Commonsense Knowledge Base Completion},
|
11 |
+
author = {Xiang Li and Aynaz Taheri and Lifu Tu and Kevin Gimpel},
|
12 |
+
booktitle = {Proc. of ACL},
|
13 |
+
year = {2016}
|
14 |
+
}
|
15 |
+
@InProceedings{P16-1137,
|
16 |
+
author = "Li, Xiang
|
17 |
+
and Taheri, Aynaz
|
18 |
+
and Tu, Lifu
|
19 |
+
and Gimpel, Kevin",
|
20 |
+
title = "Commonsense Knowledge Base Completion",
|
21 |
+
booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) ",
|
22 |
+
year = "2016",
|
23 |
+
publisher = "Association for Computational Linguistics",
|
24 |
+
pages = "1445--1455",
|
25 |
+
location = "Berlin, Germany",
|
26 |
+
doi = "10.18653/v1/P16-1137",
|
27 |
+
url = "http://aclweb.org/anthology/P16-1137"
|
28 |
+
}
|
29 |
+
"""
|
30 |
+
|
31 |
+
_HOME_PAGE = "https://github.com/asahi417/relbert"
|
32 |
+
_URL = f'https://huggingface.co/datasets/relbert/{_NAME}/raw/main/dataset'
|
33 |
+
_URLS = {
|
34 |
+
str(datasets.Split.TRAIN): [f'{_URL}/train.jsonl'],
|
35 |
+
str(datasets.Split.VALIDATION): [f'{_URL}/valid.jsonl'],
|
36 |
+
"full": [f'{_URL}/valid.jsonl', f'{_URL}/train.jsonl'],
|
37 |
+
}
|
38 |
+
|
39 |
+
|
40 |
+
class ConceptNetHighConfidenceV2Config(datasets.BuilderConfig):
|
41 |
+
"""BuilderConfig"""
|
42 |
+
|
43 |
+
def __init__(self, **kwargs):
|
44 |
+
"""BuilderConfig.
|
45 |
+
Args:
|
46 |
+
**kwargs: keyword arguments forwarded to super.
|
47 |
+
"""
|
48 |
+
super(ConceptNetHighConfidenceV2Config, self).__init__(**kwargs)
|
49 |
+
|
50 |
+
|
51 |
+
class ConceptNetHighConfidenceV2(datasets.GeneratorBasedBuilder):
|
52 |
+
"""Dataset."""
|
53 |
+
|
54 |
+
BUILDER_CONFIGS = [
|
55 |
+
ConceptNetHighConfidenceV2Config(name=_NAME, version=datasets.Version(_VERSION), description=_DESCRIPTION),
|
56 |
+
]
|
57 |
+
|
58 |
+
def _split_generators(self, dl_manager):
|
59 |
+
downloaded_file = dl_manager.download_and_extract(_URLS)
|
60 |
+
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[i]}) for i in _URLS.keys()]
|
61 |
+
|
62 |
+
def _generate_examples(self, filepaths):
|
63 |
+
_key = 0
|
64 |
+
for filepath in filepaths:
|
65 |
+
logger.info(f"generating examples from = {filepath}")
|
66 |
+
with open(filepath, encoding="utf-8") as f:
|
67 |
+
_list = [i for i in f.read().split('\n') if len(i) > 0]
|
68 |
+
for i in _list:
|
69 |
+
data = json.loads(i)
|
70 |
+
yield _key, data
|
71 |
+
_key += 1
|
72 |
+
|
73 |
+
def _info(self):
|
74 |
+
return datasets.DatasetInfo(
|
75 |
+
description=_DESCRIPTION,
|
76 |
+
features=datasets.Features(
|
77 |
+
{
|
78 |
+
"relation_type": datasets.Value("string"),
|
79 |
+
"positives": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
|
80 |
+
"negatives": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
|
81 |
+
}
|
82 |
+
),
|
83 |
+
supervised_keys=None,
|
84 |
+
homepage=_HOME_PAGE,
|
85 |
+
citation=_CITATION,
|
86 |
+
)
|
dataset/train.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
dataset/valid.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
get_stats.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from datasets import load_dataset
|
3 |
+
|
4 |
+
data = load_dataset('relbert/conceptnet_high_confidence')
|
5 |
+
stats = []
|
6 |
+
for k in data.keys():
|
7 |
+
for i in data[k]:
|
8 |
+
stats.append({'relation_type': i['relation_type'], 'split': k, 'positives': len(i['positives']), 'negatives': len(i['negatives'])})
|
9 |
+
df = pd.DataFrame(stats)
|
10 |
+
df_train = df[df['split'] == 'train']
|
11 |
+
df_valid = df[df['split'] == 'validation']
|
12 |
+
stats = []
|
13 |
+
for r in df['relation_type'].unique():
|
14 |
+
_df_t = df_train[df_train['relation_type'] == r]
|
15 |
+
_df_v = df_valid[df_valid['relation_type'] == r]
|
16 |
+
stats.append({
|
17 |
+
'relation_type': r,
|
18 |
+
'positive (train)': 0 if len(_df_t) == 0 else _df_t['positives'].values[0],
|
19 |
+
'negative (train)': 0 if len(_df_t) == 0 else _df_t['negatives'].values[0],
|
20 |
+
'positive (validation)': 0 if len(_df_v) == 0 else _df_v['positives'].values[0],
|
21 |
+
'negative (validation)': 0 if len(_df_v) == 0 else _df_v['negatives'].values[0],
|
22 |
+
})
|
23 |
+
|
24 |
+
df = pd.DataFrame(stats).sort_values(by=['relation_type'])
|
25 |
+
df.index = df.pop('relation_type')
|
26 |
+
sum_pairs = df.sum(0)
|
27 |
+
df = df.T
|
28 |
+
df['SUM'] = sum_pairs
|
29 |
+
df = df.T
|
30 |
+
|
31 |
+
df.to_csv('stats.csv')
|
32 |
+
with open('stats.md', 'w') as f:
|
33 |
+
f.write(df.to_markdown())
|
34 |
+
|
35 |
+
|
process.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import gzip
|
4 |
+
import requests
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
urls = {
|
9 |
+
'dev1': 'https://home.ttic.edu/~kgimpel/comsense_resources/dev1.txt.gz',
|
10 |
+
'dev2': 'https://home.ttic.edu/~kgimpel/comsense_resources/dev2.txt.gz',
|
11 |
+
'test': 'https://home.ttic.edu/~kgimpel/comsense_resources/test.txt.gz'
|
12 |
+
}
|
13 |
+
exclude = ['NotCapable', 'NotDesires']
|
14 |
+
|
15 |
+
|
16 |
+
def wget(url, cache_dir: str = './cache'):
|
17 |
+
""" wget and uncompress data_iterator """
|
18 |
+
os.makedirs(cache_dir, exist_ok=True)
|
19 |
+
filename = os.path.basename(url)
|
20 |
+
path = f'{cache_dir}/{filename}'
|
21 |
+
if os.path.exists(path):
|
22 |
+
return path.replace('.gz', '')
|
23 |
+
with open(path, "wb") as f:
|
24 |
+
r = requests.get(url)
|
25 |
+
f.write(r.content)
|
26 |
+
with gzip.open(path, 'rb') as f:
|
27 |
+
with open(path.replace('.gz', ''), 'wb') as f_write:
|
28 |
+
f_write.write(f.read())
|
29 |
+
os.remove(path)
|
30 |
+
return path.replace('.gz', '')
|
31 |
+
|
32 |
+
|
33 |
+
def read_file(file_name):
|
34 |
+
with open(file_name) as f_reader:
|
35 |
+
df = pd.DataFrame([i.split('\t') for i in f_reader.read().split('\n') if len(i) > 0],
|
36 |
+
columns=['relation', 'head', 'tail', 'flag'])
|
37 |
+
df_positive = df[df['flag'] == '1']
|
38 |
+
df_negative = df[df['flag'] == '0']
|
39 |
+
df_positive.pop('flag')
|
40 |
+
df_negative.pop('flag')
|
41 |
+
return df_positive, df_negative
|
42 |
+
|
43 |
+
|
44 |
+
if __name__ == '__main__':
|
45 |
+
test_p, test_n = read_file(wget(urls['test']))
|
46 |
+
dev1_p, dev1_n = read_file(wget(urls['dev1']))
|
47 |
+
train_p = pd.concat([test_p, dev1_p])
|
48 |
+
train_n = pd.concat([test_n, dev1_n])
|
49 |
+
with open(f'dataset/train.jsonl', 'w') as f:
|
50 |
+
for relation, df_p in train_p.groupby('relation'):
|
51 |
+
if len(df_p) < 2:
|
52 |
+
continue
|
53 |
+
if relation in exclude:
|
54 |
+
continue
|
55 |
+
df_n = train_n[train_n['relation'] == relation]
|
56 |
+
f.write(json.dumps({
|
57 |
+
'relation_type': relation,
|
58 |
+
'positives': df_p[['head', 'tail']].to_numpy().tolist(),
|
59 |
+
'negatives': df_n[['head', 'tail']].to_numpy().tolist()
|
60 |
+
}) + '\n')
|
61 |
+
|
62 |
+
dev2_p, dev2_n = read_file(wget(urls['dev2']))
|
63 |
+
with open(f'dataset/valid.jsonl', 'w') as f:
|
64 |
+
for relation, df_p in dev2_p.groupby('relation'):
|
65 |
+
if len(df_p) < 2:
|
66 |
+
continue
|
67 |
+
if relation in exclude:
|
68 |
+
continue
|
69 |
+
df_n = dev2_n[dev2_n['relation'] == relation]
|
70 |
+
f.write(json.dumps({
|
71 |
+
'relation_type': relation,
|
72 |
+
'positives': df_p[['head', 'tail']].to_numpy().tolist(),
|
73 |
+
'negatives': df_n[['head', 'tail']].to_numpy().tolist()
|
74 |
+
}) + '\n')
|
stats.csv
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
relation_type,positive (train),negative (train),positive (validation),negative (validation)
|
2 |
+
AtLocation,383,1768,97,578
|
3 |
+
CapableOf,195,1790,73,600
|
4 |
+
Causes,71,1797,26,595
|
5 |
+
CausesDesire,9,1793,11,595
|
6 |
+
CreatedBy,2,1796,0,0
|
7 |
+
DefinedAs,0,0,2,595
|
8 |
+
Desires,16,1794,12,595
|
9 |
+
HasA,67,1814,17,595
|
10 |
+
HasFirstSubevent,2,1796,0,0
|
11 |
+
HasLastSubevent,2,1796,3,593
|
12 |
+
HasPrerequisite,168,1803,57,592
|
13 |
+
HasProperty,94,1801,39,605
|
14 |
+
HasSubevent,125,1798,40,609
|
15 |
+
IsA,310,1764,98,603
|
16 |
+
MadeOf,17,1793,7,593
|
17 |
+
MotivatedByGoal,14,1796,11,595
|
18 |
+
NotCapableOf,15,1793,0,0
|
19 |
+
NotDesires,4,1795,4,592
|
20 |
+
PartOf,34,1801,7,593
|
21 |
+
ReceivesAction,18,1793,8,593
|
22 |
+
SymbolOf,0,0,2,596
|
23 |
+
UsedFor,249,1815,81,588
|
24 |
+
SUM,1795,35896,595,11305
|
stats.md
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
| relation_type | positive (train) | negative (train) | positive (validation) | negative (validation) |
|
2 |
+
|:-----------------|-------------------:|-------------------:|------------------------:|------------------------:|
|
3 |
+
| AtLocation | 383 | 1768 | 97 | 578 |
|
4 |
+
| CapableOf | 195 | 1790 | 73 | 600 |
|
5 |
+
| Causes | 71 | 1797 | 26 | 595 |
|
6 |
+
| CausesDesire | 9 | 1793 | 11 | 595 |
|
7 |
+
| CreatedBy | 2 | 1796 | 0 | 0 |
|
8 |
+
| DefinedAs | 0 | 0 | 2 | 595 |
|
9 |
+
| Desires | 16 | 1794 | 12 | 595 |
|
10 |
+
| HasA | 67 | 1814 | 17 | 595 |
|
11 |
+
| HasFirstSubevent | 2 | 1796 | 0 | 0 |
|
12 |
+
| HasLastSubevent | 2 | 1796 | 3 | 593 |
|
13 |
+
| HasPrerequisite | 168 | 1803 | 57 | 592 |
|
14 |
+
| HasProperty | 94 | 1801 | 39 | 605 |
|
15 |
+
| HasSubevent | 125 | 1798 | 40 | 609 |
|
16 |
+
| IsA | 310 | 1764 | 98 | 603 |
|
17 |
+
| MadeOf | 17 | 1793 | 7 | 593 |
|
18 |
+
| MotivatedByGoal | 14 | 1796 | 11 | 595 |
|
19 |
+
| NotCapableOf | 15 | 1793 | 0 | 0 |
|
20 |
+
| NotDesires | 4 | 1795 | 4 | 592 |
|
21 |
+
| PartOf | 34 | 1801 | 7 | 593 |
|
22 |
+
| ReceivesAction | 18 | 1793 | 8 | 593 |
|
23 |
+
| SymbolOf | 0 | 0 | 2 | 596 |
|
24 |
+
| UsedFor | 249 | 1815 | 81 | 588 |
|
25 |
+
| SUM | 1795 | 35896 | 595 | 11305 |
|