|
import json |
|
import os |
|
import gzip |
|
import requests |
|
|
|
import pandas as pd |
|
|
|
urls = { |
|
'dev1': 'https://home.ttic.edu/~kgimpel/comsense_resources/dev1.txt.gz', |
|
'dev2': 'https://home.ttic.edu/~kgimpel/comsense_resources/dev2.txt.gz', |
|
'test': 'https://home.ttic.edu/~kgimpel/comsense_resources/test.txt.gz', |
|
'train': "https://home.ttic.edu/~kgimpel/comsense_resources/train600k.txt.gz" |
|
} |
|
os.makedirs("dataset", exist_ok=True) |
|
|
|
|
|
def wget(url, cache_dir: str = './cache'): |
|
""" wget and uncompress data_iterator """ |
|
os.makedirs(cache_dir, exist_ok=True) |
|
filename = os.path.basename(url) |
|
path = f'{cache_dir}/{filename}' |
|
if os.path.exists(path): |
|
return path.replace('.gz', '') |
|
with open(path, "wb") as f_: |
|
r = requests.get(url) |
|
f_.write(r.content) |
|
with gzip.open(path, 'rb') as f_: |
|
with open(path.replace('.gz', ''), 'wb') as f_write: |
|
f_write.write(f_.read()) |
|
os.remove(path) |
|
return path.replace('.gz', '') |
|
|
|
|
|
def read_file(file_name): |
|
with open(file_name) as f_reader: |
|
df = pd.DataFrame([i.split('\t') for i in f_reader.read().split('\n') if len(i) > 0], columns=['relation', 'head', 'tail', 'flag']) |
|
df = df[[not i.startswith("Not") for i in df.relation]] |
|
df_positive = df[df['flag'] != '0'] |
|
df_negative = df[df['flag'] == '0'] |
|
df_positive.pop('flag') |
|
df_negative.pop('flag') |
|
return df_positive, df_negative |
|
|
|
|
|
if __name__ == '__main__': |
|
test_p, test_n = read_file(wget(urls['test'])) |
|
dev1_p, dev1_n = read_file(wget(urls['dev1'])) |
|
dev2_p, dev2_n = read_file(wget(urls['dev2'])) |
|
train_p, _ = read_file(wget(urls['train'])) |
|
|
|
with open(f'dataset/test.jsonl', 'w') as f: |
|
for relation, df_p in test_p.groupby('relation'): |
|
if len(df_p) < 2: |
|
continue |
|
df_n = test_n[test_n['relation'] == relation] |
|
f.write(json.dumps({ |
|
'relation_type': relation, |
|
'positives': df_p[['head', 'tail']].to_numpy().tolist(), |
|
'negatives': df_n[['head', 'tail']].to_numpy().tolist() |
|
}) + '\n') |
|
|
|
with open(f'dataset/train.jsonl', 'w') as f: |
|
for relation, df_p in train_p.groupby('relation'): |
|
if len(df_p) < 2: |
|
continue |
|
f.write(json.dumps({ |
|
'relation_type': relation, |
|
'positives': df_p[['head', 'tail']].to_numpy().tolist(), |
|
'negatives': [] |
|
}) + '\n') |
|
|
|
with open(f'dataset/valid.jsonl', 'w') as f: |
|
for relation, df_p in dev1_p.groupby('relation'): |
|
if len(df_p) < 2: |
|
continue |
|
df_n = dev1_n[dev1_n['relation'] == relation] |
|
f.write(json.dumps({ |
|
'relation_type': relation, |
|
'positives': df_p[['head', 'tail']].to_numpy().tolist(), |
|
'negatives': df_n[['head', 'tail']].to_numpy().tolist() |
|
}) + '\n') |
|
for relation, df_p in dev2_p.groupby('relation'): |
|
if len(df_p) < 2: |
|
continue |
|
df_n = dev2_n[dev2_n['relation'] == relation] |
|
f.write(json.dumps({ |
|
'relation_type': relation, |
|
'positives': df_p[['head', 'tail']].to_numpy().tolist(), |
|
'negatives': df_n[['head', 'tail']].to_numpy().tolist() |
|
}) + '\n') |
|
|
|
|