|
import json |
|
import os |
|
from itertools import combinations |
|
from random import shuffle, seed |
|
|
|
import pandas as pd |
|
from datasets import load_dataset |
|
|
|
|
|
def get_stats(filename): |
|
with open(filename) as f: |
|
_data = [json.loads(i) for i in f.read().splitlines()] |
|
return len(_data), list(set([len(i['choice']) for i in _data])), len(list(set([i['prefix'] for i in _data]))) |
|
|
|
|
|
def lexical_overlap(word_a, word_b): |
|
for a in word_a.split(" "): |
|
for b in word_b.split(" "): |
|
if a.lower() == b.lower(): |
|
return True |
|
return False |
|
|
|
|
|
def create_analogy(_data, output_path, negative_per_relation, instance_per_relation=100): |
|
|
|
|
|
df = _data.to_pandas() |
|
analogy_data = [] |
|
for _, i in df.iterrows(): |
|
target = [(q.tolist(), c.tolist()) for q, c in combinations(i['positives'], 2) |
|
if not any(lexical_overlap(c[0], y) or lexical_overlap(c[1], y) for y in q)] |
|
if len(target) == 0: |
|
continue |
|
if len(target) > instance_per_relation: |
|
seed(42) |
|
shuffle(target) |
|
target = target[:instance_per_relation] |
|
for m, (q, c) in enumerate(target): |
|
negative = [] |
|
for r in df['relation_type']: |
|
if r == i['relation_type']: |
|
continue |
|
target_per_relation = [y.tolist() for y in df[df['relation_type'] == r]['positives'].values[0]] |
|
shuffle(target_per_relation) |
|
negative += target_per_relation[:negative_per_relation] |
|
analogy_data.append({ |
|
"stem": q, |
|
"choice": [c, c[::-1]] + negative, |
|
"answer": 0, |
|
"prefix": i["relation_type"] |
|
}) |
|
os.makedirs(os.path.dirname(output_path), exist_ok=True) |
|
with open(output_path, "w") as f: |
|
f.write("\n".join([json.dumps(i) for i in analogy_data])) |
|
|
|
stat = [] |
|
|
|
|
|
|
|
if not os.path.exists("dataset/semeval2012_relational_similarity/valid.jsonl"): |
|
data = load_dataset("relbert/semeval2012_relational_similarity", split="validation") |
|
analogy_data = [{ |
|
"stem": i['positives'][0], "choice": i["negatives"] + [i['positives'][1]], "answer": 2, "prefix": i["relation_type"] |
|
} for i in data] |
|
os.makedirs("dataset/semeval2012_relational_similarity", exist_ok=True) |
|
with open("dataset/semeval2012_relational_similarity/valid.jsonl", "w") as f: |
|
f.write("\n".join([json.dumps(i) for i in analogy_data])) |
|
|
|
v_size, v_num_choice, v_relation_type = get_stats("dataset/semeval2012_relational_similarity/valid.jsonl") |
|
stat.append({ |
|
"name": "`semeval2012_relational_similarity`", |
|
"Size (valid/test)": f"{v_size}/-", |
|
"Num of choice (valid/test)": f"{','.join([str(n) for n in v_num_choice])}/-", |
|
"Num of relation group (valid/test)": f"{v_relation_type}/-", |
|
"Original Reference": "[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity)" |
|
}) |
|
|
|
|
|
|
|
|
|
|
|
data = load_dataset("relbert/t_rex_relational_similarity", "filter_unified.min_entity_1_max_predicate_100", split="test") |
|
create_analogy(data, "dataset/t_rex_relational_similarity/test.jsonl", negative_per_relation=2) |
|
data = load_dataset("relbert/t_rex_relational_similarity", "filter_unified.min_entity_4_max_predicate_100", split="validation") |
|
create_analogy(data, "dataset/t_rex_relational_similarity/valid.jsonl", negative_per_relation=1) |
|
|
|
t_size, t_num_choice, t_relation_type = get_stats("dataset/t_rex_relational_similarity/test.jsonl") |
|
v_size, v_num_choice, v_relation_type = get_stats("dataset/t_rex_relational_similarity/valid.jsonl") |
|
stat.append({ |
|
"name": "`t_rex_relational_similarity`", |
|
"Size (valid/test)": f"{v_size}/{t_size}", |
|
"Num of choice (valid/test)": f"{','.join([str(n) for n in v_num_choice])}/{','.join([str(n) for n in t_num_choice])}", |
|
"Num of relation group (valid/test)": f"{v_relation_type}/{t_relation_type}", |
|
"Original Reference": "[relbert/t_rex_relational_similarity](https://huggingface.co/datasets/relbert/t_rex_relational_similarity)" |
|
}) |
|
|
|
|
|
|
|
|
|
data = load_dataset("relbert/conceptnet_relational_similarity", split="test") |
|
create_analogy(data, "dataset/conceptnet_relational_similarity/test.jsonl", negative_per_relation=1) |
|
data = load_dataset("relbert/conceptnet_relational_similarity", split="validation") |
|
create_analogy(data, "dataset/conceptnet_relational_similarity/valid.jsonl", negative_per_relation=1) |
|
t_size, t_num_choice, t_relation_type = get_stats("dataset/conceptnet_relational_similarity/test.jsonl") |
|
v_size, v_num_choice, v_relation_type = get_stats("dataset/conceptnet_relational_similarity/valid.jsonl") |
|
stat.append({ |
|
"name": "`conceptnet_relational_similarity`", |
|
"Size (valid/test)": f"{v_size}/{t_size}", |
|
"Num of choice (valid/test)": f"{','.join([str(n) for n in v_num_choice])}/{','.join([str(n) for n in t_num_choice])}", |
|
"Num of relation group (valid/test)": f"{v_relation_type}/{t_relation_type}", |
|
"Original Reference": "[relbert/conceptnet_relational_similarity](https://huggingface.co/datasets/relbert/conceptnet_relational_similarity)" |
|
}) |
|
|
|
|
|
|
|
|
|
data = load_dataset("relbert/nell_relational_similarity", split="test") |
|
create_analogy(data, "dataset/nell_relational_similarity/test.jsonl", negative_per_relation=1) |
|
data = load_dataset("relbert/nell_relational_similarity", split="validation") |
|
create_analogy(data, "dataset/nell_relational_similarity/valid.jsonl", negative_per_relation=1) |
|
t_size, t_num_choice, t_relation_type = get_stats("dataset/nell_relational_similarity/test.jsonl") |
|
v_size, v_num_choice, v_relation_type = get_stats("dataset/nell_relational_similarity/valid.jsonl") |
|
stat.append({ |
|
"name": "`nell_relational_similarity`", |
|
"Size (valid/test)": f"{v_size}/{t_size}", |
|
"Num of choice (valid/test)": f"{','.join([str(n) for n in v_num_choice])}/{','.join([str(n) for n in t_num_choice])}", |
|
"Num of relation group (valid/test)": f"{v_relation_type}/{t_relation_type}", |
|
"Original Reference": "[relbert/nell_relational_similarity](https://huggingface.co/datasets/relbert/nell_relational_similarity)" |
|
}) |
|
print(pd.DataFrame(stat).to_markdown(index=False)) |
|
|