|
import json |
|
import os |
|
from itertools import combinations |
|
from random import shuffle, seed |
|
from datasets import load_dataset |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data = load_dataset("relbert/t_rex_relation_similarity", "filter_unified.min_entity_1_max_predicate_100", split="test") |
|
analogy_data = [] |
|
for i in data: |
|
if len(i['positives']) < 2: |
|
continue |
|
for m, (q, c) in enumerate(combinations(i['positives'], 2)): |
|
if m > 5: |
|
break |
|
negative = i['negatives'] |
|
for n in range(6): |
|
seed(n) |
|
shuffle(negative) |
|
analogy_data.append({ |
|
"stem": q, "choice": [c] + negative[:5], "answer": 0, "prefix": i["relation_type"] |
|
}) |
|
os.makedirs("dataset/t_rex_relation_similarity", exist_ok=True) |
|
with open("dataset/t_rex_relation_similarity/test.jsonl", "w") as f: |
|
f.write("\n".join([json.dumps(i) for i in analogy_data])) |
|
|
|
data = load_dataset("relbert/t_rex_relation_similarity", "filter_unified.min_entity_4_max_predicate_100", split="validation") |
|
analogy_data = [] |
|
for i in data: |
|
if len(i['positives']) < 5: |
|
continue |
|
for m, (q, c) in enumerate(combinations(i['positives'], 2)): |
|
if m > 5: |
|
break |
|
negative = i['negatives'] |
|
for n in range(3): |
|
seed(n) |
|
shuffle(negative) |
|
analogy_data.append({ |
|
"stem": q, "choice": [c] + negative[:5], "answer": 0, "prefix": i["relation_type"] |
|
}) |
|
os.makedirs("dataset/t_rex_relation_similarity", exist_ok=True) |
|
with open("dataset/t_rex_relation_similarity/valid.jsonl", "w") as f: |
|
f.write("\n".join([json.dumps(i) for i in analogy_data])) |
|
|