language
stringclasses
1 value
repo
stringclasses
346 values
path
stringlengths
6
201
class_span
dict
source
stringlengths
21
2.38M
target
stringlengths
1
96
python
getsentry__sentry
tests/sentry/notifications/api/endpoints/test_user_notification_settings_options_details.py
{ "start": 363, "end": 515 }
class ____(APITestCase): endpoint = "sentry-api-0-user-notification-options-details" @control_silo_test
UserNotificationSettingsOptionsDetailsBaseTest
python
huggingface__transformers
src/transformers/models/patchtsmixer/modeling_patchtsmixer.py
{ "start": 16162, "end": 17257 }
class ____(nn.Module): """ The `PatchTSMixer` layer that does all three kinds of mixing. Args: config (`PatchTSMixerConfig`): Configuration. """ def __init__(self, config: PatchTSMixerConfig): super().__init__() self.patch_mixer = PatchMixerBlock(config=config) self.feature_mixer = FeatureMixerBlock(config=config) self.mode = config.mode if config.mode == "mix_channel": self.channel_feature_mixer = PatchTSMixerChannelFeatureMixerBlock(config=config) def forward(self, hidden: torch.Tensor): """ Args: hidden (`torch.Tensor` of shape `(batch_size, num_patches, d_model)`): Input tensor to the layer. Returns: `torch.Tensor`: Transformed tensor. """ if self.mode == "mix_channel": hidden = self.channel_feature_mixer(hidden) hidden = self.patch_mixer(hidden) hidden = self.feature_mixer(hidden) # hidden: (batch_size x num_patches x d_model) return hidden
PatchTSMixerLayer
python
astropy__astropy
astropy/table/tests/conftest.py
{ "start": 1285, "end": 1343 }
class ____(pprint.TableFormatter): pass
MyTableFormatter
python
tensorflow__tensorflow
tensorflow/python/data/experimental/kernel_tests/make_csv_dataset_test.py
{ "start": 1301, "end": 27096 }
class ____(test_base.DatasetTestBase, parameterized.TestCase): def _make_csv_dataset(self, filenames, batch_size, num_epochs=1, **kwargs): return readers.make_csv_dataset( filenames, batch_size=batch_size, num_epochs=num_epochs, **kwargs) def _setup_files(self, inputs, linebreak="\n", compression_type=None, encoding="utf-8"): filenames = [] for i, ip in enumerate(inputs): fn = os.path.join(self.get_temp_dir(), "temp_%d.csv" % i) contents = linebreak.join(ip).encode(encoding) if compression_type is None: with open(fn, "wb") as f: f.write(contents) elif compression_type == "GZIP": with gzip.GzipFile(fn, "wb") as f: f.write(contents) elif compression_type == "ZLIB": contents = zlib.compress(contents) with open(fn, "wb") as f: f.write(contents) else: raise ValueError("Unsupported compression_type", compression_type) filenames.append(fn) return filenames def _next_expected_batch(self, expected_output, expected_keys, batch_size, num_epochs): features = {k: [] for k in expected_keys} for _ in range(num_epochs): for values in expected_output: for n, key in enumerate(expected_keys): features[key].append(values[n]) if len(features[expected_keys[0]]) == batch_size: yield features features = {k: [] for k in expected_keys} if features[expected_keys[0]]: # Leftover from the last batch yield features def _verify_output( self, dataset, batch_size, num_epochs, label_name, expected_output, expected_keys, ): get_next = self.getNext(dataset) for expected_features in self._next_expected_batch( expected_output, expected_keys, batch_size, num_epochs, ): actual_features = self.evaluate(get_next()) if label_name is not None: expected_labels = expected_features.pop(label_name) self.assertAllEqual(expected_labels, actual_features[1]) actual_features = actual_features[0] for k in expected_features.keys(): # Compare features self.assertAllEqual(expected_features[k], actual_features[k]) with self.assertRaises(errors.OutOfRangeError): self.evaluate(get_next()) def _test_dataset(self, inputs, expected_output, expected_keys, batch_size=1, num_epochs=1, label_name=None, encoding="utf-8", **kwargs): """Checks that elements produced by CsvDataset match expected output.""" # Convert str type because py3 tf strings are bytestrings filenames = self._setup_files( inputs, compression_type=kwargs.get("compression_type", None), encoding=encoding) dataset = self._make_csv_dataset( filenames, batch_size=batch_size, num_epochs=num_epochs, label_name=label_name, encoding=encoding, **kwargs) self._verify_output(dataset, batch_size, num_epochs, label_name, expected_output, expected_keys) @combinations.generate(test_base.default_test_combinations()) def testBasic(self): """Tests making a CSV dataset with keys and defaults provided.""" record_defaults = [ constant_op.constant([], dtypes.int32), constant_op.constant([], dtypes.int64), constant_op.constant([], dtypes.float32), constant_op.constant([], dtypes.float64), constant_op.constant([], dtypes.string) ] column_names = ["col%d" % i for i in range(5)] inputs = [[",".join(x for x in column_names), "0,1,2,3,4", "5,6,7,8,9"], [ ",".join(x for x in column_names), "10,11,12,13,14", "15,16,17,18,19" ]] expected_output = [[0, 1, 2, 3, b"4"], [5, 6, 7, 8, b"9"], [10, 11, 12, 13, b"14"], [15, 16, 17, 18, b"19"]] label = "col0" self._test_dataset( inputs, expected_output=expected_output, expected_keys=column_names, column_names=column_names, label_name=label, batch_size=1, num_epochs=1, shuffle=False, header=True, column_defaults=record_defaults, ) @combinations.generate(test_base.default_test_combinations()) def testEncoding(self): """Tests making a CSV dataset with an encoding except for utf-8.""" record_defaults = [ constant_op.constant([], dtypes.string), constant_op.constant([], dtypes.string) ] column_names = ["col%d" % i for i in range(2)] inputs = [[",".join(x for x in column_names), "さる,猿", "とり,鳥"], [",".join(x for x in column_names), "いぬ,犬", "ねこ,猫"]] expected_output = [["さる".encode("shift-jis"), "猿".encode("shift-jis")], ["とり".encode("shift-jis"), "鳥".encode("shift-jis")], ["いぬ".encode("shift-jis"), "犬".encode("shift-jis")], ["ねこ".encode("shift-jis"), "猫".encode("shift-jis")]] label = "col0" self._test_dataset( inputs, expected_output=expected_output, expected_keys=column_names, column_names=column_names, label_name=label, batch_size=1, num_epochs=1, shuffle=False, header=True, column_defaults=record_defaults, encoding="shift-jis", ) @combinations.generate(test_base.default_test_combinations()) def testWithBatchSizeAndEpochs(self): """Tests making a CSV dataset with keys and defaults provided.""" record_defaults = [ constant_op.constant([], dtypes.int32), constant_op.constant([], dtypes.int64), constant_op.constant([], dtypes.float32), constant_op.constant([], dtypes.float64), constant_op.constant([], dtypes.string) ] column_names = ["col%d" % i for i in range(5)] inputs = [[",".join(x for x in column_names), "0,1,2,3,4", "5,6,7,8,9"], [ ",".join(x for x in column_names), "10,11,12,13,14", "15,16,17,18,19" ]] expected_output = [[0, 1, 2, 3, b"4"], [5, 6, 7, 8, b"9"], [10, 11, 12, 13, b"14"], [15, 16, 17, 18, b"19"]] label = "col0" self._test_dataset( inputs, expected_output=expected_output, expected_keys=column_names, column_names=column_names, label_name=label, batch_size=3, num_epochs=10, shuffle=False, header=True, column_defaults=record_defaults, ) @combinations.generate(test_base.default_test_combinations()) def testWithCompressionType(self): """Tests `compression_type` argument.""" record_defaults = [ constant_op.constant([], dtypes.int32), constant_op.constant([], dtypes.int64), constant_op.constant([], dtypes.float32), constant_op.constant([], dtypes.float64), constant_op.constant([], dtypes.string) ] column_names = ["col%d" % i for i in range(5)] inputs = [[",".join(x for x in column_names), "0,1,2,3,4", "5,6,7,8,9"], [ ",".join(x for x in column_names), "10,11,12,13,14", "15,16,17,18,19" ]] expected_output = [[0, 1, 2, 3, b"4"], [5, 6, 7, 8, b"9"], [10, 11, 12, 13, b"14"], [15, 16, 17, 18, b"19"]] label = "col0" for compression_type in ("GZIP", "ZLIB"): self._test_dataset( inputs, expected_output=expected_output, expected_keys=column_names, column_names=column_names, label_name=label, batch_size=1, num_epochs=1, shuffle=False, header=True, column_defaults=record_defaults, compression_type=compression_type, ) @combinations.generate(test_base.default_test_combinations()) def testWithCompressionTypeAndNoColumnNames(self): """Tests `compression_type` argument.""" record_defaults = [ constant_op.constant([], dtypes.int32), constant_op.constant([], dtypes.int64), constant_op.constant([], dtypes.float32), constant_op.constant([], dtypes.float64), constant_op.constant([], dtypes.string) ] column_names = ["col%d" % i for i in range(5)] inputs = [[",".join(x for x in column_names), "0,1,2,3,4", "5,6,7,8,9"], [ ",".join(x for x in column_names), "10,11,12,13,14", "15,16,17,18,19" ]] expected_output = [[0, 1, 2, 3, b"4"], [5, 6, 7, 8, b"9"], [10, 11, 12, 13, b"14"], [15, 16, 17, 18, b"19"]] label = "col0" self._test_dataset( inputs, expected_output=expected_output, expected_keys=column_names, label_name=label, batch_size=1, num_epochs=1, shuffle=False, header=True, column_defaults=record_defaults, compression_type="GZIP", ) with self.assertRaisesRegex(ValueError, "`compression_type` ZLIB is not supported"): self._test_dataset( inputs, expected_output=expected_output, expected_keys=column_names, label_name=label, batch_size=1, num_epochs=1, shuffle=False, header=True, column_defaults=record_defaults, compression_type="ZLIB", ) @combinations.generate(test_base.default_test_combinations()) def testWithBadInputs(self): """Tests that exception is raised when input is malformed. """ record_defaults = [ constant_op.constant([], dtypes.int32), constant_op.constant([], dtypes.int64), constant_op.constant([], dtypes.float32), constant_op.constant([], dtypes.float64), constant_op.constant([], dtypes.string) ] column_names = ["col%d" % i for i in range(5)] inputs = [[",".join(x for x in column_names), "0,1,2,3,4", "5,6,7,8,9"], [ ",".join(x for x in column_names), "10,11,12,13,14", "15,16,17,18,19" ]] filenames = self._setup_files(inputs) # Duplicate column names with self.assertRaises(ValueError): self._make_csv_dataset( filenames, batch_size=1, column_defaults=record_defaults, label_name="col0", column_names=column_names * 2) # Label key not one of column names with self.assertRaises(ValueError): self._make_csv_dataset( filenames, batch_size=1, column_defaults=record_defaults, label_name="not_a_real_label", column_names=column_names) @combinations.generate(test_base.default_test_combinations()) def testWithNoLabel(self): """Tests making a CSV dataset with no label provided.""" record_defaults = [ constant_op.constant([], dtypes.int32), constant_op.constant([], dtypes.int64), constant_op.constant([], dtypes.float32), constant_op.constant([], dtypes.float64), constant_op.constant([], dtypes.string) ] column_names = ["col%d" % i for i in range(5)] inputs = [[",".join(x for x in column_names), "0,1,2,3,4", "5,6,7,8,9"], [ ",".join(x for x in column_names), "10,11,12,13,14", "15,16,17,18,19" ]] expected_output = [[0, 1, 2, 3, b"4"], [5, 6, 7, 8, b"9"], [10, 11, 12, 13, b"14"], [15, 16, 17, 18, b"19"]] self._test_dataset( inputs, expected_output=expected_output, expected_keys=column_names, column_names=column_names, batch_size=1, num_epochs=1, shuffle=False, header=True, column_defaults=record_defaults, ) @combinations.generate(test_base.default_test_combinations()) def testWithNoHeader(self): """Tests that datasets can be created from CSV files with no header line. """ record_defaults = [ constant_op.constant([], dtypes.int32), constant_op.constant([], dtypes.int64), constant_op.constant([], dtypes.float32), constant_op.constant([], dtypes.float64), constant_op.constant([], dtypes.string) ] column_names = ["col%d" % i for i in range(5)] inputs = [["0,1,2,3,4", "5,6,7,8,9"], ["10,11,12,13,14", "15,16,17,18,19"]] expected_output = [[0, 1, 2, 3, b"4"], [5, 6, 7, 8, b"9"], [10, 11, 12, 13, b"14"], [15, 16, 17, 18, b"19"]] label = "col0" self._test_dataset( inputs, expected_output=expected_output, expected_keys=column_names, column_names=column_names, label_name=label, batch_size=1, num_epochs=1, shuffle=False, header=False, column_defaults=record_defaults, ) @combinations.generate(test_base.default_test_combinations()) def testWithTypes(self): """Tests that defaults can be a dtype instead of a Tensor for required vals. """ record_defaults = [ dtypes.int32, dtypes.int64, dtypes.float32, dtypes.float64, dtypes.string ] column_names = ["col%d" % i for i in range(5)] inputs = [[",".join(x[0] for x in column_names), "0,1,2,3,4", "5,6,7,8,9"], [ ",".join(x[0] for x in column_names), "10,11,12,13,14", "15,16,17,18,19" ]] expected_output = [[0, 1, 2, 3, b"4"], [5, 6, 7, 8, b"9"], [10, 11, 12, 13, b"14"], [15, 16, 17, 18, b"19"]] label = "col0" self._test_dataset( inputs, expected_output=expected_output, expected_keys=column_names, column_names=column_names, label_name=label, batch_size=1, num_epochs=1, shuffle=False, header=True, column_defaults=record_defaults, ) @combinations.generate(test_base.default_test_combinations()) def testWithNoColNames(self): """Tests that datasets can be created when column names are not specified. In that case, we should infer the column names from the header lines. """ record_defaults = [ constant_op.constant([], dtypes.int32), constant_op.constant([], dtypes.int64), constant_op.constant([], dtypes.float32), constant_op.constant([], dtypes.float64), constant_op.constant([], dtypes.string) ] column_names = ["col%d" % i for i in range(5)] inputs = [[",".join(x for x in column_names), "0,1,2,3,4", "5,6,7,8,9"], [ ",".join(x for x in column_names), "10,11,12,13,14", "15,16,17,18,19" ]] expected_output = [[0, 1, 2, 3, b"4"], [5, 6, 7, 8, b"9"], [10, 11, 12, 13, b"14"], [15, 16, 17, 18, b"19"]] label = "col0" self._test_dataset( inputs, expected_output=expected_output, expected_keys=column_names, label_name=label, batch_size=1, num_epochs=1, shuffle=False, header=True, column_defaults=record_defaults, ) @combinations.generate(test_base.default_test_combinations()) def testWithTypeInferenceMismatch(self): # Test that error is thrown when num fields doesn't match columns column_names = ["col%d" % i for i in range(5)] inputs = [[",".join(x for x in column_names), "0,1,2,3,4", "5,6,7,8,9"], [ ",".join(x for x in column_names), "10,11,12,13,14", "15,16,17,18,19" ]] filenames = self._setup_files(inputs) with self.assertRaises(ValueError): self._make_csv_dataset( filenames, column_names=column_names + ["extra_name"], column_defaults=None, batch_size=2, num_epochs=10) @combinations.generate(test_base.default_test_combinations()) def testWithTypeInference(self): """Tests that datasets can be created when no defaults are specified. In that case, we should infer the types from the first N records. """ column_names = ["col%d" % i for i in range(5)] str_int32_max = str(2**33) inputs = [[ ",".join(x for x in column_names), "0,%s,2.0,3e50,rabbit" % str_int32_max ]] expected_output = [[0, 2**33, 2.0, 3e50, b"rabbit"]] label = "col0" self._test_dataset( inputs, expected_output=expected_output, expected_keys=column_names, column_names=column_names, label_name=label, batch_size=1, num_epochs=1, shuffle=False, header=True, ) @combinations.generate(test_base.default_test_combinations()) def testWithTypeInferenceFallthrough(self): """Tests that datasets can be created when no defaults are specified. Tests on a deliberately tricky file. """ column_names = ["col%d" % i for i in range(5)] str_int32_max = str(2**33) inputs = [[ ",".join(x for x in column_names), ",,,,", "0,0,0.0,0.0,0.0", "0,%s,2.0,3e50,rabbit" % str_int32_max, ",,,,", ]] expected_output = [[0, 0, 0, 0, b""], [0, 0, 0, 0, b"0.0"], [0, 2**33, 2.0, 3e50, b"rabbit"], [0, 0, 0, 0, b""]] label = "col0" self._test_dataset( inputs, expected_output=expected_output, expected_keys=column_names, column_names=column_names, label_name=label, batch_size=1, num_epochs=1, shuffle=False, header=True, ) @combinations.generate(test_base.default_test_combinations()) def testWithNAValuesAndFieldDelim(self): """Tests that datasets can be created from different delim and na_value.""" column_names = ["col%d" % i for i in range(5)] inputs = [["0 1 2 3 4", "5 6 7 8 9"], ["10 11 12 13 14", "15 16 17 ? 19"]] expected_output = [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 0, 19]] label = "col0" self._test_dataset( inputs, expected_output=expected_output, expected_keys=column_names, column_names=column_names, label_name=label, batch_size=1, num_epochs=1, shuffle=False, header=False, na_value="?", field_delim=" ", ) @combinations.generate(test_base.default_test_combinations()) def testWithSelectCols(self): record_defaults = [ constant_op.constant([], dtypes.int32), constant_op.constant([], dtypes.int64), constant_op.constant([], dtypes.float32), constant_op.constant([], dtypes.float64), constant_op.constant([], dtypes.string) ] column_names = ["col%d" % i for i in range(5)] str_int32_max = str(2**33) inputs = [[ ",".join(x for x in column_names), "0,%s,2.0,3e50,rabbit" % str_int32_max ]] expected_output = [[0, 2**33, 2.0, 3e50, b"rabbit"]] select_cols = [1, 3, 4] self._test_dataset( inputs, expected_output=[[x[i] for i in select_cols] for x in expected_output], expected_keys=[column_names[i] for i in select_cols], column_names=column_names, column_defaults=[record_defaults[i] for i in select_cols], batch_size=1, num_epochs=1, shuffle=False, header=True, select_columns=select_cols, ) # Can still do inference without provided defaults self._test_dataset( inputs, expected_output=[[x[i] for i in select_cols] for x in expected_output], expected_keys=[column_names[i] for i in select_cols], column_names=column_names, batch_size=1, num_epochs=1, shuffle=False, header=True, select_columns=select_cols, ) # Can still do column name inference self._test_dataset( inputs, expected_output=[[x[i] for i in select_cols] for x in expected_output], expected_keys=[column_names[i] for i in select_cols], batch_size=1, num_epochs=1, shuffle=False, header=True, select_columns=select_cols, ) # Can specify column names instead of indices self._test_dataset( inputs, expected_output=[[x[i] for i in select_cols] for x in expected_output], expected_keys=[column_names[i] for i in select_cols], column_names=column_names, batch_size=1, num_epochs=1, shuffle=False, header=True, select_columns=[column_names[i] for i in select_cols], ) @combinations.generate(test_base.default_test_combinations()) def testWithSelectColsError(self): record_defaults = [ constant_op.constant([], dtypes.int32), constant_op.constant([], dtypes.int64), constant_op.constant([], dtypes.float32), constant_op.constant([], dtypes.float64), constant_op.constant([], dtypes.string) ] column_names = ["col%d" % i for i in range(5)] str_int32_max = str(2**33) inputs = [[ ",".join(x for x in column_names), "0,%s,2.0,3e50,rabbit" % str_int32_max ]] select_cols = [1, 3, 4] filenames = self._setup_files(inputs) with self.assertRaises(ValueError): # Mismatch in number of defaults and number of columns selected, # should raise an error self._make_csv_dataset( filenames, batch_size=1, column_defaults=record_defaults, column_names=column_names, select_columns=select_cols) with self.assertRaises(ValueError): # Invalid column name should raise an error self._make_csv_dataset( filenames, batch_size=1, column_defaults=[[0]], column_names=column_names, label_name=None, select_columns=["invalid_col_name"]) @combinations.generate(test_base.default_test_combinations()) def testWithShuffle(self): record_defaults = [ constant_op.constant([], dtypes.int32), constant_op.constant([], dtypes.int64), constant_op.constant([], dtypes.float32), constant_op.constant([], dtypes.float64), constant_op.constant([], dtypes.string) ] def str_series(st): return ",".join(str(i) for i in range(st, st + 5)) column_names = ["col%d" % i for i in range(5)] inputs = [ [",".join(x for x in column_names) ] + [str_series(5 * i) for i in range(15)], [",".join(x for x in column_names)] + [str_series(5 * i) for i in range(15, 20)], ] filenames = self._setup_files(inputs) total_records = 20 for batch_size in [1, 2]: # Test that shuffling with the same seed produces the same result dataset1 = self._make_csv_dataset( filenames, column_defaults=record_defaults, column_names=column_names, batch_size=batch_size, header=True, shuffle=True, shuffle_seed=5, num_epochs=2, ) dataset2 = self._make_csv_dataset( filenames, column_defaults=record_defaults, column_names=column_names, batch_size=batch_size, header=True, shuffle=True, shuffle_seed=5, num_epochs=2, ) next1 = self.getNext(dataset1) next2 = self.getNext(dataset2) for _ in range(total_records // batch_size): batch1 = nest.flatten(self.evaluate(next1())) batch2 = nest.flatten(self.evaluate(next2())) for i in range(len(batch1)): self.assertAllEqual(batch1[i], batch2[i]) # Test that shuffling with a different seed produces different results dataset1 = self._make_csv_dataset( filenames, column_defaults=record_defaults, column_names=column_names, batch_size=batch_size, header=True, shuffle=True, shuffle_seed=5, num_epochs=2, ) dataset2 = self._make_csv_dataset( filenames, column_defaults=record_defaults, column_names=column_names, batch_size=batch_size, header=True, shuffle=True, shuffle_seed=6, num_epochs=2, ) next1 = self.getNext(dataset1) next2 = self.getNext(dataset2) all_equal = False for _ in range(total_records // batch_size): batch1 = nest.flatten(self.evaluate(next1())) batch2 = nest.flatten(self.evaluate(next2())) for i in range(len(batch1)): all_equal = all_equal and np.array_equal(batch1[i], batch2[i]) self.assertFalse(all_equal) @combinations.generate(test_base.default_test_combinations()) def testIndefiniteRepeatShapeInference(self): column_names = ["col%d" % i for i in range(5)] inputs = [[",".join(x for x in column_names), "0,1,2,3,4", "5,6,7,8,9"], [ ",".join(x for x in column_names), "10,11,12,13,14", "15,16,17,18,19" ]] filenames = self._setup_files(inputs) dataset = self._make_csv_dataset(filenames, batch_size=32, num_epochs=None) for shape in nest.flatten(dataset_ops.get_legacy_output_shapes(dataset)): self.assertEqual(32, shape[0]) @combinations.generate(test_base.default_test_combinations()) def testFieldOrder(self): data = [[ "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19", "1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19" ]] file_path = self._setup_files(data) ds = readers.make_csv_dataset( file_path, batch_size=1, shuffle=False, num_epochs=1) nxt = self.getNext(ds) result = list(self.evaluate(nxt()).values()) self.assertEqual(result, sorted(result)) if __name__ == "__main__": test.main()
MakeCsvDatasetTest
python
pypa__warehouse
warehouse/admin/views/organizations.py
{ "start": 42120, "end": 47500 }
class ____(wtforms.Form): issuer_type = wtforms.SelectField( choices=[(issuer.value, issuer.name) for issuer in OIDCIssuerType], coerce=OIDCIssuerType, validators=[ wtforms.validators.InputRequired(message="Select an issuer type"), ], ) issuer_url = wtforms.URLField( validators=[ wtforms.validators.InputRequired(message="Specify issuer URL"), wtforms.validators.Length(max=400), wtforms.validators.Regexp( r"^https://", message="Issuer URL must start with https://", ), ], ) @view_config( route_name="admin.organization.add_oidc_issuer", permission=Permissions.AdminOrganizationsWrite, request_method="POST", uses_session=True, require_csrf=True, require_methods=False, ) def add_oidc_issuer(request): organization_service = request.find_service(IOrganizationService, context=None) user_service = request.find_service(IUserService) organization_id = request.matchdict["organization_id"] organization = organization_service.get_organization(organization_id) if organization is None: raise HTTPNotFound form = OrganizationOIDCIssuerForm(request.POST) if not form.validate(): for field, errors in form.errors.items(): for error in errors: request.session.flash(f"{field}: {error}", queue="error") return HTTPSeeOther( request.route_path( "admin.organization.detail", organization_id=organization.id ) ) # Check if this issuer already exists for this organization existing_issuer = ( request.db.query(OrganizationOIDCIssuer) .filter( OrganizationOIDCIssuer.organization_id == organization.id, OrganizationOIDCIssuer.issuer_type == form.issuer_type.data, OrganizationOIDCIssuer.issuer_url == form.issuer_url.data, ) .first() ) if existing_issuer: request.session.flash( f"Issuer '{form.issuer_url.data}' already exists for organization " f"'{organization.name}'", queue="error", ) return HTTPSeeOther( request.route_path( "admin.organization.detail", organization_id=organization.id ) ) # Create OIDC issuer oidc_issuer = OrganizationOIDCIssuer( organization_id=organization.id, issuer_type=form.issuer_type.data, issuer_url=form.issuer_url.data, created_by_id=request.user.id, ) request.db.add(oidc_issuer) # Record the event organization.record_event( request=request, tag=EventTag.Organization.OIDCPublisherAdded, additional={ "issuer_type": form.issuer_type.data.value, "issuer_url": form.issuer_url.data, "submitted_by_user_id": str(user_service.get_admin_user().id), "redact_ip": True, }, ) request.session.flash( f"OIDC issuer '{form.issuer_url.data}' ({form.issuer_type.data.value}) " f"added to '{organization.name}'", queue="success", ) return HTTPSeeOther( request.route_path("admin.organization.detail", organization_id=organization.id) ) @view_config( route_name="admin.organization.delete_oidc_issuer", permission=Permissions.AdminOrganizationsWrite, request_method="POST", uses_session=True, require_csrf=True, require_methods=False, ) def delete_oidc_issuer(request): organization_service = request.find_service(IOrganizationService, context=None) user_service = request.find_service(IUserService) organization_id = request.matchdict["organization_id"] organization = organization_service.get_organization(organization_id) if organization is None: raise HTTPNotFound issuer_id = request.matchdict.get("issuer_id") issuer = request.db.get(OrganizationOIDCIssuer, issuer_id) if not issuer or issuer.organization_id != organization.id: request.session.flash("This issuer does not exist", queue="error") return HTTPSeeOther( request.route_path( "admin.organization.detail", organization_id=organization.id ) ) confirm = request.POST.get("confirm") if not confirm or confirm != issuer.issuer_url: request.session.flash("Confirm the request", queue="error") return HTTPSeeOther( request.route_path( "admin.organization.detail", organization_id=organization.id ) ) # Record the event before deleting organization.record_event( request=request, tag=EventTag.Organization.OIDCPublisherRemoved, additional={ "issuer_type": issuer.issuer_type.value, "issuer_url": issuer.issuer_url, "deleted_by_user_id": str(user_service.get_admin_user().id), "redact_ip": True, }, ) request.session.flash( f"OIDC issuer '{issuer.issuer_url}' removed from '{organization.name}'", queue="success", ) request.db.delete(issuer) return HTTPSeeOther( request.route_path("admin.organization.detail", organization_id=organization.id) )
OrganizationOIDCIssuerForm
python
huggingface__transformers
src/transformers/models/llava_next/configuration_llava_next.py
{ "start": 831, "end": 6776 }
class ____(PreTrainedConfig): r""" This is the configuration class to store the configuration of a [`LlavaNextForConditionalGeneration`]. It is used to instantiate an Llava-NeXT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) model. Configuration objects inherit from [`PreTrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PreTrainedConfig`] for more information. Args: vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `CLIPVisionConfig`): The config object or dictionary of the vision backbone. text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `LlamaConfig`): The config object or dictionary of the text backbone. image_token_index (`int`, *optional*, defaults to 32000): The image token index to encode the image prompt. projector_hidden_act (`str`, *optional*, defaults to `"gelu"`): The activation function used by the multimodal projector. vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`): The feature selection strategy used to select the vision feature from the vision backbone. Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features. If `"full"`, the full vision features are used. vision_feature_layer (`Union[int, list[int]]`, *optional*, defaults to -2): The index of the layer to select the vision feature. If multiple indices are provided, the vision feature of the corresponding indices will be concatenated to form the vision features. image_grid_pinpoints (`List`, *optional*, defaults to `[[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]]`): A list of possible resolutions to use for processing high resolution images. Each item in the list should be a tuple or list of the form `(height, width)`. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether the model's input and output word embeddings should be tied. image_seq_length (`int`, *optional*, defaults to 576): Sequence length of one image embedding. multimodal_projector_bias (`bool`, *optional*, defaults to `True`): Whether to use bias in the multimodal projector. Example: ```python >>> from transformers import LlavaNextForConditionalGeneration, LlavaNextConfig, CLIPVisionConfig, LlamaConfig >>> # Initializing a CLIP-vision config >>> vision_config = CLIPVisionConfig() >>> # Initializing a Llama config >>> text_config = LlamaConfig() >>> # Initializing a Llava-Next llava-hf/llava-v1.6-mistral-7b-hf style configuration >>> configuration = LlavaNextConfig(vision_config, text_config) >>> # Initializing a model from the llava-hf/llava-v1.6-mistral-7b-hf style configuration >>> model = LlavaNextForConditionalGeneration(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "llava_next" attribute_map = { "image_token_id": "image_token_index", } sub_configs = {"text_config": AutoConfig, "vision_config": AutoConfig} def __init__( self, vision_config=None, text_config=None, image_token_index=32000, projector_hidden_act="gelu", vision_feature_select_strategy="default", vision_feature_layer=-2, image_grid_pinpoints=None, tie_word_embeddings=False, image_seq_length=576, multimodal_projector_bias=True, **kwargs, ): self.image_token_index = image_token_index self.projector_hidden_act = projector_hidden_act self.image_seq_length = image_seq_length self.multimodal_projector_bias = multimodal_projector_bias if vision_feature_select_strategy not in ["default", "full"]: raise ValueError( "vision_feature_select_strategy should be one of 'default', 'full'." f"Got: {vision_feature_select_strategy}" ) self.vision_feature_select_strategy = vision_feature_select_strategy self.vision_feature_layer = vision_feature_layer image_grid_pinpoints = ( image_grid_pinpoints if image_grid_pinpoints is not None else [[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]] ) self.image_grid_pinpoints = image_grid_pinpoints if isinstance(vision_config, dict): vision_config["model_type"] = vision_config.get("model_type", "clip_vision_model") vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config) elif vision_config is None: vision_config = CONFIG_MAPPING["clip_vision_model"]( intermediate_size=4096, hidden_size=1024, patch_size=14, image_size=336, num_hidden_layers=24, num_attention_heads=16, vocab_size=32000, projection_dim=768, ) self.vision_config = vision_config if isinstance(text_config, dict): text_config["model_type"] = text_config.get("model_type", "llama") text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) elif text_config is None: text_config = CONFIG_MAPPING["llama"]() self.text_config = text_config super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) __all__ = ["LlavaNextConfig"]
LlavaNextConfig
python
PyCQA__pylint
pylint/checkers/non_ascii_names.py
{ "start": 1077, "end": 7243 }
class ____(base_checker.BaseChecker): """A strict name checker only allowing ASCII. Note: This check only checks Names, so it ignores the content of docstrings and comments! """ msgs = { "C2401": ( '%s name "%s" contains a non-ASCII character, consider renaming it.', "non-ascii-name", NON_ASCII_HELP, {"old_names": [("C0144", "old-non-ascii-name")]}, ), # First %s will always be "file" "W2402": ( '%s name "%s" contains a non-ASCII character.', "non-ascii-file-name", ( # Some = PyCharm at the time of writing didn't display the non_ascii_name_loł # files. That's also why this is a warning and not only a convention! "Under python 3.5, PEP 3131 allows non-ascii identifiers, but not non-ascii file names." "Since Python 3.5, even though Python supports UTF-8 files, some editors or tools " "don't." ), ), # First %s will always be "module" "C2403": ( '%s name "%s" contains a non-ASCII character, use an ASCII-only alias for import.', "non-ascii-module-import", NON_ASCII_HELP, ), } name = "NonASCII-Checker" def _check_name(self, node_type: str, name: str | None, node: nodes.NodeNG) -> None: """Check whether a name is using non-ASCII characters.""" if name is None: # For some nodes i.e. *kwargs from a dict, the name will be empty return if not str(name).isascii(): type_label = constants.HUMAN_READABLE_TYPES[node_type] args = (type_label.capitalize(), name) # Some node types have customized messages match node_type: case "file": msg = "non-ascii-file-name" case "module": msg = "non-ascii-module-import" case _: msg = "non-ascii-name" self.add_message(msg, node=node, args=args, confidence=interfaces.HIGH) @utils.only_required_for_messages("non-ascii-name", "non-ascii-file-name") def visit_module(self, node: nodes.Module) -> None: self._check_name("file", node.name.split(".")[-1], node) @utils.only_required_for_messages("non-ascii-name") def visit_functiondef( self, node: nodes.FunctionDef | nodes.AsyncFunctionDef ) -> None: self._check_name("function", node.name, node) # Check argument names arguments = node.args # Check position only arguments if arguments.posonlyargs: for pos_only_arg in arguments.posonlyargs: self._check_name("argument", pos_only_arg.name, pos_only_arg) # Check "normal" arguments if arguments.args: for arg in arguments.args: self._check_name("argument", arg.name, arg) # Check key word only arguments if arguments.kwonlyargs: for kwarg in arguments.kwonlyargs: self._check_name("argument", kwarg.name, kwarg) visit_asyncfunctiondef = visit_functiondef @utils.only_required_for_messages("non-ascii-name") def visit_global(self, node: nodes.Global) -> None: for name in node.names: self._check_name("const", name, node) @utils.only_required_for_messages("non-ascii-name") def visit_assignname(self, node: nodes.AssignName) -> None: """Check module level assigned names.""" # The NameChecker from which this Checker originates knows a lot of different # versions of variables, i.e. constants, inline variables etc. # To simplify we use only `variable` here, as we don't need to apply different # rules to different types of variables. match frame := node.frame(): case nodes.FunctionDef(): if node.parent in frame.body: # Only perform the check if the assignment was done in within the body # of the function (and not the function parameter definition # (will be handled in visit_functiondef) # or within a decorator (handled in visit_call) self._check_name("variable", node.name, node) case nodes.ClassDef(): self._check_name("attr", node.name, node) case _: # Possibilities here: # - isinstance(node.assign_type(), nodes.Comprehension) == inlinevar # - isinstance(frame, nodes.Module) == variable (constant?) # - some other kind of assignment missed but still most likely a variable self._check_name("variable", node.name, node) @utils.only_required_for_messages("non-ascii-name") def visit_classdef(self, node: nodes.ClassDef) -> None: self._check_name("class", node.name, node) for attr, anodes in node.instance_attrs.items(): if not any(node.instance_attr_ancestors(attr)): self._check_name("attr", attr, anodes[0]) def _check_module_import(self, node: nodes.ImportFrom | nodes.Import) -> None: for module_name, alias in node.names: name = alias or module_name self._check_name("module", name, node) @utils.only_required_for_messages("non-ascii-name", "non-ascii-module-import") def visit_import(self, node: nodes.Import) -> None: self._check_module_import(node) @utils.only_required_for_messages("non-ascii-name", "non-ascii-module-import") def visit_importfrom(self, node: nodes.ImportFrom) -> None: self._check_module_import(node) @utils.only_required_for_messages("non-ascii-name") def visit_call(self, node: nodes.Call) -> None: """Check if the used keyword args are correct.""" for keyword in node.keywords: self._check_name("argument", keyword.arg, keyword) def register(linter: lint.PyLinter) -> None: linter.register_checker(NonAsciiNameChecker(linter))
NonAsciiNameChecker
python
tensorflow__tensorflow
tensorflow/python/ops/unconnected_gradients.py
{ "start": 838, "end": 1677 }
class ____(enum.Enum): """Controls how gradient computation behaves when y does not depend on x. The gradient of y with respect to x can be zero in two different ways: there could be no differentiable path in the graph connecting x to y (and so we can statically prove that the gradient is zero) or it could be that runtime values of tensors in a particular execution lead to a gradient of zero (say, if a relu unit happens to not be activated). To allow you to distinguish between these two cases you can choose what value gets returned for the gradient when there is no path in the graph from x to y: * `NONE`: Indicates that [None] will be returned if there is no path from x to y * `ZERO`: Indicates that a zero tensor will be returned in the shape of x. """ NONE = "none" ZERO = "zero"
UnconnectedGradients
python
dagster-io__dagster
python_modules/libraries/dagster-postgres/dagster_postgres/schedule_storage/schedule_storage.py
{ "start": 1377, "end": 8826 }
class ____(SqlScheduleStorage, ConfigurableClass): """Postgres-backed run storage. Users should not directly instantiate this class; it is instantiated by internal machinery when ``dagster-webserver`` and ``dagster-graphql`` load, based on the values in the ``dagster.yaml`` file in ``$DAGSTER_HOME``. Configuration of this class should be done by setting values in that file. To use Postgres for all of the components of your instance storage, you can add the following block to your ``dagster.yaml``: .. literalinclude:: ../../../../../../examples/docs_snippets/docs_snippets/deploying/dagster-pg.yaml :caption: dagster.yaml :lines: 1-8 :language: YAML If you are configuring the different storage components separately and are specifically configuring your schedule storage to use Postgres, you can add a block such as the following to your ``dagster.yaml``: .. literalinclude:: ../../../../../../examples/docs_snippets/docs_snippets/deploying/dagster-pg-legacy.yaml :caption: dagster.yaml :lines: 23-32 :language: YAML Note that the fields in this config are :py:class:`~dagster.StringSource` and :py:class:`~dagster.IntSource` and can be configured from environment variables. """ def __init__( self, postgres_url: str, should_autocreate_tables: bool = True, inst_data: Optional[ConfigurableClassData] = None, ): self._inst_data = check.opt_inst_param(inst_data, "inst_data", ConfigurableClassData) self.postgres_url = postgres_url self.should_autocreate_tables = check.bool_param( should_autocreate_tables, "should_autocreate_tables" ) # Default to not holding any connections open to prevent accumulating connections per DagsterInstance self._engine = create_engine( self.postgres_url, isolation_level="AUTOCOMMIT", poolclass=db_pool.NullPool ) # Stamp and create tables if the main table does not exist (we can't check alembic # revision because alembic config may be shared with other storage classes) if self.should_autocreate_tables: table_names = retry_pg_connection_fn(lambda: db.inspect(self._engine).get_table_names()) missing_main_table = "schedules" not in table_names and "jobs" not in table_names if missing_main_table: retry_pg_creation_fn(self._init_db) super().__init__() def _init_db(self) -> None: with self.connect() as conn: with conn.begin(): ScheduleStorageSqlMetadata.create_all(conn) stamp_alembic_rev(pg_alembic_config(__file__), conn) # mark all the data migrations as applied self.migrate() self.optimize() def optimize_for_webserver( self, statement_timeout: int, pool_recycle: int, max_overflow: int ) -> None: # When running in dagster-webserver, hold an open connection and set statement_timeout kwargs = { "isolation_level": "AUTOCOMMIT", "pool_size": 1, "pool_recycle": pool_recycle, "max_overflow": max_overflow, } existing_options = self._engine.url.query.get("options") if existing_options: kwargs["connect_args"] = {"options": existing_options} self._engine = create_engine(self.postgres_url, **kwargs) event.listen( self._engine, "connect", lambda connection, _: set_pg_statement_timeout(connection, statement_timeout), ) @property def inst_data(self) -> Optional[ConfigurableClassData]: return self._inst_data @classmethod def config_type(cls) -> UserConfigSchema: return pg_config() @classmethod def from_config_value( # pyright: ignore[reportIncompatibleMethodOverride] cls, inst_data: Optional[ConfigurableClassData], config_value: PostgresStorageConfig ) -> "PostgresScheduleStorage": return PostgresScheduleStorage( inst_data=inst_data, postgres_url=pg_url_from_config(config_value), should_autocreate_tables=config_value.get("should_autocreate_tables", True), ) @staticmethod def create_clean_storage( postgres_url: str, should_autocreate_tables: bool = True ) -> "PostgresScheduleStorage": engine = create_engine( postgres_url, isolation_level="AUTOCOMMIT", poolclass=db_pool.NullPool ) try: ScheduleStorageSqlMetadata.drop_all(engine) finally: engine.dispose() return PostgresScheduleStorage(postgres_url, should_autocreate_tables) def connect(self, run_id: Optional[str] = None) -> ContextManager[Connection]: return create_pg_connection(self._engine) def upgrade(self) -> None: alembic_config = pg_alembic_config(__file__) with self.connect() as conn: run_alembic_upgrade(alembic_config, conn) def _add_or_update_instigators_table(self, conn: Connection, state: InstigatorState) -> None: selector_id = state.selector_id conn.execute( db_dialects.postgresql.insert(InstigatorsTable) .values( selector_id=selector_id, repository_selector_id=state.repository_selector_id, status=state.status.value, instigator_type=state.instigator_type.value, instigator_body=serialize_value(state), ) .on_conflict_do_update( index_elements=[InstigatorsTable.c.selector_id], set_={ "status": state.status.value, "instigator_type": state.instigator_type.value, "instigator_body": serialize_value(state), "update_timestamp": get_current_datetime(), }, ) ) def add_auto_materialize_asset_evaluations( self, evaluation_id: int, asset_evaluations: Sequence[AutomationConditionEvaluationWithRunIds[EntityKey]], ): if not asset_evaluations: return insert_stmt = db_dialects.postgresql.insert(AssetDaemonAssetEvaluationsTable).values( [ { "evaluation_id": evaluation_id, "asset_key": evaluation.key.to_db_string(), "asset_evaluation_body": serialize_value(evaluation), "num_requested": evaluation.num_requested, } for evaluation in asset_evaluations ] ) upsert_stmt = insert_stmt.on_conflict_do_update( index_elements=[ AssetDaemonAssetEvaluationsTable.c.evaluation_id, AssetDaemonAssetEvaluationsTable.c.asset_key, ], set_={ "asset_evaluation_body": insert_stmt.excluded.asset_evaluation_body, "num_requested": insert_stmt.excluded.num_requested, }, ) with self.connect() as conn: conn.execute(upsert_stmt) def alembic_version(self) -> AlembicVersion: alembic_config = pg_alembic_config(__file__) with self.connect() as conn: return check_alembic_revision(alembic_config, conn)
PostgresScheduleStorage
python
django__django
tests/expressions/tests.py
{ "start": 54911, "end": 58263 }
class ____(TestCase): def test_F_reuse(self): f = F("id") n = Number.objects.create(integer=-1) c = Company.objects.create( name="Example Inc.", num_employees=2300, num_chairs=5, ceo=Employee.objects.create(firstname="Joe", lastname="Smith"), ) c_qs = Company.objects.filter(id=f) self.assertEqual(c_qs.get(), c) # Reuse the same F-object for another queryset n_qs = Number.objects.filter(id=f) self.assertEqual(n_qs.get(), n) # The original query still works correctly self.assertEqual(c_qs.get(), c) def test_patterns_escape(self): r""" Special characters (e.g. %, _ and \) stored in database are properly escaped when using a pattern lookup with an expression refs #16731 """ Employee.objects.bulk_create( [ Employee(firstname="Johnny", lastname="%John"), Employee(firstname="Jean-Claude", lastname="Claud_"), Employee(firstname="Jean-Claude", lastname="Claude%"), Employee(firstname="Johnny", lastname="Joh\\n"), Employee(firstname="Johnny", lastname="_ohn"), ] ) claude = Employee.objects.create(firstname="Jean-Claude", lastname="Claude") john = Employee.objects.create(firstname="Johnny", lastname="John") john_sign = Employee.objects.create(firstname="%Joh\\nny", lastname="%Joh\\n") self.assertCountEqual( Employee.objects.filter(firstname__contains=F("lastname")), [john_sign, john, claude], ) self.assertCountEqual( Employee.objects.filter(firstname__startswith=F("lastname")), [john_sign, john], ) self.assertSequenceEqual( Employee.objects.filter(firstname__endswith=F("lastname")), [claude], ) def test_insensitive_patterns_escape(self): r""" Special characters (e.g. %, _ and \) stored in database are properly escaped when using a case insensitive pattern lookup with an expression -- refs #16731 """ Employee.objects.bulk_create( [ Employee(firstname="Johnny", lastname="%john"), Employee(firstname="Jean-Claude", lastname="claud_"), Employee(firstname="Jean-Claude", lastname="claude%"), Employee(firstname="Johnny", lastname="joh\\n"), Employee(firstname="Johnny", lastname="_ohn"), ] ) claude = Employee.objects.create(firstname="Jean-Claude", lastname="claude") john = Employee.objects.create(firstname="Johnny", lastname="john") john_sign = Employee.objects.create(firstname="%Joh\\nny", lastname="%joh\\n") self.assertCountEqual( Employee.objects.filter(firstname__icontains=F("lastname")), [john_sign, john, claude], ) self.assertCountEqual( Employee.objects.filter(firstname__istartswith=F("lastname")), [john_sign, john], ) self.assertSequenceEqual( Employee.objects.filter(firstname__iendswith=F("lastname")), [claude], ) @isolate_apps("expressions")
ExpressionsTests
python
apache__airflow
providers/google/src/airflow/providers/google/cloud/hooks/bigquery.py
{ "start": 61920, "end": 62828 }
class ____: """ BigQuery connection. BigQuery does not have a notion of a persistent connection. Thus, these objects are small stateless factories for cursors, which do all the real work. """ def __init__(self, *args, **kwargs) -> None: self._args = args self._kwargs = kwargs def close(self) -> None: """Do nothing. Not needed for BigQueryConnection.""" def commit(self) -> None: """Do nothing. BigQueryConnection does not support transactions.""" def cursor(self) -> BigQueryCursor: """Return a new :py:class:`Cursor` object using the connection.""" return BigQueryCursor(*self._args, **self._kwargs) def rollback(self) -> NoReturn: """Do nothing. BigQueryConnection does not support transactions.""" raise NotImplementedError("BigQueryConnection does not have transactions")
BigQueryConnection
python
tensorflow__tensorflow
tensorflow/python/debug/cli/debugger_cli_common_test.py
{ "start": 10488, "end": 22465 }
class ____(test_util.TensorFlowTestCase): def setUp(self): self._intentional_error_msg = "Intentionally raised exception" def _noop_handler(self, argv, screen_info=None): # A handler that does nothing other than returning "Done." return debugger_cli_common.RichTextLines(["Done."]) def _handler_raising_exception(self, argv, screen_info=None): # A handler that intentionally raises an exception. raise RuntimeError(self._intentional_error_msg) def _handler_returning_wrong_type(self, argv, screen_info=None): # A handler that returns a wrong type, instead of the correct type # (RichTextLines). return "Hello" def _echo_screen_cols(self, argv, screen_info=None): # A handler that uses screen_info. return debugger_cli_common.RichTextLines( ["cols = %d" % screen_info["cols"]]) def _exiting_handler(self, argv, screen_info=None): """A handler that exits with an exit token.""" if argv: exit_token = argv[0] else: exit_token = None raise debugger_cli_common.CommandLineExit(exit_token=exit_token) def testRegisterEmptyCommandPrefix(self): registry = debugger_cli_common.CommandHandlerRegistry() # Attempt to register an empty-string as a command prefix should trigger # an exception. with self.assertRaisesRegex(ValueError, "Empty command prefix"): registry.register_command_handler("", self._noop_handler, "") def testRegisterAndInvokeHandler(self): registry = debugger_cli_common.CommandHandlerRegistry() registry.register_command_handler("noop", self._noop_handler, "") self.assertTrue(registry.is_registered("noop")) self.assertFalse(registry.is_registered("beep")) cmd_output = registry.dispatch_command("noop", []) self.assertEqual(["Done."], cmd_output.lines) # Attempt to invoke an unregistered command prefix should trigger an # exception. with self.assertRaisesRegex(ValueError, "No handler is registered"): registry.dispatch_command("beep", []) # Empty command prefix should trigger an exception. with self.assertRaisesRegex(ValueError, "Prefix is empty"): registry.dispatch_command("", []) def testExitingHandler(self): """Test that exit exception is correctly raised.""" registry = debugger_cli_common.CommandHandlerRegistry() registry.register_command_handler("exit", self._exiting_handler, "") self.assertTrue(registry.is_registered("exit")) exit_token = None try: registry.dispatch_command("exit", ["foo"]) except debugger_cli_common.CommandLineExit as e: exit_token = e.exit_token self.assertEqual("foo", exit_token) def testInvokeHandlerWithScreenInfo(self): registry = debugger_cli_common.CommandHandlerRegistry() # Register and invoke a command handler that uses screen_info. registry.register_command_handler("cols", self._echo_screen_cols, "") cmd_output = registry.dispatch_command( "cols", [], screen_info={"cols": 100}) self.assertEqual(["cols = 100"], cmd_output.lines) def testRegisterAndInvokeHandlerWithAliases(self): registry = debugger_cli_common.CommandHandlerRegistry() registry.register_command_handler( "noop", self._noop_handler, "", prefix_aliases=["n", "NOOP"]) # is_registered() should work for full prefix and aliases. self.assertTrue(registry.is_registered("noop")) self.assertTrue(registry.is_registered("n")) self.assertTrue(registry.is_registered("NOOP")) cmd_output = registry.dispatch_command("n", []) self.assertEqual(["Done."], cmd_output.lines) cmd_output = registry.dispatch_command("NOOP", []) self.assertEqual(["Done."], cmd_output.lines) def testHandlerWithWrongReturnType(self): registry = debugger_cli_common.CommandHandlerRegistry() registry.register_command_handler("wrong_return", self._handler_returning_wrong_type, "") # If the command handler fails to return a RichTextLines instance, an error # should be triggered. with self.assertRaisesRegex( ValueError, "Return value from command handler.*is not None or a RichTextLines " "instance"): registry.dispatch_command("wrong_return", []) def testRegisterDuplicateHandlers(self): registry = debugger_cli_common.CommandHandlerRegistry() registry.register_command_handler("noop", self._noop_handler, "") # Registering the same command prefix more than once should trigger an # exception. with self.assertRaisesRegex( ValueError, "A handler is already registered for command prefix"): registry.register_command_handler("noop", self._noop_handler, "") cmd_output = registry.dispatch_command("noop", []) self.assertEqual(["Done."], cmd_output.lines) def testRegisterDuplicateAliases(self): registry = debugger_cli_common.CommandHandlerRegistry() registry.register_command_handler( "noop", self._noop_handler, "", prefix_aliases=["n"]) # Clash with existing alias. with self.assertRaisesRegex(ValueError, "clashes with existing prefixes or aliases"): registry.register_command_handler( "cols", self._echo_screen_cols, "", prefix_aliases=["n"]) # The name clash should have prevent the handler from being registered. self.assertFalse(registry.is_registered("cols")) # Aliases can also clash with command prefixes. with self.assertRaisesRegex(ValueError, "clashes with existing prefixes or aliases"): registry.register_command_handler( "cols", self._echo_screen_cols, "", prefix_aliases=["noop"]) self.assertFalse(registry.is_registered("cols")) def testDispatchHandlerRaisingException(self): registry = debugger_cli_common.CommandHandlerRegistry() registry.register_command_handler("raise_exception", self._handler_raising_exception, "") # The registry should catch and wrap exceptions that occur during command # handling. cmd_output = registry.dispatch_command("raise_exception", []) # The error output contains a stack trace. # So the line count should be >= 2. self.assertGreater(len(cmd_output.lines), 2) self.assertTrue(cmd_output.lines[0].startswith( "Error occurred during handling of command")) self.assertTrue(cmd_output.lines[1].endswith(self._intentional_error_msg)) def testRegisterNonCallableHandler(self): registry = debugger_cli_common.CommandHandlerRegistry() # Attempt to register a non-callable handler should fail. with self.assertRaisesRegex(ValueError, "handler is not callable"): registry.register_command_handler("non_callable", 1, "") def testRegisterHandlerWithInvalidHelpInfoType(self): registry = debugger_cli_common.CommandHandlerRegistry() with self.assertRaisesRegex(ValueError, "help_info is not a str"): registry.register_command_handler("noop", self._noop_handler, ["foo"]) def testGetHelpFull(self): registry = debugger_cli_common.CommandHandlerRegistry() registry.register_command_handler( "noop", self._noop_handler, "No operation.\nI.e., do nothing.", prefix_aliases=["n", "NOOP"]) registry.register_command_handler( "cols", self._echo_screen_cols, "Show screen width in number of columns.", prefix_aliases=["c"]) help_lines = registry.get_help().lines # The help info should list commands in alphabetically sorted order, # regardless of order in which the commands are registered. self.assertEqual("cols", help_lines[0]) self.assertTrue(help_lines[1].endswith("Aliases: c")) self.assertFalse(help_lines[2]) self.assertTrue(help_lines[3].endswith( "Show screen width in number of columns.")) self.assertFalse(help_lines[4]) self.assertFalse(help_lines[5]) # The default help command should appear in the help output. self.assertEqual("help", help_lines[6]) self.assertEqual("noop", help_lines[12]) self.assertTrue(help_lines[13].endswith("Aliases: n, NOOP")) self.assertFalse(help_lines[14]) self.assertTrue(help_lines[15].endswith("No operation.")) self.assertTrue(help_lines[16].endswith("I.e., do nothing.")) def testGetHelpSingleCommand(self): registry = debugger_cli_common.CommandHandlerRegistry() registry.register_command_handler( "noop", self._noop_handler, "No operation.\nI.e., do nothing.", prefix_aliases=["n", "NOOP"]) registry.register_command_handler( "cols", self._echo_screen_cols, "Show screen width in number of columns.", prefix_aliases=["c"]) # Get help info for one of the two commands, using full prefix. help_lines = registry.get_help("cols").lines self.assertTrue(help_lines[0].endswith("cols")) self.assertTrue(help_lines[1].endswith("Aliases: c")) self.assertFalse(help_lines[2]) self.assertTrue(help_lines[3].endswith( "Show screen width in number of columns.")) # Get help info for one of the two commands, using alias. help_lines = registry.get_help("c").lines self.assertTrue(help_lines[0].endswith("cols")) self.assertTrue(help_lines[1].endswith("Aliases: c")) self.assertFalse(help_lines[2]) self.assertTrue(help_lines[3].endswith( "Show screen width in number of columns.")) # Get help info for a nonexistent command. help_lines = registry.get_help("foo").lines self.assertEqual("Invalid command prefix: \"foo\"", help_lines[0]) def testHelpCommandWithoutIntro(self): registry = debugger_cli_common.CommandHandlerRegistry() registry.register_command_handler( "noop", self._noop_handler, "No operation.\nI.e., do nothing.", prefix_aliases=["n", "NOOP"]) registry.register_command_handler( "cols", self._echo_screen_cols, "Show screen width in number of columns.", prefix_aliases=["c"]) # Get help for all commands. output = registry.dispatch_command("help", []) self.assertEqual(["cols", " Aliases: c", "", " Show screen width in number of columns.", "", "", "help", " Aliases: h", "", " Print this help message.", "", "", "noop", " Aliases: n, NOOP", "", " No operation.", " I.e., do nothing.", "", "", "version", " Aliases: ver", "", " Print the versions of TensorFlow and its key " "dependencies.", "", ""], output.lines) # Get help for one specific command prefix. output = registry.dispatch_command("help", ["noop"]) self.assertEqual(["noop", " Aliases: n, NOOP", "", " No operation.", " I.e., do nothing."], output.lines) # Get help for a nonexistent command prefix. output = registry.dispatch_command("help", ["foo"]) self.assertEqual(["Invalid command prefix: \"foo\""], output.lines) def testHelpCommandWithIntro(self): registry = debugger_cli_common.CommandHandlerRegistry() registry.register_command_handler( "noop", self._noop_handler, "No operation.\nI.e., do nothing.", prefix_aliases=["n", "NOOP"]) help_intro = debugger_cli_common.RichTextLines( ["Introductory comments.", ""]) registry.set_help_intro(help_intro) output = registry.dispatch_command("help", []) self.assertEqual(help_intro.lines + [ "help", " Aliases: h", "", " Print this help message.", "", "", "noop", " Aliases: n, NOOP", "", " No operation.", " I.e., do nothing.", "", "", "version", " Aliases: ver", "", " Print the versions of TensorFlow and its key dependencies.", "", "" ], output.lines)
CommandHandlerRegistryTest
python
miyuchina__mistletoe
mistletoe/block_token.py
{ "start": 12241, "end": 13917 }
class ____(BlockToken): """ Indented code block token. This is a leaf block token with a single child of type span_token.RawText. Attributes: language (str): always the empty string. """ repr_attributes = BlockToken.repr_attributes + ("language",) def __init__(self, lines): self.language = '' self.children = (span_token.RawText(''.join(lines).strip('\n') + '\n'),) @property def content(self): """Returns the code block content.""" return self.children[0].content @staticmethod def start(line): return line.replace('\t', ' ', 1).startswith(' ') @classmethod def read(cls, lines): line_buffer = [] trailing_blanks = 0 for line in lines: if line.strip() == '': line_buffer.append(line.lstrip(' ') if len(line) < 5 else line[4:]) trailing_blanks = trailing_blanks + 1 if line == '\n' else 0 continue if not line.replace('\t', ' ', 1).startswith(' '): lines.backstep() break line_buffer.append(cls.strip(line)) trailing_blanks = 0 for _ in range(trailing_blanks): line_buffer.pop() lines.backstep() return line_buffer @staticmethod def strip(string): count = 0 for i, c in enumerate(string): if c == '\t': return string[i + 1:] elif c == ' ': count += 1 else: break if count == 4: return string[i + 1:] return string
BlockCode
python
pytorch__pytorch
torch/nn/modules/container.py
{ "start": 1397, "end": 11326 }
class ____(Module): r"""A sequential container. Modules will be added to it in the order they are passed in the constructor. Alternatively, an ``OrderedDict`` of modules can be passed in. The ``forward()`` method of ``Sequential`` accepts any input and forwards it to the first module it contains. It then "chains" outputs to inputs sequentially for each subsequent module, finally returning the output of the last module. The value a ``Sequential`` provides over manually calling a sequence of modules is that it allows treating the whole container as a single module, such that performing a transformation on the ``Sequential`` applies to each of the modules it stores (which are each a registered submodule of the ``Sequential``). What's the difference between a ``Sequential`` and a :class:`torch.nn.ModuleList`? A ``ModuleList`` is exactly what it sounds like--a list for storing ``Module`` s! On the other hand, the layers in a ``Sequential`` are connected in a cascading way. Example:: # Using Sequential to create a small model. When `model` is run, # input will first be passed to `Conv2d(1,20,5)`. The output of # `Conv2d(1,20,5)` will be used as the input to the first # `ReLU`; the output of the first `ReLU` will become the input # for `Conv2d(20,64,5)`. Finally, the output of # `Conv2d(20,64,5)` will be used as input to the second `ReLU` model = nn.Sequential( nn.Conv2d(1, 20, 5), nn.ReLU(), nn.Conv2d(20, 64, 5), nn.ReLU() ) # Using Sequential with OrderedDict. This is functionally the # same as the above code model = nn.Sequential( OrderedDict( [ ("conv1", nn.Conv2d(1, 20, 5)), ("relu1", nn.ReLU()), ("conv2", nn.Conv2d(20, 64, 5)), ("relu2", nn.ReLU()), ] ) ) """ _modules: dict[str, Module] # type: ignore[assignment] @overload def __init__(self, *args: Module) -> None: ... @overload # pyrefly: ignore [inconsistent-overload] def __init__(self, arg: OrderedDict[str, Module]) -> None: ... def __init__(self, *args): super().__init__() if len(args) == 1 and isinstance(args[0], OrderedDict): for key, module in args[0].items(): self.add_module(key, module) else: for idx, module in enumerate(args): self.add_module(str(idx), module) def _get_item_by_idx(self, iterator: Iterable[_V], idx: int) -> _V: """Get the idx-th item of the iterator.""" size = len(self) idx = operator.index(idx) if not -size <= idx < size: raise IndexError(f"index {idx} is out of range") idx %= size return next(islice(iterator, idx, None)) @_copy_to_script_wrapper def __getitem__(self, idx: slice | int) -> Sequential | Module: if isinstance(idx, slice): return self.__class__(OrderedDict(list(self._modules.items())[idx])) else: return self._get_item_by_idx(self._modules.values(), idx) def __setitem__(self, idx: int, module: Module) -> None: key: str = self._get_item_by_idx(self._modules.keys(), idx) return setattr(self, key, module) def __delitem__(self, idx: slice | int) -> None: if isinstance(idx, slice): for key in list(self._modules.keys())[idx]: delattr(self, key) else: key = self._get_item_by_idx(self._modules.keys(), idx) delattr(self, key) # To preserve numbering str_indices = [str(i) for i in range(len(self._modules))] self._modules = OrderedDict( zip(str_indices, self._modules.values(), strict=True) ) @_copy_to_script_wrapper def __len__(self) -> int: return len(self._modules) def __add__(self, other) -> Sequential: if isinstance(other, Sequential): ret = Sequential() for layer in self: ret.append(layer) for layer in other: ret.append(layer) return ret else: raise ValueError( "add operator supports only objects " f"of Sequential class, but {str(type(other))} is given." ) def pop(self, key: int | slice) -> Module: """ Pop ``key`` from self. """ v = self[key] del self[key] return v def __iadd__(self, other) -> Self: if isinstance(other, Sequential): offset = len(self) for i, module in enumerate(other): self.add_module(str(i + offset), module) return self else: raise ValueError( "add operator supports only objects " f"of Sequential class, but {str(type(other))} is given." ) def __mul__(self, other: int) -> Sequential: if not isinstance(other, int): raise TypeError( f"unsupported operand type(s) for *: {type(self)} and {type(other)}" ) elif other <= 0: raise ValueError( f"Non-positive multiplication factor {other} for {type(self)}" ) else: combined = Sequential() offset = 0 for _ in range(other): for module in self: combined.add_module(str(offset), module) offset += 1 return combined def __rmul__(self, other: int) -> Sequential: return self.__mul__(other) def __imul__(self, other: int) -> Self: if not isinstance(other, int): raise TypeError( f"unsupported operand type(s) for *: {type(self)} and {type(other)}" ) elif other <= 0: raise ValueError( f"Non-positive multiplication factor {other} for {type(self)}" ) else: len_original = len(self) offset = len(self) for _ in range(other - 1): for i in range(len_original): self.add_module(str(i + offset), self._modules[str(i)]) offset += len_original return self @_copy_to_script_wrapper def __dir__(self) -> list[str]: keys = super().__dir__() keys = [key for key in keys if not key.isdigit()] return keys @_copy_to_script_wrapper def __iter__(self) -> Iterator[Module]: return iter(self._modules.values()) # NB: We can't really type check this function as the type of input # may change dynamically (as is tested in # TestScript.test_sequential_intermediary_types). Cannot annotate # with Any as TorchScript expects a more precise type def forward(self, input): """ Runs the forward pass. """ for module in self: input = module(input) return input def append(self, module: Module) -> Self: r"""Append a given module to the end. Args: module (nn.Module): module to append Example:: >>> import torch.nn as nn >>> n = nn.Sequential(nn.Linear(1, 2), nn.Linear(2, 3)) >>> n.append(nn.Linear(3, 4)) Sequential( (0): Linear(in_features=1, out_features=2, bias=True) (1): Linear(in_features=2, out_features=3, bias=True) (2): Linear(in_features=3, out_features=4, bias=True) ) """ self.add_module(str(len(self)), module) return self def insert(self, index: int, module: Module) -> Self: """ Inserts a module into the Sequential container at the specified index. Args: index (int): The index to insert the module. module (Module): The module to be inserted. Example:: >>> import torch.nn as nn >>> n = nn.Sequential(nn.Linear(1, 2), nn.Linear(2, 3)) >>> n.insert(0, nn.Linear(3, 4)) Sequential( (0): Linear(in_features=3, out_features=4, bias=True) (1): Linear(in_features=1, out_features=2, bias=True) (2): Linear(in_features=2, out_features=3, bias=True) ) """ if not isinstance(module, Module): raise AssertionError(f"module should be of type: {Module}") n = len(self._modules) if not (-n <= index <= n): raise IndexError(f"Index out of range: {index}") if index < 0: index += n for i in range(n, index, -1): self._modules[str(i)] = self._modules[str(i - 1)] self._modules[str(index)] = module return self def extend(self, sequential: Iterable[Module]) -> Self: """ Extends the current Sequential container with layers from another Sequential container. Args: sequential (Sequential): A Sequential container whose layers will be added to the current container. Example:: >>> import torch.nn as nn >>> n = nn.Sequential(nn.Linear(1, 2), nn.Linear(2, 3)) >>> other = nn.Sequential(nn.Linear(3, 4), nn.Linear(4, 5)) >>> n.extend(other) # or `n + other` Sequential( (0): Linear(in_features=1, out_features=2, bias=True) (1): Linear(in_features=2, out_features=3, bias=True) (2): Linear(in_features=3, out_features=4, bias=True) (3): Linear(in_features=4, out_features=5, bias=True) ) """ for layer in sequential: self.append(layer) return self
Sequential
python
streamlit__streamlit
lib/tests/streamlit/elements/markdown_test.py
{ "start": 8217, "end": 8707 }
class ____(DeltaGeneratorTestCase): """Test st.latex APIs.""" def test_st_latex_with_help(self): """Test st.latex with help.""" st.latex( r""" a + ar + a r^2 + a r^3 + \cdots + a r^{n-1} = \sum_{k=0}^{n-1} ar^k = a \left(\frac{1-r^{n}}{1-r}\right) """, help="help text", ) el = self.get_delta_from_queue().new_element assert el.markdown.help == "help text"
StLatexAPITest
python
lazyprogrammer__machine_learning_examples
rl2/a3c/nets.py
{ "start": 2786, "end": 4367 }
class ____: def __init__(self): # Placeholders for our input # After resizing we have 4 consecutive frames of size 84 x 84 self.states = tf.placeholder(shape=[None, 84, 84, 4], dtype=tf.uint8, name="X") # The TD target value self.targets = tf.placeholder(shape=[None], dtype=tf.float32, name="y") # Since we set reuse=True here, that means we MUST # create the PolicyNetwork before creating the ValueNetwork # PolictyNetwork will use reuse=False with tf.variable_scope("shared", reuse=True): fc1 = build_feature_extractor(self.states) # Use a separate scope for output and loss with tf.variable_scope("value_network"): self.vhat = tf.contrib.layers.fully_connected( inputs=fc1, num_outputs=1, activation_fn=None) self.vhat = tf.squeeze(self.vhat, squeeze_dims=[1], name="vhat") self.loss = tf.squared_difference(self.vhat, self.targets) self.loss = tf.reduce_sum(self.loss, name="loss") # training self.optimizer = tf.train.RMSPropOptimizer(0.00025, 0.99, 0.0, 1e-6) # we'll need these later for running gradient descent steps self.grads_and_vars = self.optimizer.compute_gradients(self.loss) self.grads_and_vars = [[grad, var] for grad, var in self.grads_and_vars if grad is not None] # Should use this to create networks # to ensure they're created in the correct order def create_networks(num_outputs): policy_network = PolicyNetwork(num_outputs=num_outputs) value_network = ValueNetwork() return policy_network, value_network
ValueNetwork
python
eventlet__eventlet
tests/db_pool_test.py
{ "start": 1417, "end": 9984 }
class ____(DBTester): __test__ = False # so that nose doesn't try to execute this directly def setUp(self): super().setUp() self.pool = self.create_pool() self.connection = self.pool.get() def tearDown(self): if self.connection: self.pool.put(self.connection) self.pool.clear() super().tearDown() def assert_cursor_works(self, cursor): cursor.execute("select 1") rows = cursor.fetchall() assert rows def test_connecting(self): assert self.connection is not None def test_create_cursor(self): cursor = self.connection.cursor() cursor.close() def test_run_query(self): cursor = self.connection.cursor() self.assert_cursor_works(cursor) cursor.close() def test_run_bad_query(self): cursor = self.connection.cursor() try: cursor.execute("garbage blah blah") assert False except AssertionError: raise except Exception: pass cursor.close() def test_put_none(self): # the pool is of size 1, and its only connection is out assert self.pool.free() == 0 self.pool.put(None) # ha ha we fooled it into thinking that we had a dead process assert self.pool.free() == 1 conn2 = self.pool.get() assert conn2 is not None assert conn2.cursor self.pool.put(conn2) def test_close_does_a_put(self): assert self.pool.free() == 0 self.connection.close() assert self.pool.free() == 1 self.assertRaises(AttributeError, self.connection.cursor) def test_put_doesnt_double_wrap(self): self.pool.put(self.connection) conn = self.pool.get() assert not isinstance(conn._base, db_pool.PooledConnectionWrapper) self.pool.put(conn) def test_bool(self): assert self.connection self.connection.close() assert not self.connection def fill_up_table(self, conn): curs = conn.cursor() for i in range(1000): curs.execute('insert into test_table (value_int) values (%s)' % i) conn.commit() def test_returns_immediately(self): self.pool = self.create_pool() conn = self.pool.get() self.set_up_dummy_table(conn) self.fill_up_table(conn) curs = conn.cursor() results = [] SHORT_QUERY = "select * from test_table" evt = eventlet.Event() def a_query(): self.assert_cursor_works(curs) curs.execute(SHORT_QUERY) results.append(2) evt.send() eventlet.spawn(a_query) results.append(1) self.assertEqual([1], results) evt.wait() self.assertEqual([1, 2], results) self.pool.put(conn) def test_connection_is_clean_after_put(self): self.pool = self.create_pool() conn = self.pool.get() self.set_up_dummy_table(conn) curs = conn.cursor() for i in range(10): curs.execute('insert into test_table (value_int) values (%s)' % i) # do not commit :-) self.pool.put(conn) del conn conn2 = self.pool.get() curs2 = conn2.cursor() for i in range(10): curs2.execute('insert into test_table (value_int) values (%s)' % i) conn2.commit() curs2.execute("select * from test_table") # we should have only inserted them once self.assertEqual(10, curs2.rowcount) self.pool.put(conn2) def test_visibility_from_other_connections(self): self.pool = self.create_pool(max_size=3) conn = self.pool.get() conn2 = self.pool.get() curs = conn.cursor() try: curs2 = conn2.cursor() curs2.execute("insert into gargleblatz (a) values (%s)" % (314159)) self.assertEqual(curs2.rowcount, 1) conn2.commit() selection_query = "select * from gargleblatz" curs2.execute(selection_query) self.assertEqual(curs2.rowcount, 1) del curs2 self.pool.put(conn2) # create a new connection, it should see the addition conn3 = self.pool.get() curs3 = conn3.cursor() curs3.execute(selection_query) self.assertEqual(curs3.rowcount, 1) # now, does the already-open connection see it? curs.execute(selection_query) self.assertEqual(curs.rowcount, 1) self.pool.put(conn3) finally: # clean up my litter curs.execute("delete from gargleblatz where a=314159") conn.commit() self.pool.put(conn) def test_clear(self): self.pool = self.create_pool() self.pool.put(self.connection) self.pool.clear() self.assertEqual(len(self.pool.free_items), 0) def test_clear_warmup(self): """Clear implicitly created connections (min_size > 0)""" self.pool = self.create_pool(min_size=1) self.pool.clear() self.assertEqual(len(self.pool.free_items), 0) def test_unwrap_connection(self): self.assertTrue(isinstance(self.connection, db_pool.GenericConnectionWrapper)) conn = self.pool._unwrap_connection(self.connection) assert not isinstance(conn, db_pool.GenericConnectionWrapper) self.assertEqual(None, self.pool._unwrap_connection(None)) self.assertEqual(None, self.pool._unwrap_connection(1)) # testing duck typing here -- as long as the connection has a # _base attribute, it should be unwrappable x = Mock() x._base = 'hi' self.assertEqual('hi', self.pool._unwrap_connection(x)) conn.close() def test_safe_close(self): self.pool._safe_close(self.connection, quiet=True) self.assertEqual(len(self.pool.free_items), 1) self.pool._safe_close(None) self.pool._safe_close(1) # now we're really going for 100% coverage x = Mock() def fail(): raise KeyboardInterrupt() x.close = fail self.assertRaises(KeyboardInterrupt, self.pool._safe_close, x) x = Mock() def fail2(): raise RuntimeError("if this line has been printed, the test succeeded") x.close = fail2 self.pool._safe_close(x, quiet=False) def test_zero_max_idle(self): self.pool.put(self.connection) self.pool.clear() self.pool = self.create_pool(max_size=2, max_idle=0) self.connection = self.pool.get() self.connection.close() self.assertEqual(len(self.pool.free_items), 0) def test_zero_max_age(self): self.pool.put(self.connection) self.pool.clear() self.pool = self.create_pool(max_size=2, max_age=0) self.connection = self.pool.get() self.connection.close() self.assertEqual(len(self.pool.free_items), 0) def test_waiters_get_woken(self): # verify that when there's someone waiting on an empty pool # and someone puts an immediately-closed connection back in # the pool that the waiter gets woken self.pool.put(self.connection) self.pool.clear() self.pool = self.create_pool(max_size=1, max_age=0) self.connection = self.pool.get() self.assertEqual(self.pool.free(), 0) self.assertEqual(self.pool.waiting(), 0) e = eventlet.Event() def retrieve(pool, ev): c = pool.get() ev.send(c) eventlet.spawn(retrieve, self.pool, e) eventlet.sleep(0) # these two sleeps should advance the retrieve eventlet.sleep(0) # coroutine until it's waiting in get() self.assertEqual(self.pool.free(), 0) self.assertEqual(self.pool.waiting(), 1) self.pool.put(self.connection) timer = eventlet.Timeout(1) conn = e.wait() timer.cancel() self.assertEqual(self.pool.free(), 0) self.assertEqual(self.pool.waiting(), 0) self.pool.put(conn) def test_raising_create(self): # if the create() method raises an exception the pool should # not lose any connections self.pool = self.create_pool(max_size=1, module=RaisingDBModule()) self.assertRaises(RuntimeError, self.pool.get) self.assertEqual(self.pool.free(), 1)
DBConnectionPool
python
aimacode__aima-python
search.py
{ "start": 25944, "end": 27226 }
class ____(Problem): """Problem of finding the highest peak in a limited grid""" def __init__(self, initial, grid, defined_actions=directions4): """The grid is a 2 dimensional array/list whose state is specified by tuple of indices""" super().__init__(initial) self.grid = grid self.defined_actions = defined_actions self.n = len(grid) assert self.n > 0 self.m = len(grid[0]) assert self.m > 0 def actions(self, state): """Returns the list of actions which are allowed to be taken from the given state""" allowed_actions = [] for action in self.defined_actions: next_state = vector_add(state, self.defined_actions[action]) if 0 <= next_state[0] <= self.n - 1 and 0 <= next_state[1] <= self.m - 1: allowed_actions.append(action) return allowed_actions def result(self, state, action): """Moves in the direction specified by action""" return vector_add(state, self.defined_actions[action]) def value(self, state): """Value of a state is the value it is the index to""" x, y = state assert 0 <= x < self.n assert 0 <= y < self.m return self.grid[x][y]
PeakFindingProblem
python
google__python-fire
fire/console/console_attr.py
{ "start": 15921, "end": 23495 }
class ____(object): """Resource string colorizer. Attributes: _con: ConsoleAttr object. _color: Color name. _string: The string to colorize. _justify: The justification function, no justification if None. For example, justify=lambda s: s.center(10) """ def __init__(self, string, color, justify=None): """Constructor. Args: string: The string to colorize. color: Color name used to index ConsoleAttr._ANSI_COLOR. justify: The justification function, no justification if None. For example, justify=lambda s: s.center(10) """ self._con = GetConsoleAttr() self._color = color self._string = string self._justify = justify def __eq__(self, other): return self._string == str(other) def __ne__(self, other): return not self == other def __gt__(self, other): return self._string > str(other) def __lt__(self, other): return self._string < str(other) def __ge__(self, other): return not self < other def __le__(self, other): return not self > other def __len__(self): return self._con.DisplayWidth(self._string) def __str__(self): return self._string def Render(self, stream, justify=None): """Renders the string as self._color on the console. Args: stream: The stream to render the string to. The stream given here *must* have the same encoding as sys.stdout for this to work properly. justify: The justification function, self._justify if None. """ stream.write( self._con.Colorize(self._string, self._color, justify or self._justify)) def GetConsoleAttr(encoding=None, reset=False): """Gets the console attribute state. If this is the first call or reset is True or encoding is not None and does not match the current encoding or out is not None and does not match the current out then the state is (re)initialized. Otherwise the current state is returned. This call associates the out file stream with the console. All console related output should go to the same stream. Args: encoding: Encoding override. ascii -- ASCII. This is the default. utf8 -- UTF-8 unicode. win -- Windows code page 437. reset: Force re-initialization if True. Returns: The global ConsoleAttr state object. """ attr = ConsoleAttr._CONSOLE_ATTR_STATE # pylint: disable=protected-access if not reset: if not attr: reset = True elif encoding and encoding != attr.GetEncoding(): reset = True if reset: attr = ConsoleAttr(encoding=encoding) ConsoleAttr._CONSOLE_ATTR_STATE = attr # pylint: disable=protected-access return attr def ResetConsoleAttr(encoding=None): """Resets the console attribute state to the console default. Args: encoding: Reset to this encoding instead of the default. ascii -- ASCII. This is the default. utf8 -- UTF-8 unicode. win -- Windows code page 437. Returns: The global ConsoleAttr state object. """ return GetConsoleAttr(encoding=encoding, reset=True) def GetCharacterDisplayWidth(char): """Returns the monospaced terminal display width of char. Assumptions: - monospaced display - ambiguous or unknown chars default to width 1 - ASCII control char width is 1 => don't use this for control chars Args: char: The character to determine the display width of. Returns: The monospaced terminal display width of char: either 0, 1, or 2. """ if not isinstance(char, str): # Non-unicode chars have width 1. Don't use this function on control chars. return 1 # Normalize to avoid special cases. char = unicodedata.normalize('NFC', char) if unicodedata.combining(char) != 0: # Modifies the previous character and does not move the cursor. return 0 elif unicodedata.category(char) == 'Cf': # Unprintable formatting char. return 0 elif unicodedata.east_asian_width(char) in 'FW': # Fullwidth or Wide chars take 2 character positions. return 2 else: # Don't use this function on control chars. return 1 def SafeText(data, encoding=None, escape=True): br"""Converts the data to a text string compatible with the given encoding. This works the same way as Decode() below except it guarantees that any characters in the resulting text string can be re-encoded using the given encoding (or GetConsoleAttr().GetEncoding() if None is given). This means that the string will be safe to print to sys.stdout (for example) without getting codec exceptions if the user's terminal doesn't support the encoding used by the source of the text. Args: data: Any bytes, string, or object that has str() or unicode() methods. encoding: The encoding name to ensure compatibility with. Defaults to GetConsoleAttr().GetEncoding(). escape: Replace unencodable characters with a \uXXXX or \xXX equivalent if True. Otherwise replace unencodable characters with an appropriate unknown character, '?' for ASCII, and the unicode unknown replacement character \uFFFE for unicode. Returns: A text string representation of the data, but modified to remove any characters that would result in an encoding exception with the target encoding. In the worst case, with escape=False, it will contain only ? characters. """ if data is None: return 'None' encoding = encoding or GetConsoleAttr().GetEncoding() string = encoding_util.Decode(data, encoding=encoding) try: # No change needed if the string encodes to the output encoding. string.encode(encoding) return string except UnicodeError: # The string does not encode to the output encoding. Encode it with error # handling then convert it back into a text string (which will be # guaranteed to only contain characters that can be encoded later. return (string .encode(encoding, 'backslashreplace' if escape else 'replace') .decode(encoding)) def EncodeToBytes(data): r"""Encode data to bytes. The primary use case is for base64/mime style 7-bit ascii encoding where the encoder input must be bytes. "safe" means that the conversion always returns bytes and will not raise codec exceptions. If data is text then an 8-bit ascii encoding is attempted, then the console encoding, and finally utf-8. Args: data: Any bytes, string, or object that has str() or unicode() methods. Returns: A bytes string representation of the data. """ if data is None: return b'' if isinstance(data, bytes): # Already bytes - our work is done. return data # Coerce to text that will be converted to bytes. s = str(data) try: # Assume the text can be directly converted to bytes (8-bit ascii). return s.encode('iso-8859-1') except UnicodeEncodeError: pass try: # Try the output encoding. return s.encode(GetConsoleAttr().GetEncoding()) except UnicodeEncodeError: pass # Punt to utf-8. return s.encode('utf-8') def Decode(data, encoding=None): """Converts the given string, bytes, or object to a text string. Args: data: Any bytes, string, or object that has str() or unicode() methods. encoding: A suggesting encoding used to decode. If this encoding doesn't work, other defaults are tried. Defaults to GetConsoleAttr().GetEncoding(). Returns: A text string representation of the data. """ encoding = encoding or GetConsoleAttr().GetEncoding() return encoding_util.Decode(data, encoding=encoding)
Colorizer
python
huggingface__transformers
src/transformers/models/phi4_multimodal/modeling_phi4_multimodal.py
{ "start": 2488, "end": 3962 }
class ____(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states def simple_eager_attention_forward( module: nn.Module, query_states: torch.Tensor, key_states: torch.Tensor, value_states: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs: Unpack[TransformersKwargs], ): attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights
Phi4MultimodalVisionMLP
python
ApeWorX__ape
src/ape/cli/choices.py
{ "start": 14175, "end": 14627 }
class ____(Choice): """ A simple lazy-choice where choices are evaluated lazily. """ def __init__(self, get_choices: Callable[[], Sequence[str]], case_sensitive: bool = False): self._get_choices = get_choices self.case_sensitive = case_sensitive # Note: Purposely avoid super init. @cached_property def choices(self) -> Sequence[str]: # type: ignore[override] return self._get_choices()
LazyChoice
python
spack__spack
lib/spack/spack/repo.py
{ "start": 21756, "end": 35730 }
class ____: """A RepoPath is a list of Repo instances that function as one. It functions exactly like a Repo, but it operates on the combined results of the Repos in its list instead of on a single package repository. """ def __init__(self, *repos: "Repo") -> None: self.repos: List[Repo] = [] self.by_namespace = nm.NamespaceTrie() self._provider_index: Optional[spack.provider_index.ProviderIndex] = None self._patch_index: Optional[spack.patch.PatchCache] = None self._tag_index: Optional[spack.tag.TagIndex] = None for repo in repos: self.put_last(repo) @staticmethod def from_descriptors( descriptors: "RepoDescriptors", cache: spack.util.file_cache.FileCache, overrides: Optional[Dict[str, Any]] = None, ) -> "RepoPath": repo_path, errors = descriptors.construct(cache=cache, fetch=True, overrides=overrides) # Merely warn if package repositories from config could not be constructed. if errors: for path, error in errors.items(): tty.warn(f"Error constructing repository '{path}': {error}") return repo_path @staticmethod def from_config(config: spack.config.Configuration) -> "RepoPath": """Create a RepoPath from a configuration object.""" overrides = { pkg_name: data["package_attributes"] for pkg_name, data in config.get_config("packages").items() if pkg_name != "all" and "package_attributes" in data } return RepoPath.from_descriptors( descriptors=RepoDescriptors.from_config(lock=package_repository_lock(), config=config), cache=spack.caches.MISC_CACHE, overrides=overrides, ) def enable(self) -> None: """Set the relevant search paths for package module loading""" REPOS_FINDER.repo_path = self for p in reversed(self.python_paths()): if p not in sys.path: sys.path.insert(0, p) def disable(self) -> None: """Disable the search paths for package module loading""" if hasattr(REPOS_FINDER, "repo_path"): del REPOS_FINDER.repo_path for p in self.python_paths(): if p in sys.path: sys.path.remove(p) def ensure_unwrapped(self) -> "RepoPath": """Ensure we unwrap this object from any dynamic wrapper (like Singleton)""" return self def put_first(self, repo: Union["Repo", "RepoPath"]) -> None: """Add repo first in the search path.""" if isinstance(repo, RepoPath): for r in reversed(repo.repos): self.put_first(r) return self.repos.insert(0, repo) self.by_namespace[repo.namespace] = repo def put_last(self, repo): """Add repo last in the search path.""" if isinstance(repo, RepoPath): for r in repo.repos: self.put_last(r) return self.repos.append(repo) # don't mask any higher-precedence repos with same namespace if repo.namespace not in self.by_namespace: self.by_namespace[repo.namespace] = repo def remove(self, repo): """Remove a repo from the search path.""" if repo in self.repos: self.repos.remove(repo) def get_repo(self, namespace: str) -> "Repo": """Get a repository by namespace.""" if namespace not in self.by_namespace: raise UnknownNamespaceError(namespace) return self.by_namespace[namespace] def first_repo(self) -> Optional["Repo"]: """Get the first repo in precedence order.""" return self.repos[0] if self.repos else None @spack.llnl.util.lang.memoized def _all_package_names_set(self, include_virtuals) -> Set[str]: return {name for repo in self.repos for name in repo.all_package_names(include_virtuals)} @spack.llnl.util.lang.memoized def _all_package_names(self, include_virtuals: bool) -> List[str]: """Return all unique package names in all repositories.""" return sorted(self._all_package_names_set(include_virtuals), key=lambda n: n.lower()) def all_package_names(self, include_virtuals: bool = False) -> List[str]: return self._all_package_names(include_virtuals) def package_path(self, name: str) -> str: """Get path to package.py file for this repo.""" return self.repo_for_pkg(name).package_path(name) def all_package_paths(self) -> Generator[str, None, None]: for name in self.all_package_names(): yield self.package_path(name) def packages_with_tags(self, *tags: str, full: bool = False) -> Set[str]: """Returns a set of packages matching any of the tags in input. Args: full: if True the package names in the output are fully-qualified """ return { f"{repo.namespace}.{pkg}" if full else pkg for repo in self.repos for pkg in repo.packages_with_tags(*tags) } def all_package_classes(self) -> Generator[Type["spack.package_base.PackageBase"], None, None]: for name in self.all_package_names(): yield self.get_pkg_class(name) @property def provider_index(self) -> spack.provider_index.ProviderIndex: """Merged ProviderIndex from all Repos in the RepoPath.""" if self._provider_index is None: self._provider_index = spack.provider_index.ProviderIndex(repository=self) for repo in reversed(self.repos): self._provider_index.merge(repo.provider_index) return self._provider_index @property def tag_index(self) -> spack.tag.TagIndex: """Merged TagIndex from all Repos in the RepoPath.""" if self._tag_index is None: self._tag_index = spack.tag.TagIndex() for repo in reversed(self.repos): self._tag_index.merge(repo.tag_index) return self._tag_index @property def patch_index(self) -> spack.patch.PatchCache: """Merged PatchIndex from all Repos in the RepoPath.""" if self._patch_index is None: from spack.patch import PatchCache self._patch_index = PatchCache(repository=self) for repo in reversed(self.repos): self._patch_index.update(repo.patch_index) return self._patch_index def providers_for(self, virtual: Union[str, "spack.spec.Spec"]) -> List["spack.spec.Spec"]: all_packages = self._all_package_names_set(include_virtuals=False) providers = [ spec for spec in self.provider_index.providers_for(virtual) if spec.name in all_packages ] if not providers: raise UnknownPackageError(virtual if isinstance(virtual, str) else virtual.fullname) return providers @autospec def extensions_for( self, extendee_spec: "spack.spec.Spec" ) -> List["spack.package_base.PackageBase"]: from spack.spec import Spec return [ pkg_cls(Spec(pkg_cls.name)) for pkg_cls in self.all_package_classes() if pkg_cls(Spec(pkg_cls.name)).extends(extendee_spec) ] def last_mtime(self): """Time a package file in this repo was last updated.""" return max(repo.last_mtime() for repo in self.repos) def repo_for_pkg(self, spec: Union[str, "spack.spec.Spec"]) -> "Repo": """Given a spec, get the repository for its package.""" # We don't @_autospec this function b/c it's called very frequently # and we want to avoid parsing str's into Specs unnecessarily. from spack.spec import Spec if isinstance(spec, Spec): namespace = spec.namespace name = spec.name else: # handle strings directly for speed instead of @_autospec'ing namespace, _, name = spec.rpartition(".") # If the spec already has a namespace, then return the # corresponding repo if we know about it. if namespace: if namespace not in self.by_namespace: raise UnknownNamespaceError(namespace, name=name) return self.by_namespace[namespace] # If there's no namespace, search in the RepoPath. for repo in self.repos: if name in repo: return repo # If the package isn't in any repo, return the one with # highest precedence. This is for commands like `spack edit` # that can operate on packages that don't exist yet. selected = self.first_repo() if selected is None: raise UnknownPackageError(name) return selected def get(self, spec: "spack.spec.Spec") -> "spack.package_base.PackageBase": """Returns the package associated with the supplied spec.""" from spack.spec import Spec msg = "RepoPath.get can only be called on concrete specs" assert isinstance(spec, Spec) and spec.concrete, msg return self.repo_for_pkg(spec).get(spec) def python_paths(self) -> List[str]: """Return a list of all the Python paths in the repos.""" return [repo.python_path for repo in self.repos if repo.python_path] def get_pkg_class(self, pkg_name: str) -> Type["spack.package_base.PackageBase"]: """Find a class for the spec's package and return the class object.""" return self.repo_for_pkg(pkg_name).get_pkg_class(pkg_name) @autospec def dump_provenance(self, spec, path): """Dump provenance information for a spec to a particular path. This dumps the package file and any associated patch files. Raises UnknownPackageError if not found. """ return self.repo_for_pkg(spec).dump_provenance(spec, path) def dirname_for_package_name(self, pkg_name: str) -> str: return self.repo_for_pkg(pkg_name).dirname_for_package_name(pkg_name) def filename_for_package_name(self, pkg_name: str) -> str: return self.repo_for_pkg(pkg_name).filename_for_package_name(pkg_name) def exists(self, pkg_name: str) -> bool: """Whether package with the give name exists in the path's repos. Note that virtual packages do not "exist". """ return any(repo.exists(pkg_name) for repo in self.repos) def _have_name(self, pkg_name: str) -> bool: have_name = pkg_name is not None if have_name and not isinstance(pkg_name, str): raise ValueError(f"is_virtual(): expected package name, got {type(pkg_name)}") return have_name def is_virtual(self, pkg_name: str) -> bool: """Return True if the package with this name is virtual, False otherwise. This function use the provider index. If calling from a code block that is used to construct the provider index use the ``is_virtual_safe`` function. Args: pkg_name (str): name of the package we want to check """ have_name = self._have_name(pkg_name) return have_name and pkg_name in self.provider_index def is_virtual_safe(self, pkg_name: str) -> bool: """Return True if the package with this name is virtual, False otherwise. This function doesn't use the provider index. Args: pkg_name (str): name of the package we want to check """ have_name = self._have_name(pkg_name) return have_name and (not self.exists(pkg_name) or self.get_pkg_class(pkg_name).virtual) def __contains__(self, pkg_name): return self.exists(pkg_name) def marshal(self): return (self.repos,) @staticmethod def unmarshal(repos): return RepoPath(*repos) def __reduce__(self): return RepoPath.unmarshal, self.marshal() def _parse_package_api_version( config: Dict[str, Any], min_api: Tuple[int, int] = spack.min_package_api_version, max_api: Tuple[int, int] = spack.package_api_version, ) -> Tuple[int, int]: api = config.get("api") if api is None: package_api = (1, 0) else: if not isinstance(api, str): raise BadRepoError(f"Invalid Package API version '{api}'. Must be of the form vX.Y") api_match = _API_REGEX.match(api) if api_match is None: raise BadRepoError(f"Invalid Package API version '{api}'. Must be of the form vX.Y") package_api = (int(api_match.group(1)), int(api_match.group(2))) if min_api <= package_api <= max_api: return package_api min_str = ".".join(str(i) for i in min_api) max_str = ".".join(str(i) for i in max_api) curr_str = ".".join(str(i) for i in package_api) raise BadRepoVersionError( api, f"Package API v{curr_str} is not supported by this version of Spack (" f"must be between v{min_str} and v{max_str})", ) def _validate_and_normalize_subdir(subdir: Any, root: str, package_api: Tuple[int, int]) -> str: if not isinstance(subdir, str): raise BadRepoError(f"Invalid subdirectory '{subdir}' in '{root}'. Must be a string") if package_api < (2, 0): return subdir # In v1.x we did not validate subdir names if subdir in (".", ""): raise BadRepoError( f"Invalid subdirectory '{subdir}' in '{root}'. Use a symlink packages -> . instead" ) # Otherwise we expect a directory name (not path) that can be used as a Python module. if os.sep in subdir: raise BadRepoError( f"Invalid subdirectory '{subdir}' in '{root}'. Expected a directory name, not a path" ) if not nm.valid_module_name(subdir, package_api): raise BadRepoError( f"Invalid subdirectory '{subdir}' in '{root}'. Must be a valid Python module name" ) return subdir
RepoPath
python
huggingface__transformers
src/transformers/models/openai/modeling_openai.py
{ "start": 10348, "end": 10613 }
class ____(PreTrainedModel): config: OpenAIGPTConfig base_model_prefix = "transformer" @dataclass @auto_docstring( custom_intro=""" Base class for outputs of models predicting if two sentences are consecutive or not. """ )
OpenAIGPTPreTrainedModel
python
joke2k__faker
tests/providers/test_date_time.py
{ "start": 27161, "end": 30564 }
class ____(unittest.TestCase): """ Test Dates of Birth """ def setUp(self): self.fake = Faker() Faker.seed(0) def test_date_of_birth(self): dob = self.fake.date_of_birth() assert isinstance(dob, date) @freezegun.freeze_time("2020-02-29") def test_date_of_birth_on_leap_day(self): """ Freeze the date to a leap day to verify that the date_of_birth method does not raise an error """ dob = self.fake.date_of_birth() assert isinstance(dob, date) def test_value_errors(self): with self.assertRaises(ValueError): self.fake.date_of_birth(minimum_age=-1) with self.assertRaises(ValueError): self.fake.date_of_birth(maximum_age=-1) with self.assertRaises(ValueError): self.fake.date_of_birth(minimum_age=-2, maximum_age=-1) with self.assertRaises(ValueError): self.fake.date_of_birth(minimum_age=5, maximum_age=4) def test_type_errors(self): with self.assertRaises(TypeError): self.fake.date_of_birth(minimum_age=0.5) with self.assertRaises(TypeError): self.fake.date_of_birth(maximum_age="hello") def test_bad_age_range(self): with self.assertRaises(ValueError): self.fake.date_of_birth(minimum_age=5, maximum_age=0) def test_acceptable_age_range_five_years(self): for _ in range(100): now = datetime.now(utc).date() days_since_now = now - now days_since_six_years_ago = now - change_year(now, -6) dob = self.fake.date_of_birth(tzinfo=utc, minimum_age=0, maximum_age=5) days_since_dob = now - dob assert isinstance(dob, date) assert days_since_six_years_ago > days_since_dob >= days_since_now def test_acceptable_age_range_eighteen_years(self): for _ in range(100): now = datetime.now(utc).date() days_since_now = now - now days_since_nineteen_years_ago = now - change_year(now, -19) dob = self.fake.date_of_birth(tzinfo=utc, minimum_age=0, maximum_age=18) days_since_dob = now - dob assert isinstance(dob, date) assert days_since_nineteen_years_ago > days_since_dob >= days_since_now def test_identical_age_range(self): for _ in range(100): now = datetime.now(utc).date() days_since_five_years_ago = now - change_year(now, -5) days_since_six_years_ago = now - change_year(now, -6) dob = self.fake.date_of_birth(tzinfo=utc, minimum_age=5, maximum_age=5) days_since_dob = now - dob assert isinstance(dob, date) assert days_since_six_years_ago > days_since_dob >= days_since_five_years_ago def test_distant_age_range(self): for _ in range(100): now = datetime.now(utc).date() days_since_one_hundred_years_ago = now - change_year(now, -100) days_since_one_hundred_eleven_years_ago = now - change_year(now, -111) dob = self.fake.date_of_birth(minimum_age=100, maximum_age=110) days_since_dob = now - dob assert isinstance(dob, date) assert days_since_one_hundred_eleven_years_ago > days_since_dob >= days_since_one_hundred_years_ago
DatesOfBirth
python
tensorflow__tensorflow
tensorflow/python/ops/weak_tensor_special_math_ops_test.py
{ "start": 7501, "end": 9574 }
class ____(test.TestCase, parameterized.TestCase): @test_util.run_in_graph_and_eager_modes def test_fresnel_sin_boundary(self): self.assertAllClose(0., special_math_ops.fresnel_sin(0.)) self.assertTrue( np.isnan(self.evaluate(special_math_ops.fresnel_sin(np.nan)))) @parameterized.parameters(np.float32, np.float64) def test_fresnel_sin_odd(self, dtype): x = _get_weak_tensor( np.random.uniform(-100.0, 100.0, size=int(1e4)).astype(dtype) ) y = special_math_ops.fresnel_sin(x) neg_y = -special_math_ops.fresnel_sin(-x) self.assertIsInstance(y, WeakTensor) self.assertIsInstance(neg_y, WeakTensor) self.assertAllClose(y, neg_y) @parameterized.parameters(np.float32, np.float64) def test_fresnel_sin_small(self, dtype): x = np.random.uniform(0., 1., size=int(1e4)).astype(dtype) x_wt = _get_weak_tensor(x) try: from scipy import special # pylint: disable=g-import-not-at-top self.assertAllClose( special.fresnel(x)[0], self.evaluate(special_math_ops.fresnel_sin(x_wt)), ) except ImportError as e: tf_logging.warn('Cannot test special functions: %s' % str(e)) @parameterized.parameters(np.float32, np.float64) def test_fresnel_sin_larger(self, dtype): x = np.random.uniform(1., 100., size=int(1e4)).astype(dtype) x_wt = _get_weak_tensor(x) try: from scipy import special # pylint: disable=g-import-not-at-top self.assertAllClose( special.fresnel(x)[0], self.evaluate(special_math_ops.fresnel_sin(x_wt)), rtol=1e-5, ) except ImportError as e: tf_logging.warn('Cannot test special functions: %s' % str(e)) def test_fresnel_sin_gradient(self): inputs = [_get_weak_tensor(np.random.uniform(1.0, 50.0, size=int(1e2)))] analytical, numerical = gradient_checker_v2.compute_gradient( special_math_ops.fresnel_sin, inputs) self.assertLess(gradient_checker_v2.max_error(analytical, numerical), 5e-3) @test_util.run_all_in_graph_and_eager_modes
FresnelSinTest
python
run-llama__llama_index
llama-index-integrations/tools/llama-index-tools-scrapegraph/tests/test_integration.py
{ "start": 12023, "end": 16573 }
class ____: """Test scenarios that simulate real-world usage.""" @pytest.fixture def mock_tool_spec(self): """Create a mocked tool spec for real-world testing.""" with patch("llama_index.tools.scrapegraph.base.Client") as mock_client_class: mock_client = Mock() mock_client_class.from_env.return_value = mock_client tool_spec = ScrapegraphToolSpec() tool_spec.client = mock_client return tool_spec, mock_client def test_e_commerce_product_extraction(self, mock_tool_spec): """Test extracting product information from e-commerce sites.""" tool_spec, mock_client = mock_tool_spec # Mock e-commerce product data mock_response = { "products": [ {"name": "Laptop", "price": "$999", "rating": "4.5/5"}, {"name": "Mouse", "price": "$29", "rating": "4.2/5"}, ] } mock_client.smartscraper.return_value = mock_response result = tool_spec.scrapegraph_smartscraper( prompt="Extract product names, prices, and ratings from this e-commerce page", url="https://shop.example.com/laptops", ) assert result == mock_response mock_client.smartscraper.assert_called_once() def test_news_article_summarization(self, mock_tool_spec): """Test extracting and summarizing news articles.""" tool_spec, mock_client = mock_tool_spec # Mock news article markdown mock_markdown = """# Breaking News: AI Advances ## Summary Artificial Intelligence has made significant breakthroughs... ## Key Points - New neural network architecture - 30% improvement in efficiency - Applications in healthcare """ mock_client.markdownify.return_value = mock_markdown result = tool_spec.scrapegraph_markdownify( url="https://news.example.com/ai-breakthrough" ) assert result == mock_markdown assert "# Breaking News" in result assert "Key Points" in result def test_complex_site_navigation(self, mock_tool_spec): """Test complex site navigation with agentic scraper.""" tool_spec, mock_client = mock_tool_spec # Mock complex navigation result mock_response = { "contact_info": { "email": "contact@company.com", "phone": "+1-555-0123", "address": "123 Tech Street, Silicon Valley", }, "navigation_path": ["Home", "About", "Contact", "Support"], } mock_client.agentic_scraper.return_value = mock_response result = tool_spec.scrapegraph_agentic_scraper( prompt="Navigate through the website to find comprehensive contact information", url="https://company.example.com", ) assert result == mock_response assert "contact_info" in result assert "navigation_path" in result def test_multi_step_workflow(self, mock_tool_spec): """Test a multi-step workflow combining different tools.""" tool_spec, mock_client = mock_tool_spec # Step 1: Search for relevant pages mock_client.search.return_value = "Found relevant pages about Python tutorials" search_result = tool_spec.scrapegraph_search( query="Python programming tutorials beginner", max_results=5 ) # Step 2: Scrape the found page mock_client.scrape.return_value = { "html": "<html><head><title>Python Tutorial</title></head><body>Learn Python...</body></html>", "request_id": "req-123", } scrape_result = tool_spec.scrapegraph_scrape( url="https://python-tutorial.example.com" ) # Step 3: Convert to markdown for analysis mock_client.markdownify.return_value = ( "# Python Tutorial\n\nLearn Python programming..." ) markdown_result = tool_spec.scrapegraph_markdownify( url="https://python-tutorial.example.com" ) # Verify all steps executed correctly assert "Python tutorials" in search_result assert "html" in scrape_result assert "# Python Tutorial" in markdown_result # Verify all client methods were called mock_client.search.assert_called_once() mock_client.scrape.assert_called_once() mock_client.markdownify.assert_called_once()
TestRealWorldScenarios
python
encode__django-rest-framework
tests/test_fields.py
{ "start": 61021, "end": 61319 }
class ____(FieldValues): """ Values for `DurationField` with a no output format. """ valid_inputs = {} invalid_inputs = {} outputs = { datetime.timedelta(1): datetime.timedelta(1) } field = serializers.DurationField(format=None)
TestNoOutputFormatDurationField
python
zarr-developers__zarr-python
src/zarr/core/chunk_key_encodings.py
{ "start": 717, "end": 864 }
class ____(TypedDict): name: Literal["v2", "default"] separator: NotRequired[SeparatorLiteral] @dataclass(frozen=True)
ChunkKeyEncodingParams
python
hynek__structlog
tests/test_native.py
{ "start": 620, "end": 11043 }
class ____: def test_is_enabled_for(self, bl): """ is_enabled_for returns True if the log level is enabled. """ assert bl.is_enabled_for(20) assert bl.is_enabled_for(logging.INFO) assert not bl.is_enabled_for(19) assert not bl.is_enabled_for(logging.DEBUG) def test_get_effective_level(self, bl): """ get_effective_level returns the log level. """ assert 20 == logging.INFO == bl.get_effective_level() def test_exact_level(self, bl, cl): """ if log level is exactly the min_level, log. """ bl.info("yep") assert [("info", (), {"event": "yep"})] == cl.calls async def test_async_exact_level(self, bl, cl): """ if log level is exactly the min_level, log. """ await bl.ainfo("yep") assert [("info", (), {"event": "yep"})] == cl.calls def test_one_below(self, bl, cl): """ if log level is below the min_level, don't log. """ bl.debug("nope") assert [] == cl.calls async def test_async_one_below(self, bl, cl): """ if log level is below the min_level, don't log. """ await bl.adebug("nope") assert [] == cl.calls def test_filtered_interp(self, bl, cl): """ Passing interpolation args works if the log entry is filtered out. """ bl.debug("hello %s!", "world") assert [] == cl.calls async def test_async_filtered_interp(self, bl, cl): """ Passing interpolation args works if the log entry is filtered out. """ await bl.adebug("hello %s!", "world") assert [] == cl.calls def test_no_args(self, bl, cl): """ If no args are passed, don't attempt interpolation. See also #473 """ bl.info(42) assert 42 == cl.calls[0][2]["event"] async def test_async_no_args(self, bl, cl): """ If no args are passed, don't attempt interpolation. See also #473 """ await bl.ainfo(42) assert 42 == cl.calls[0][2]["event"] def test_log_exact_level(self, bl, cl): """ if log level is exactly the min_level, log. """ bl.log(logging.INFO, "yep") assert [("info", (), {"event": "yep"})] == cl.calls async def test_alog_exact_level(self, bl, cl): """ if log level is exactly the min_level, log. """ await bl.alog(logging.INFO, "yep") assert [("info", (), {"event": "yep"})] == cl.calls def test_log_one_below(self, bl, cl): """ if log level is below the min_level, don't log. """ bl.log(logging.DEBUG, "nope") assert [] == cl.calls async def test_alog_one_below(self, bl, cl): """ if log level is below the min_level, don't log. """ await bl.alog(logging.DEBUG, "nope") assert [] == cl.calls async def test_alog_no_args(self, bl, cl): """ If no args are passed, interpolation is not attempted. See also #473 """ await bl.alog(logging.INFO, 42) assert 42 == cl.calls[0][2]["event"] def test_log_interp(self, bl, cl): """ Interpolation happens if args are passed. """ bl.log(logging.INFO, "answer is %d.", 42) assert "answer is 42." == cl.calls[0][2]["event"] def test_log_interp_dict(self, bl, cl): """ Dict-based interpolation happens if a mapping is passed. """ bl.log(logging.INFO, "answer is %(answer)d.", {"answer": 42}) assert "answer is 42." == cl.calls[0][2]["event"] async def test_alog_interp(self, bl, cl): """ Interpolation happens if args are passed. """ await bl.alog(logging.INFO, "answer is %d.", 42) assert "answer is 42." == cl.calls[0][2]["event"] async def test_alog_interp_dict(self, bl, cl): """ Dict-based interpolation happens if a mapping is passed. """ await bl.alog(logging.INFO, "answer is %(answer)d.", {"answer": 42}) assert "answer is 42." == cl.calls[0][2]["event"] def test_filter_bound_below_missing_event_string(self, bl): """ Missing event arg causes exception below min_level. """ with pytest.raises(TypeError) as exc_info: bl.debug(missing="event string!") assert exc_info.type is TypeError message = "missing 1 required positional argument: 'event'" assert message in exc_info.value.args[0] def test_filter_bound_exact_missing_event_string(self, bl): """ Missing event arg causes exception even at min_level. """ with pytest.raises(TypeError) as exc_info: bl.info(missing="event string!") assert exc_info.type is TypeError message = "missing 1 required positional argument: 'event'" assert message in exc_info.value.args[0] def test_exception(self, bl, cl): """ exception ensures that exc_info is set to True, unless it's already set. """ bl.exception("boom") assert [("error", (), {"event": "boom", "exc_info": True})] == cl.calls async def test_async_exception(self, bl, cl): """ aexception sets exc_info to current exception info, if it's not already set. """ try: raise Exception("boom") except Exception as e: await bl.aexception("foo") exc = e assert 1 == len(cl.calls) assert isinstance(cl.calls[0][2]["exc_info"], tuple) assert exc == cl.calls[0][2]["exc_info"][1] def test_exception_positional_args(self, bl, cl): """ exception allows for positional args """ bl.exception("%s %s", "boom", "bastic") assert [ ("error", (), {"event": "boom bastic", "exc_info": True}) ] == cl.calls def test_exception_dict_args(self, bl, cl): """ exception allows for dict-based args """ bl.exception( "%(action)s %(what)s", {"action": "boom", "what": "bastic"} ) assert [ ("error", (), {"event": "boom bastic", "exc_info": True}) ] == cl.calls async def test_aexception_positional_args(self, bl, cl): """ aexception allows for positional args """ await bl.aexception("%s %s", "boom", "bastic") assert 1 == len(cl.calls) assert "boom bastic" == cl.calls[0][2]["event"] async def test_aexception_dict_args(self, bl, cl): """ aexception allows for dict-based args """ await bl.aexception( "%(action)s %(what)s", {"action": "boom", "what": "bastic"} ) assert 1 == len(cl.calls) assert "boom bastic" == cl.calls[0][2]["event"] async def test_async_exception_true(self, bl, cl): """ aexception replaces exc_info with current exception info, if exc_info is True. """ try: raise Exception("boom") except Exception as e: await bl.aexception("foo", exc_info=True) exc = e assert 1 == len(cl.calls) assert isinstance(cl.calls[0][2]["exc_info"], tuple) assert exc is cl.calls[0][2]["exc_info"][1] def test_exception_passed(self, bl, cl): """ exception if exc_info has a value, exception doesn't tamper with it. """ bl.exception("boom", exc_info=42) assert [("error", (), {"event": "boom", "exc_info": 42})] == cl.calls async def test_async_exception_passed(self, bl, cl): """ exception if exc_info has a value (other than True), exception doesn't tamper with it. """ await bl.aexception("boom", exc_info=42) assert [("error", (), {"event": "boom", "exc_info": 42})] == cl.calls def test_exception_pass_exception(self, bl, cl): """ If an Exception is passed for the event, don't explode. Not a documented feature, but a regression for some people. See #473. """ try: raise Exception("foo") except Exception as e: bl.exception(e) exc = e assert exc is cl.calls[0][2]["event"] @pytest.mark.parametrize("level", tuple(LEVEL_TO_NAME.keys())) def test_pickle(self, level): """ FilteringBoundLogger are pickleable. """ bl = make_filtering_bound_logger(level) assert bl == pickle.loads(pickle.dumps(bl)) def test_pos_args(self, bl, cl): """ Positional arguments are used for string interpolation. """ bl.info("hello %s -- %d!", "world", 42) assert [("info", (), {"event": "hello world -- 42!"})] == cl.calls async def test_async_pos_args(self, bl, cl): """ Positional arguments are used for string interpolation. """ await bl.ainfo("hello %s -- %d!", "world", 42) assert [("info", (), {"event": "hello world -- 42!"})] == cl.calls @pytest.mark.parametrize( ("meth", "args"), [ ("aexception", ("ev",)), ("ainfo", ("ev",)), ("alog", (logging.INFO, "ev")), ], ) async def test_async_contextvars_merged(self, meth, args, cl): """ Contextvars are merged into the event dict. """ clear_contextvars() bl = make_filtering_bound_logger(logging.INFO)( cl, [merge_contextvars], {} ) bind_contextvars(context_included="yep") await getattr(bl, meth)(*args) assert len(cl.calls) == 1 assert "context_included" in cl.calls[0].kwargs def test_log_percent(self, bl, cl): """ As long as there's no positional args passed, logging % is possible. """ bl.info("hey %! %%!") assert [("info", (), {"event": "hey %! %%!"})] == cl.calls def test_log_level_str(self): """ *min_level* can be a string and the case doesn't matter. """ bl = make_filtering_bound_logger("wArNiNg") assert bl.warning is not _nop assert bl.info is _nop
TestNativeFilteringLogger
python
sympy__sympy
sympy/tensor/array/expressions/array_expressions.py
{ "start": 60626, "end": 62284 }
class ____(_CodegenArrayAbstract): """ Reshape the dimensions of an array expression. Examples ======== >>> from sympy.tensor.array.expressions import ArraySymbol, Reshape >>> A = ArraySymbol("A", (6,)) >>> A.shape (6,) >>> Reshape(A, (3, 2)).shape (3, 2) Check the component-explicit forms: >>> A.as_explicit() [A[0], A[1], A[2], A[3], A[4], A[5]] >>> Reshape(A, (3, 2)).as_explicit() [[A[0], A[1]], [A[2], A[3]], [A[4], A[5]]] """ def __new__(cls, expr, shape): expr = _sympify(expr) if not isinstance(shape, Tuple): shape = Tuple(*shape) if Equality(Mul.fromiter(expr.shape), Mul.fromiter(shape)) == False: raise ValueError("shape mismatch") obj = Expr.__new__(cls, expr, shape) obj._shape = tuple(shape) obj._expr = expr return obj @property def shape(self): return self._shape @property def expr(self): return self._expr def doit(self, *args, **kwargs): if kwargs.get("deep", True): expr = self.expr.doit(*args, **kwargs) else: expr = self.expr if isinstance(expr, (MatrixBase, NDimArray)): return expr.reshape(*self.shape) return Reshape(expr, self.shape) def as_explicit(self): ee = self.expr if hasattr(ee, "as_explicit"): ee = ee.as_explicit() if isinstance(ee, MatrixBase): from sympy import Array ee = Array(ee) elif isinstance(ee, MatrixExpr): return self return ee.reshape(*self.shape)
Reshape
python
apache__airflow
providers/google/src/airflow/providers/google/cloud/operators/dataprep.py
{ "start": 1374, "end": 2527 }
class ____(GoogleCloudBaseOperator): """ Get information about the batch jobs within a Cloud Dataprep job. API documentation: https://clouddataprep.com/documentation/api#section/Overview. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:DataprepGetJobsForJobGroupOperator` :param job_group_id The ID of the job group that will be requests """ template_fields: Sequence[str] = ("job_group_id",) def __init__( self, *, dataprep_conn_id: str = "dataprep_default", job_group_id: int | str, **kwargs, ) -> None: super().__init__(**kwargs) self.dataprep_conn_id = dataprep_conn_id self.job_group_id = job_group_id def execute(self, context: Context) -> dict: self.log.info("Fetching data for job with id: %d ...", self.job_group_id) hook = GoogleDataprepHook( dataprep_conn_id=self.dataprep_conn_id, ) response = hook.get_jobs_for_job_group(job_id=int(self.job_group_id)) return response
DataprepGetJobsForJobGroupOperator
python
allegroai__clearml
clearml/backend_api/services/v2_13/workers.py
{ "start": 74658, "end": 83491 }
class ____(Request): """ Called periodically by the worker daemon to report machine status :param worker: Worker id. :type worker: str :param task: ID of a task currently being run by the worker. If no task is sent, the worker's task field will be cleared. :type task: str :param queue: ID of the queue from which task was received. If no queue is sent, the worker's queue field will be cleared. :type queue: str :param queues: List of queue IDs on which the worker is listening. If null, the worker's queues list will not be updated. :type queues: Sequence[str] :param timestamp: UNIX time in seconds since epoch. :type timestamp: int :param machine_stats: The machine statistics. :type machine_stats: MachineStats :param tags: New user tags for the worker :type tags: Sequence[str] """ _service = "workers" _action = "status_report" _version = "2.13" _schema = { "definitions": { "machine_stats": { "properties": { "cpu_temperature": { "description": "CPU temperature", "items": {"type": "number"}, "type": ["array", "null"], }, "cpu_usage": { "description": "Average CPU usage per core", "items": {"type": "number"}, "type": ["array", "null"], }, "disk_free_home": { "description": "Mbytes free space of /home drive", "type": ["integer", "null"], }, "disk_free_temp": { "description": "Mbytes free space of /tmp drive", "type": ["integer", "null"], }, "disk_read": { "description": "Mbytes read per second", "type": ["integer", "null"], }, "disk_write": { "description": "Mbytes write per second", "type": ["integer", "null"], }, "gpu_memory_free": { "description": "GPU free memory MBs", "items": {"type": "integer"}, "type": ["array", "null"], }, "gpu_memory_used": { "description": "GPU used memory MBs", "items": {"type": "integer"}, "type": ["array", "null"], }, "gpu_temperature": { "description": "GPU temperature", "items": {"type": "number"}, "type": ["array", "null"], }, "gpu_usage": { "description": "Average GPU usage per GPU card", "items": {"type": "number"}, "type": ["array", "null"], }, "memory_free": { "description": "Free memory MBs", "type": ["integer", "null"], }, "memory_used": { "description": "Used memory MBs", "type": ["integer", "null"], }, "network_rx": { "description": "Mbytes per second", "type": ["integer", "null"], }, "network_tx": { "description": "Mbytes per second", "type": ["integer", "null"], }, }, "type": "object", } }, "properties": { "machine_stats": { "$ref": "#/definitions/machine_stats", "description": "The machine statistics.", }, "queue": { "description": "ID of the queue from which task was received. If no queue is sent, the worker's queue field will be cleared.", "type": "string", }, "queues": { "description": "List of queue IDs on which the worker is listening. If null, the worker's queues list will not be updated.", "items": {"type": "string"}, "type": "array", }, "tags": { "description": "New user tags for the worker", "items": {"type": "string"}, "type": "array", }, "task": { "description": "ID of a task currently being run by the worker. If no task is sent, the worker's task field will be cleared.", "type": "string", }, "timestamp": { "description": "UNIX time in seconds since epoch.", "type": "integer", }, "worker": {"description": "Worker id.", "type": "string"}, }, "required": ["worker", "timestamp"], "type": "object", } def __init__( self, worker: str, timestamp: int, task: Optional[str] = None, queue: Optional[str] = None, queues: Optional[List[str]] = None, machine_stats: Any = None, tags: Optional[List[str]] = None, **kwargs: Any ) -> None: super(StatusReportRequest, self).__init__(**kwargs) self.worker = worker self.task = task self.queue = queue self.queues = queues self.timestamp = timestamp self.machine_stats = machine_stats self.tags = tags @schema_property("worker") def worker(self) -> str: return self._property_worker @worker.setter def worker(self, value: str) -> None: if value is None: self._property_worker = None return self.assert_isinstance(value, "worker", six.string_types) self._property_worker = value @schema_property("task") def task(self) -> Optional[str]: return self._property_task @task.setter def task(self, value: Optional[str]) -> None: if value is None: self._property_task = None return self.assert_isinstance(value, "task", six.string_types) self._property_task = value @schema_property("queue") def queue(self) -> Optional[str]: return self._property_queue @queue.setter def queue(self, value: Optional[str]) -> None: if value is None: self._property_queue = None return self.assert_isinstance(value, "queue", six.string_types) self._property_queue = value @schema_property("queues") def queues(self) -> Optional[List[str]]: return self._property_queues @queues.setter def queues(self, value: Optional[List[str]]) -> None: if value is None: self._property_queues = None return self.assert_isinstance(value, "queues", (list, tuple)) self.assert_isinstance(value, "queues", six.string_types, is_array=True) self._property_queues = value @schema_property("timestamp") def timestamp(self) -> int: return self._property_timestamp @timestamp.setter def timestamp(self, value: int) -> None: if value is None: self._property_timestamp = None return if isinstance(value, float) and value.is_integer(): value = int(value) self.assert_isinstance(value, "timestamp", six.integer_types) self._property_timestamp = value @schema_property("machine_stats") def machine_stats(self) -> Any: return self._property_machine_stats @machine_stats.setter def machine_stats(self, value: Any) -> None: if value is None: self._property_machine_stats = None return if isinstance(value, dict): value = MachineStats.from_dict(value) else: self.assert_isinstance(value, "machine_stats", MachineStats) self._property_machine_stats = value @schema_property("tags") def tags(self) -> Optional[List[str]]: return self._property_tags @tags.setter def tags(self, value: Optional[List[str]]) -> None: if value is None: self._property_tags = None return self.assert_isinstance(value, "tags", (list, tuple)) self.assert_isinstance(value, "tags", six.string_types, is_array=True) self._property_tags = value
StatusReportRequest
python
lazyprogrammer__machine_learning_examples
rl2/cartpole/pg_theano.py
{ "start": 767, "end": 1234 }
class ____: def __init__(self, M1, M2, f=T.tanh, use_bias=True): self.W = theano.shared(np.random.randn(M1, M2) * np.sqrt(2 / M1)) self.params = [self.W] self.use_bias = use_bias if use_bias: self.b = theano.shared(np.zeros(M2)) self.params += [self.b] self.f = f def forward(self, X): if self.use_bias: a = X.dot(self.W) + self.b else: a = X.dot(self.W) return self.f(a) # approximates pi(a | s)
HiddenLayer
python
pallets__jinja
tests/test_lexnparse.py
{ "start": 10407, "end": 19362 }
class ____: def test_call(self, env): env = Environment() env.globals["foo"] = lambda a, b, c, e, g: a + b + c + e + g tmpl = env.from_string("{{ foo('a', c='d', e='f', *['b'], **{'g': 'h'}) }}") assert tmpl.render() == "abdfh" def test_slicing(self, env): tmpl = env.from_string("{{ [1, 2, 3][:] }}|{{ [1, 2, 3][::-1] }}") assert tmpl.render() == "[1, 2, 3]|[3, 2, 1]" def test_attr(self, env): tmpl = env.from_string("{{ foo.bar }}|{{ foo['bar'] }}") assert tmpl.render(foo={"bar": 42}) == "42|42" def test_subscript(self, env): tmpl = env.from_string("{{ foo[0] }}|{{ foo[-1] }}") assert tmpl.render(foo=[0, 1, 2]) == "0|2" def test_tuple(self, env): tmpl = env.from_string("{{ () }}|{{ (1,) }}|{{ (1, 2) }}") assert tmpl.render() == "()|(1,)|(1, 2)" def test_math(self, env): tmpl = env.from_string("{{ (1 + 1 * 2) - 3 / 2 }}|{{ 2**3 }}") assert tmpl.render() == "1.5|8" def test_div(self, env): tmpl = env.from_string("{{ 3 // 2 }}|{{ 3 / 2 }}|{{ 3 % 2 }}") assert tmpl.render() == "1|1.5|1" def test_unary(self, env): tmpl = env.from_string("{{ +3 }}|{{ -3 }}") assert tmpl.render() == "3|-3" def test_concat(self, env): tmpl = env.from_string("{{ [1, 2] ~ 'foo' }}") assert tmpl.render() == "[1, 2]foo" @pytest.mark.parametrize( ("a", "op", "b"), [ (1, ">", 0), (1, ">=", 1), (2, "<", 3), (3, "<=", 4), (4, "==", 4), (4, "!=", 5), ], ) def test_compare(self, env, a, op, b): t = env.from_string(f"{{{{ {a} {op} {b} }}}}") assert t.render() == "True" def test_compare_parens(self, env): t = env.from_string("{{ i * (j < 5) }}") assert t.render(i=2, j=3) == "2" @pytest.mark.parametrize( ("src", "expect"), [ ("{{ 4 < 2 < 3 }}", "False"), ("{{ a < b < c }}", "False"), ("{{ 4 > 2 > 3 }}", "False"), ("{{ a > b > c }}", "False"), ("{{ 4 > 2 < 3 }}", "True"), ("{{ a > b < c }}", "True"), ], ) def test_compare_compound(self, env, src, expect): t = env.from_string(src) assert t.render(a=4, b=2, c=3) == expect def test_inop(self, env): tmpl = env.from_string("{{ 1 in [1, 2, 3] }}|{{ 1 not in [1, 2, 3] }}") assert tmpl.render() == "True|False" @pytest.mark.parametrize("value", ("[]", "{}", "()")) def test_collection_literal(self, env, value): t = env.from_string(f"{{{{ {value} }}}}") assert t.render() == value @pytest.mark.parametrize( ("value", "expect"), ( ("1", "1"), ("123", "123"), ("12_34_56", "123456"), ("1.2", "1.2"), ("34.56", "34.56"), ("3_4.5_6", "34.56"), ("1e0", "1.0"), ("10e1", "100.0"), ("2.5e100", "2.5e+100"), ("2.5e+100", "2.5e+100"), ("25.6e-10", "2.56e-09"), ("1_2.3_4e5_6", "1.234e+57"), ("0", "0"), ("0_00", "0"), ("0b1001_1111", "159"), ("0o123", "83"), ("0o1_23", "83"), ("0x123abc", "1194684"), ("0x12_3abc", "1194684"), ), ) def test_numeric_literal(self, env, value, expect): t = env.from_string(f"{{{{ {value} }}}}") assert t.render() == expect def test_bool(self, env): tmpl = env.from_string( "{{ true and false }}|{{ false or true }}|{{ not false }}" ) assert tmpl.render() == "False|True|True" def test_grouping(self, env): tmpl = env.from_string( "{{ (true and false) or (false and true) and not false }}" ) assert tmpl.render() == "False" def test_django_attr(self, env): tmpl = env.from_string("{{ [1, 2, 3].0 }}|{{ [[1]].0.0 }}") assert tmpl.render() == "1|1" def test_conditional_expression(self, env): tmpl = env.from_string("""{{ 0 if true else 1 }}""") assert tmpl.render() == "0" def test_short_conditional_expression(self, env): tmpl = env.from_string("<{{ 1 if false }}>") assert tmpl.render() == "<>" tmpl = env.from_string("<{{ (1 if false).bar }}>") pytest.raises(UndefinedError, tmpl.render) def test_filter_priority(self, env): tmpl = env.from_string('{{ "foo"|upper + "bar"|upper }}') assert tmpl.render() == "FOOBAR" def test_function_calls(self, env): tests = [ (True, "*foo, bar"), (True, "*foo, *bar"), (True, "**foo, *bar"), (True, "**foo, bar"), (True, "**foo, **bar"), (True, "**foo, bar=42"), (False, "foo, bar"), (False, "foo, bar=42"), (False, "foo, bar=23, *args"), (False, "foo, *args, bar=23"), (False, "a, b=c, *d, **e"), (False, "*foo, bar=42"), (False, "*foo, **bar"), (False, "*foo, bar=42, **baz"), (False, "foo, *args, bar=23, **baz"), ] for should_fail, sig in tests: if should_fail: with pytest.raises(TemplateSyntaxError): env.from_string(f"{{{{ foo({sig}) }}}}") else: env.from_string(f"foo({sig})") def test_tuple_expr(self, env): for tmpl in [ "{{ () }}", "{{ (1, 2) }}", "{{ (1, 2,) }}", "{{ 1, }}", "{{ 1, 2 }}", "{% for foo, bar in seq %}...{% endfor %}", "{% for x in foo, bar %}...{% endfor %}", "{% for x in foo, %}...{% endfor %}", ]: assert env.from_string(tmpl) def test_trailing_comma(self, env): tmpl = env.from_string("{{ (1, 2,) }}|{{ [1, 2,] }}|{{ {1: 2,} }}") assert tmpl.render().lower() == "(1, 2)|[1, 2]|{1: 2}" def test_block_end_name(self, env): env.from_string("{% block foo %}...{% endblock foo %}") pytest.raises( TemplateSyntaxError, env.from_string, "{% block x %}{% endblock y %}" ) def test_constant_casing(self, env): for const in True, False, None: const = str(const) tmpl = env.from_string( f"{{{{ {const} }}}}|{{{{ {const.lower()} }}}}|{{{{ {const.upper()} }}}}" ) assert tmpl.render() == f"{const}|{const}|" def test_test_chaining(self, env): pytest.raises( TemplateSyntaxError, env.from_string, "{{ foo is string is sequence }}" ) assert env.from_string("{{ 42 is string or 42 is number }}").render() == "True" def test_string_concatenation(self, env): tmpl = env.from_string('{{ "foo" "bar" "baz" }}') assert tmpl.render() == "foobarbaz" def test_notin(self, env): bar = range(100) tmpl = env.from_string("""{{ not 42 in bar }}""") assert tmpl.render(bar=bar) == "False" def test_operator_precedence(self, env): tmpl = env.from_string("""{{ 2 * 3 + 4 % 2 + 1 - 2 }}""") assert tmpl.render() == "5" def test_implicit_subscribed_tuple(self, env): class Foo: def __getitem__(self, x): return x t = env.from_string("{{ foo[1, 2] }}") assert t.render(foo=Foo()) == "(1, 2)" def test_raw2(self, env): tmpl = env.from_string("{% raw %}{{ FOO }} and {% BAR %}{% endraw %}") assert tmpl.render() == "{{ FOO }} and {% BAR %}" def test_const(self, env): tmpl = env.from_string( "{{ true }}|{{ false }}|{{ none }}|" "{{ none is defined }}|{{ missing is defined }}" ) assert tmpl.render() == "True|False|None|True|False" def test_neg_filter_priority(self, env): node = env.parse("{{ -1|foo }}") assert isinstance(node.body[0].nodes[0], nodes.Filter) assert isinstance(node.body[0].nodes[0].node, nodes.Neg) def test_const_assign(self, env): constass1 = """{% set true = 42 %}""" constass2 = """{% for none in seq %}{% endfor %}""" for tmpl in constass1, constass2: pytest.raises(TemplateSyntaxError, env.from_string, tmpl) def test_localset(self, env): tmpl = env.from_string( """{% set foo = 0 %}\ {% for item in [1, 2] %}{% set foo = 1 %}{% endfor %}\ {{ foo }}""" ) assert tmpl.render() == "0" def test_parse_unary(self, env): tmpl = env.from_string('{{ -foo["bar"] }}') assert tmpl.render(foo={"bar": 42}) == "-42" tmpl = env.from_string('{{ -foo["bar"]|abs }}') assert tmpl.render(foo={"bar": 42}) == "42"
TestSyntax
python
jmcnamara__XlsxWriter
xlsxwriter/test/sharedstrings/test_write_sst.py
{ "start": 328, "end": 1431 }
class ____(unittest.TestCase): """ Test the SharedStrings _write_sst() method. """ def setUp(self): self.fh = StringIO() self.sharedstrings = SharedStrings() self.sharedstrings._set_filehandle(self.fh) def test_write_sst(self): """Test the _write_sst() method""" string_table = SharedStringTable() # Add some strings and check the returned indices. string_table._get_shared_string_index("neptune") string_table._get_shared_string_index("neptune") string_table._get_shared_string_index("neptune") string_table._get_shared_string_index("mars") string_table._get_shared_string_index("venus") string_table._get_shared_string_index("mars") string_table._get_shared_string_index("venus") self.sharedstrings.string_table = string_table self.sharedstrings._write_sst() exp = """<sst xmlns="http://schemas.openxmlformats.org/spreadsheetml/2006/main" count="7" uniqueCount="3">""" got = self.fh.getvalue() self.assertEqual(exp, got)
TestWriteSst
python
django__django
django/template/loader_tags.py
{ "start": 2619, "end": 5780 }
class ____(Node): must_be_first = True context_key = "extends_context" def __init__(self, nodelist, parent_name, template_dirs=None): self.nodelist = nodelist self.parent_name = parent_name self.template_dirs = template_dirs self.blocks = {n.name: n for n in nodelist.get_nodes_by_type(BlockNode)} def __repr__(self): return "<%s: extends %s>" % (self.__class__.__name__, self.parent_name.token) def find_template(self, template_name, context): """ This is a wrapper around engine.find_template(). A history is kept in the render_context attribute between successive extends calls and passed as the skip argument. This enables extends to work recursively without extending the same template twice. """ history = context.render_context.setdefault( self.context_key, [self.origin], ) template, origin = context.template.engine.find_template( template_name, skip=history, ) history.append(origin) return template def get_parent(self, context): parent = self.parent_name.resolve(context) if not parent: error_msg = "Invalid template name in 'extends' tag: %r." % parent if self.parent_name.filters or isinstance(self.parent_name.var, Variable): error_msg += ( " Got this from the '%s' variable." % self.parent_name.token ) raise TemplateSyntaxError(error_msg) if isinstance(parent, Template): # parent is a django.template.Template return parent if isinstance(getattr(parent, "template", None), Template): # parent is a django.template.backends.django.Template return parent.template return self.find_template(parent, context) def render(self, context): compiled_parent = self.get_parent(context) if BLOCK_CONTEXT_KEY not in context.render_context: context.render_context[BLOCK_CONTEXT_KEY] = BlockContext() block_context = context.render_context[BLOCK_CONTEXT_KEY] # Add the block nodes from this node to the block context block_context.add_blocks(self.blocks) # If this block's parent doesn't have an extends node it is the root, # and its block nodes also need to be added to the block context. for node in compiled_parent.nodelist: # The ExtendsNode has to be the first non-text node. if not isinstance(node, TextNode): if not isinstance(node, ExtendsNode): blocks = { n.name: n for n in compiled_parent.nodelist.get_nodes_by_type(BlockNode) } block_context.add_blocks(blocks) break # Call Template._render explicitly so the parser context stays # the same. with context.render_context.push_state(compiled_parent, isolated_context=False): return compiled_parent._render(context)
ExtendsNode
python
kamyu104__LeetCode-Solutions
Python/average-of-levels-in-binary-tree.py
{ "start": 30, "end": 600 }
class ____(object): def averageOfLevels(self, root): """ :type root: TreeNode :rtype: List[float] """ result = [] q = [root] while q: total, count = 0, 0 next_q = [] for n in q: total += n.val count += 1 if n.left: next_q.append(n.left) if n.right: next_q.append(n.right) q = next_q result.append(float(total) / count) return result
Solution
python
pytorch__pytorch
test/onnx/model_defs/rnn_model_with_packed_sequence.py
{ "start": 67, "end": 611 }
class ____(nn.Module): def __init__(self, model, batch_first): super().__init__() self.model = model self.batch_first = batch_first def forward(self, input, *args): args, seq_lengths = args[:-1], args[-1] input = rnn_utils.pack_padded_sequence(input, seq_lengths, self.batch_first) rets = self.model(input, *args) ret, rets = rets[0], rets[1:] ret, _ = rnn_utils.pad_packed_sequence(ret, self.batch_first) return tuple([ret] + list(rets))
RnnModelWithPackedSequence
python
tensorflow__tensorflow
tensorflow/python/lib/io/tf_record_test.py
{ "start": 10409, "end": 12875 }
class ____(TFCompressionTestCase): """TFRecordWriter Zlib test""" def testZLibFlushRecord(self): """test ZLib Flush Record""" original = [b"small record"] fn = self._WriteRecordsToFile(original, "small_record") with open(fn, "rb") as h: buff = h.read() # creating more blocks and trailing blocks shouldn't break reads compressor = zlib.compressobj(9, zlib.DEFLATED, zlib.MAX_WBITS) output = b"" for c in buff: if isinstance(c, int): c = six.int2byte(c) output += compressor.compress(c) output += compressor.flush(zlib.Z_FULL_FLUSH) output += compressor.flush(zlib.Z_FULL_FLUSH) output += compressor.flush(zlib.Z_FULL_FLUSH) output += compressor.flush(zlib.Z_FINISH) # overwrite the original file with the compressed data with open(fn, "wb") as h: h.write(output) options = tf_record.TFRecordOptions(TFRecordCompressionType.ZLIB) actual = list(tf_record.tf_record_iterator(fn, options=options)) self.assertEqual(actual, original) def testZlibReadWrite(self): """Verify that files produced are zlib compatible.""" original = [b"foo", b"bar"] fn = self._WriteRecordsToFile(original, "zlib_read_write.tfrecord") zfn = self._ZlibCompressFile(fn, "zlib_read_write.tfrecord.z") # read the compressed contents and verify. options = tf_record.TFRecordOptions(TFRecordCompressionType.ZLIB) actual = list(tf_record.tf_record_iterator(zfn, options=options)) self.assertEqual(actual, original) def testZlibReadWriteLarge(self): """Verify that writing large contents also works.""" # Make it large (about 5MB) original = [_TEXT * 10240] fn = self._WriteRecordsToFile(original, "zlib_read_write_large.tfrecord") zfn = self._ZlibCompressFile(fn, "zlib_read_write_large.tfrecord.z") options = tf_record.TFRecordOptions(TFRecordCompressionType.ZLIB) actual = list(tf_record.tf_record_iterator(zfn, options=options)) self.assertEqual(actual, original) def testGzipReadWrite(self): """Verify that files produced are gzip compatible.""" original = [b"foo", b"bar"] fn = self._WriteRecordsToFile(original, "gzip_read_write.tfrecord") gzfn = self._GzipCompressFile(fn, "tfrecord.gz") options = tf_record.TFRecordOptions(TFRecordCompressionType.GZIP) actual = list(tf_record.tf_record_iterator(gzfn, options=options)) self.assertEqual(actual, original)
TFRecordWriterZlibTest
python
realpython__materials
emacs-the-best-python-editor/PyEval/pyeval_operator.py
{ "start": 564, "end": 1431 }
class ____: """ Common operator class used by the evaluator. """ def __init__(self, operator_string): """Create a new operator object.""" # String to hold the operator self._op_string = operator_string # Integer to hold the precedence self._op_prec = PRECEDENCE[operator_string] # Integer to hold the number of operands to use self._op_cnt = OPERAND_COUNT[operator_string] @property def op_string(self): return self._op_string @op_string.setter def op_string(self, new_op_string): self._op_string = new_op_string self._op_prec = PRECEDENCE[self._op_string] self._op_cnt = OPERAND_COUNT[self._op_string] @property def count(self): return self._op_cnt @property def precedence(self): return self._op_prec
Operator
python
apache__airflow
providers/amazon/src/airflow/providers/amazon/aws/operators/redshift_cluster.py
{ "start": 23231, "end": 28439 }
class ____(AwsBaseOperator[RedshiftHook]): """ Resume a paused AWS Redshift Cluster. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:RedshiftResumeClusterOperator` :param cluster_identifier: Unique identifier of the AWS Redshift cluster :param aws_conn_id: The Airflow connection used for AWS credentials. If this is ``None`` or empty then the default boto3 behaviour is used. If running Airflow in a distributed manner and aws_conn_id is None or empty, then default boto3 configuration would be used (and must be maintained on each worker node). :param region_name: AWS region_name. If not specified then the default boto3 behaviour is used. :param verify: Whether or not to verify SSL certificates. See: https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html :param poll_interval: Time (in seconds) to wait between two consecutive calls to check cluster state :param max_attempts: The maximum number of attempts to check the state of the cluster. :param wait_for_completion: If True, the operator will wait for the cluster to be in the `resumed` state. Default is False. :param deferrable: If True, the operator will run as a deferrable operator. """ template_fields: Sequence[str] = aws_template_fields( "cluster_identifier", ) ui_color = "#eeaa11" ui_fgcolor = "#ffffff" aws_hook_class = RedshiftHook def __init__( self, *, cluster_identifier: str, wait_for_completion: bool = False, deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False), poll_interval: int = 30, max_attempts: int = 30, **kwargs, ): super().__init__(**kwargs) self.cluster_identifier = cluster_identifier self.wait_for_completion = wait_for_completion self.deferrable = deferrable self.max_attempts = max_attempts self.poll_interval = poll_interval # These parameters are used to address an issue with the boto3 API where the API # prematurely reports the cluster as available to receive requests. This causes the cluster # to reject initial attempts to resume the cluster despite reporting the correct state. self._remaining_attempts = 10 self._attempt_interval = 15 def execute(self, context: Context): self.log.info("Starting resume cluster") while self._remaining_attempts: try: self.hook.conn.resume_cluster(ClusterIdentifier=self.cluster_identifier) break except self.hook.conn.exceptions.InvalidClusterStateFault as error: self._remaining_attempts -= 1 if self._remaining_attempts: self.log.error( "Unable to resume cluster. %d attempts remaining.", self._remaining_attempts ) time.sleep(self._attempt_interval) else: raise error if self.wait_for_completion: if self.deferrable: cluster_state = self.hook.cluster_status(cluster_identifier=self.cluster_identifier) if cluster_state == "available": self.log.info("Resumed cluster successfully") elif cluster_state == "deleting": raise AirflowException( "Unable to resume cluster since cluster is currently in status: %s", cluster_state ) else: self.defer( trigger=RedshiftResumeClusterTrigger( cluster_identifier=self.cluster_identifier, waiter_delay=self.poll_interval, waiter_max_attempts=self.max_attempts, aws_conn_id=self.aws_conn_id, ), method_name="execute_complete", # timeout is set to ensure that if a trigger dies, the timeout does not restart # 60 seconds is added to allow the trigger to exit gracefully (i.e. yield TriggerEvent) timeout=timedelta(seconds=self.max_attempts * self.poll_interval + 60), ) else: waiter = self.hook.get_waiter("cluster_resumed") waiter.wait( ClusterIdentifier=self.cluster_identifier, WaiterConfig={ "Delay": self.poll_interval, "MaxAttempts": self.max_attempts, }, ) def execute_complete(self, context: Context, event: dict[str, Any] | None = None) -> None: validated_event = validate_execute_complete_event(event) if validated_event["status"] != "success": raise AirflowException(f"Error resuming cluster: {validated_event}") self.log.info("Resumed cluster successfully")
RedshiftResumeClusterOperator
python
pytorch__pytorch
test/mobile/model_test/nn_ops.py
{ "start": 6534, "end": 7374 }
class ____(torch.nn.Module): def __init__(self) -> None: super().__init__() self.rnn = nn.ModuleList( [ nn.RNN(4, 8, 2), nn.RNNCell(4, 8), ] ) self.gru = nn.ModuleList([nn.GRU(4, 8, 2), nn.GRUCell(4, 8)]) self.lstm = nn.ModuleList( [ nn.LSTM(4, 8, 2), nn.LSTMCell(4, 8), ] ) def forward(self): input = torch.randn(5, 3, 4) h = torch.randn(2, 3, 8) c = torch.randn(2, 3, 8) r = self.rnn[0](input, h) r = self.rnn[1](input[0], h[0]) r = self.gru[0](input, h) r = self.gru[1](input[0], h[0]) r = self.lstm[0](input, (h, c)) r = self.lstm[1](input[0], (h[0], c[0])) return len(r)
NNRecurrentModule
python
scipy__scipy
benchmarks/benchmarks/go_benchmark_functions/go_funcs_C.py
{ "start": 3282, "end": 4314 }
class ____(Benchmark): r""" Cigar objective function. This class defines the Cigar [1]_ global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\text{Cigar}}(x) = x_1^2 + 10^6\sum_{i=2}^{n} x_i^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \in [-100, 100]` for :math:`i = 1, ..., n`. *Global optimum*: :math:`f(x) = 0` for :math:`x_i = 0` for :math:`i = 1, ..., n` .. [1] Gavana, A. Global Optimization Benchmarks and AMPGO retrieved 2015 """ change_dimensionality = True def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = list(zip([-100.0] * self.N, [100.0] * self.N)) self.custom_bounds = [(-5, 5), (-5, 5)] self.global_optimum = [[0 for _ in range(self.N)]] self.fglob = 0.0 def fun(self, x, *args): self.nfev += 1 return x[0] ** 2 + 1e6 * sum(x[1:] ** 2)
Cigar
python
python-poetry__poetry
src/poetry/utils/env/mock_env.py
{ "start": 305, "end": 2633 }
class ____(NullEnv): def __init__( self, version_info: tuple[int, int, int] | PythonVersion = (3, 7, 0), *, python_implementation: str = "CPython", platform: str = "darwin", platform_machine: str = "amd64", os_name: str = "posix", is_venv: bool = False, sys_path: list[str] | None = None, marker_env: dict[str, Any] | None = None, supported_tags: list[Tag] | None = None, **kwargs: Any, ) -> None: super().__init__(**kwargs) if len(version_info) == 3: version_info = (*version_info, "final", 0) self._version_info = version_info self._python_implementation = python_implementation self._platform = platform self._platform_machine = platform_machine self._os_name = os_name self._is_venv = is_venv self._sys_path = sys_path self._mock_marker_env = marker_env self._supported_tags = supported_tags @property def platform(self) -> str: return self._platform @property def platform_machine(self) -> str: return self._platform_machine @property def os(self) -> str: return self._os_name @property def sys_path(self) -> list[str]: if self._sys_path is None: return super().sys_path return self._sys_path def get_marker_env(self) -> MarkerEnv: marker_env = super().get_marker_env() marker_env["version_info"] = self._version_info marker_env["python_version"] = ".".join(str(v) for v in self._version_info[:2]) marker_env["python_full_version"] = ".".join( str(v) for v in self._version_info[:3] ) marker_env["sys_platform"] = self._platform marker_env["platform_machine"] = self._platform_machine marker_env["interpreter_name"] = self._python_implementation.lower() marker_env["interpreter_version"] = "cp" + "".join( str(v) for v in self._version_info[:2] ) if self._mock_marker_env is not None: for key, value in self._mock_marker_env.items(): marker_env[key] = value # type: ignore[literal-required] return marker_env def is_venv(self) -> bool: return self._is_venv
MockEnv
python
altair-viz__altair
altair/vegalite/v6/schema/_config.py
{ "start": 64676, "end": 65470 }
class ____(TypedDict, total=False): """ :class:`altair.BindCheckbox` ``TypedDict`` wrapper. Parameters ---------- input debounce If defined, delays event handling until the specified milliseconds have elapsed since the last event was fired. element An optional CSS selector string indicating the parent element to which the input element should be added. By default, all input elements are added within the parent container of the Vega view. name By default, the signal name is used to label input elements. This ``name`` property can be used instead to specify a custom label for the bound signal. """ input: Literal["checkbox"] debounce: float element: str name: str
BindCheckboxKwds
python
more-itertools__more-itertools
tests/test_more.py
{ "start": 221048, "end": 222261 }
class ____(TestCase): def test_concurrent_calls(self): unique = 10 # Number of distinct counters repetitions = 5 # Number of times each counter is used limit = 100 # Calls per counter per repetition @mi.synchronized def atomic_counter(): # This is a generator so that non-concurrent calls are detectable. # To make calls while running more likely, this code uses random # time delays. i = 0 while True: yield i next_i = i + 1 sleep(random() / 1000) i = next_i def consumer(counter): for i in range(limit): next(counter) unique_counters = [atomic_counter() for _ in range(unique)] counters = unique_counters * repetitions workers = [ Thread(target=consumer, args=[counter]) for counter in counters ] for worker in workers: worker.start() for worker in workers: worker.join() self.assertEqual( {next(counter) for counter in unique_counters}, {limit * repetitions}, )
TestSynchronized
python
tensorflow__tensorflow
tensorflow/python/kernel_tests/control_flow/cond_v2_test.py
{ "start": 48258, "end": 50241 }
class ____(test.TestCase): def testCollectionIntValueAccessInCond(self): """Read values from graph collections inside of cond_v2.""" with ops.Graph().as_default() as g: with self.session(graph=g): x = 2 y = 5 ops.add_to_collection("x", x) ops.add_to_collection("y", y) def fn(): x_const = constant_op.constant(ops.get_collection("x")[0]) y_const = constant_op.constant(ops.get_collection("y")[0]) return math_ops.add(x_const, y_const) cnd = cond_v2.cond_v2(constant_op.constant(True), fn, fn) self.assertEqual(self.evaluate(cnd), 7) def testCollectionTensorValueAccessInCond(self): """Read tensors from collections inside of cond_v2 & use them.""" with ops.Graph().as_default() as g: with self.session(graph=g): x = constant_op.constant(2) y = constant_op.constant(5) ops.add_to_collection("x", x) ops.add_to_collection("y", y) def fn(): x_read = ops.get_collection("x")[0] y_read = ops.get_collection("y")[0] return math_ops.add(x_read, y_read) cnd = cond_v2.cond_v2(math_ops.less(x, y), fn, fn) self.assertEqual(self.evaluate(cnd), 7) def testCollectionIntValueWriteInCond(self): """Make sure Int writes to collections work inside of cond_v2.""" with ops.Graph().as_default() as g: with self.session(graph=g): x = constant_op.constant(2) y = constant_op.constant(5) def true_fn(): z = math_ops.add(x, y) ops.add_to_collection("z", 7) return math_ops.mul(x, z) def false_fn(): z = math_ops.add(x, y) return math_ops.mul(x, z) cnd = cond_v2.cond_v2(constant_op.constant(True), true_fn, false_fn) self.assertEqual(self.evaluate(cnd), 14) read_z_collection = ops.get_collection("z") self.assertEqual(read_z_collection, [7])
CondV2CollectionTest
python
spack__spack
var/spack/test_repos/spack_repo/builtin_mock/packages/forward_multi_value/package.py
{ "start": 217, "end": 860 }
class ____(Package): """A package that forwards the value of a multi-valued variant to a dependency""" homepage = "http://www.spack.llnl.gov" url = "http://www.spack.llnl.gov/mpileaks-1.0.tar.gz" version("1.0", md5="0123456789abcdef0123456789abcdef") variant("cuda", default=False, description="Build with CUDA") variant("cuda_arch", values=any_combination_of("10", "11"), when="+cuda") depends_on("dependency-mv") requires("^dependency-mv cuda_arch=10", when="+cuda cuda_arch=10 ^dependency-mv+cuda") requires("^dependency-mv cuda_arch=11", when="+cuda cuda_arch=11 ^dependency-mv+cuda")
ForwardMultiValue
python
airbytehq__airbyte
airbyte-ci/connectors/metadata_service/lib/metadata_service/models/generated/ConnectorMetadataDefinitionV0.py
{ "start": 8868, "end": 9423 }
class ____(BaseModel): class Config: extra = Extra.forbid suite: Literal["unitTests", "integrationTests", "acceptanceTests", "liveTests"] = ( Field(..., description="Name of the configured test suite") ) testSecrets: Optional[List[Secret]] = Field( None, description="List of secrets required to run the test suite" ) testConnections: Optional[List[TestConnections]] = Field( None, description="List of sandbox cloud connections that tests can be run against", )
ConnectorTestSuiteOptions
python
facebook__pyre-check
source/interprocedural_analyses/taint/test/integration/dictionary.py
{ "start": 9228, "end": 12767 }
class ____(Dict[Any, Any]): foo: int = 0 def __setitem__(self, key: Any, value: Any) -> None: self.foo = value def setitem_models(d3: Dict[str, Any], x): # Use the custom model of __setitem__ for MyDict d1 = MyDict() d1["a"] = x # Use the built-in model of __setitem__ for dict d2 = {} d2["b"] = x # Use the built-in model of __setitem__ for any subtype # of dict. This is incorrect, but can lead to higher SNR. d3["c"] = x return d1, d2, d3 def backward_weak_update(d: Dict[Any, Any]): # This translates to d["x"] = 0; d[**keys] = "x"; # We need to infer that d's keys are a sink, by doing weak updates. d["x"] = 0 _test_sink(d.keys()) # d[**keys] is a sink def walrus_operator(y): d = {} d[(x := _test_source())] = (x := y) # We do a weak update on `d.**keys`, which join the results of both # clearing and not clearing the taint on `d.**keys` return d, x def forward_weak_update(): d = {} d[_test_source()] = 0 d["x"] = 0 # Should not strong update d.**keys return d def analyze_getitem_index_issue(): x = _test_source() d = {} y = d[_test_sink(x)] def analyze_getitem_index_backward(x): d = {} y = d[_test_sink(x)] def issue_in_keys(): d = {} d[_test_source()] = "bar" backward_weak_update(d) # Issue here _test_sink(d.keys()) # Issue here def dictionary_tito_any_index(arg): return {i: arg for i in range(10)} def dictionary_int_key(): d = {0: _test_source()} _test_sink(d[0]) _test_sink(d[1]) def dictionary_bool_key(): d = {True: _test_source()} _test_sink(d[0]) _test_sink(d[1]) def dictionary_update_keyword(): d = {} d.update(a={"b": _test_source()}) _test_sink(d["a"]["b"]) # TODO(T136908911): Special case update with keyword arguments. _test_sink(d["b"]) def dictionary_update_iterable(): d = {"a": 0} # TODO(T136908911): Special case update with iterable. d.update([("b", _test_source())]) _test_sink(d["a"]) _test_sink(d["b"]) d = {"a": 0} d.update([("b", 0), ("c", _test_source())]) _test_sink(d["a"]) _test_sink(d["b"]) _test_sink(d["c"]) def dict_update_keys(arg: Dict[str, str]) -> Dict[str, str]: return {"key": value for key, value in arg.items()} def dictionary_keys_and_any_index_bug(arg: Dict[str, str]) -> Dict[str, str]: d = dict_update_keys(arg) _test_sink(d.keys()) return d def dict_get_foo(d: Dict[str, str]) -> Optional[str]: return d.get("foo") def dict_get_foo_with_default(d: Dict[str, str], default: str) -> str: return d.get("foo", default) def test_dict_get_foo_tito() -> None: _test_sink(dict_get_foo({"foo": _test_source()})) # Issue. _test_sink(dict_get_foo({"bar": _test_source()})) # Not an issue. def test_dict_get_source() -> None: d = {"foo": _test_source(), "bar": ""} _test_sink(d.get("foo")) # Issue. _test_sink(d.get("bar")) # Not an issue. def test_dict_multiple_targets() -> None: x: dict[str, Any] = {"foo": ""} x["foo"], x["bar"] = _test_source(), _test_source() _test_sink(x["foo"]), _test_sink(x["bar"]) # Issue, Issue x["foo"], x["bar"] = "", "" _test_sink(x["foo"]), _test_sink(x["bar"]) # No Issue, No Issue def dict_getitem_mutate(x: str, j: int) -> str: d: Dict[int, str] = {i: "" for i in range(10)} d[j] += x return d[j] def test_dict_getitem_mutate(): _test_sink(dict_getitem_mutate(_test_source(), 1))
MyDict
python
getsentry__sentry
src/sentry/api/bases/project.py
{ "start": 1242, "end": 2168 }
class ____(OrganizationPermission): scope_map = { "GET": ["project:read", "project:write", "project:admin"], "POST": ["project:write", "project:admin"], "PUT": ["project:write", "project:admin"], "DELETE": ["project:admin"], } def has_object_permission(self, request: Request, view: APIView, project: Project) -> bool: # type: ignore[override] # XXX: inheritance-for-convenience has_org_scope = super().has_object_permission(request, view, project.organization) # If allow_joinleave is False, some org-roles will not have project:read for all projects if has_org_scope and request.access.has_project_access(project): return has_org_scope assert request.method is not None allowed_scopes = set(self.scope_map.get(request.method, [])) return request.access.has_any_project_scope(project, allowed_scopes)
ProjectPermission
python
dagster-io__dagster
python_modules/dagster/dagster/_grpc/server.py
{ "start": 53923, "end": 58658 }
class ____: def __init__( self, server_termination_event: threading.Event, dagster_api_servicer: DagsterApiServicer, logger: logging.Logger, threadpool_executor: FuturesAwareThreadPoolExecutor, host="localhost", port: Optional[int] = None, socket: Optional[str] = None, enable_metrics: bool = False, ): check.invariant( port is not None if seven.IS_WINDOWS else True, "You must pass a valid `port` on Windows: `socket` not supported.", ) check.invariant( (port or socket) and not (port and socket), "You must pass one and only one of `port` or `socket`.", ) check.invariant( host is not None if port else True, "Must provide a host when serving on a port", ) self._logger = logger self._enable_metrics = check.bool_param(enable_metrics, "enable_metrics") self._threadpool_executor = threadpool_executor if self._enable_metrics: _update_threadpool_metrics(self._threadpool_executor) self.server = grpc.server( self._threadpool_executor, compression=grpc.Compression.Gzip, options=[ ("grpc.max_send_message_length", max_send_bytes()), ("grpc.max_receive_message_length", max_rx_bytes()), ], ) self._server_termination_event = server_termination_event self._api_servicer = dagster_api_servicer # Create a health check servicer self._health_servicer = health.HealthServicer() health_pb2_grpc.add_HealthServicer_to_server(self._health_servicer, self.server) add_DagsterApiServicer_to_server(self._api_servicer, self.server) if port: server_address = host + ":" + str(port) else: server_address = "unix:" + os.path.abspath(check.not_none(socket)) # grpc.Server.add_insecure_port returns: # - 0 on failure # - port number when a port is successfully bound # - 1 when a UDS is successfully bound res = self.server.add_insecure_port(server_address) if socket and res != 1: raise CouldNotBindGrpcServerToAddress(socket) if port and res != port: raise CouldNotBindGrpcServerToAddress(port) def serve(self): # Unfortunately it looks like ports bind late (here) and so this can fail with an error # from C++ like: # # E0625 08:46:56.180112000 4697443776 server_chttp2.cc:40] # {"created":"@1593089216.180085000","description":"Only 1 addresses added out of total # 2 resolved","file":"src/core/ext/transport/chttp2/server/chttp2_server.cc", # "file_line":406,"referenced_errors":[{"created":"@1593089216.180083000","description": # "Unable to configure socket","fd":6,"file": # "src/core/lib/iomgr/tcp_server_utils_posix_common.cc","file_line":217, # "referenced_errors":[{"created":"@1593089216.180079000", # "description":"Address already in use","errno":48,"file": # "src/core/lib/iomgr/tcp_server_utils_posix_common.cc","file_line":190,"os_error": # "Address already in use","syscall":"bind"}]}]} # # This is printed to stdout and there is no return value from server.start or exception # raised in Python that we can use to handle this. The standard recipes for hijacking C # stdout (so we could inspect this output and respond accordingly), e.g. # https://eli.thegreenplace.net/2015/redirecting-all-kinds-of-stdout-in-python/, don't seem # to work (at least on Mac OS X) against grpc, and in any case would involve a huge # cross-version and cross-platform maintenance burden. We have an issue open against grpc, # https://github.com/grpc/grpc/issues/23315, and our own tracking issue at self.server.start() # Note: currently this is hardcoded as serving, since both services are cohosted self._health_servicer.set("DagsterApi", health_pb2.HealthCheckResponse.SERVING) server_termination_thread = threading.Thread( target=server_termination_target, args=[self._server_termination_event, self.server, self._logger], name="grpc-server-termination", daemon=True, ) server_termination_thread.start() try: self.server.wait_for_termination() finally: self._api_servicer.cleanup() # pyright: ignore[reportAttributeAccessIssue] server_termination_thread.join()
DagsterGrpcServer
python
kamyu104__LeetCode-Solutions
Python/max-chunks-to-make-sorted.py
{ "start": 396, "end": 855 }
class ____(object): def maxChunksToSorted(self, arr): """ :type arr: List[int] :rtype: int """ result, increasing_stk = 0, [] for num in arr: max_num = num if not increasing_stk else max(increasing_stk[-1], num) while increasing_stk and increasing_stk[-1] > num: increasing_stk.pop() increasing_stk.append(max_num) return len(increasing_stk)
Solution2
python
tornadoweb__tornado
tornado/test/httputil_test.py
{ "start": 3097, "end": 3394 }
class ____(unittest.TestCase): def test_parsing(self): qsstring = "a=1&b=2&a=3" qs = urllib.parse.parse_qs(qsstring) qsl = list(qs_to_qsl(qs)) self.assertIn(("a", "1"), qsl) self.assertIn(("a", "3"), qsl) self.assertIn(("b", "2"), qsl)
QsParseTest
python
astropy__astropy
astropy/cosmology/_src/tests/io/test_cosmology.py
{ "start": 2092, "end": 2308 }
class ____(IODirectTestBase, ToFromCosmologyTestMixin): """Directly test ``to/from_cosmology``.""" def setup_class(self): self.functions = {"to": to_cosmology, "from": from_cosmology}
TestToFromCosmology
python
run-llama__llama_index
llama-index-core/tests/indices/vector_store/mock_services.py
{ "start": 91, "end": 1980 }
class ____(BaseEmbedding): @classmethod def class_name(cls) -> str: return "MockEmbedding" async def _aget_query_embedding(self, query: str) -> List[float]: del query return [0, 0, 1, 0, 0] async def _aget_text_embedding(self, text: str) -> List[float]: # assume dimensions are 5 if text == "Hello world.": return [1, 0, 0, 0, 0] elif text == "This is a test.": return [0, 1, 0, 0, 0] elif text == "This is another test.": return [0, 0, 1, 0, 0] elif text == "This is a test v2.": return [0, 0, 0, 1, 0] elif text == "This is a test v3.": return [0, 0, 0, 0, 1] elif text == "This is bar test.": return [0, 0, 1, 0, 0] elif text == "Hello world backup.": # this is used when "Hello world." is deleted. return [1, 0, 0, 0, 0] else: return [0, 0, 0, 0, 0] def _get_query_embedding(self, query: str) -> List[float]: del query # Unused return [0, 0, 1, 0, 0] def _get_text_embedding(self, text: str) -> List[float]: """Mock get text embedding.""" # assume dimensions are 5 if text == "Hello world.": return [1, 0, 0, 0, 0] elif text == "This is a test.": return [0, 1, 0, 0, 0] elif text == "This is another test.": return [0, 0, 1, 0, 0] elif text == "This is a test v2.": return [0, 0, 0, 1, 0] elif text == "This is a test v3.": return [0, 0, 0, 0, 1] elif text == "This is bar test.": return [0, 0, 1, 0, 0] elif text == "Hello world backup.": # this is used when "Hello world." is deleted. return [1, 0, 0, 0, 0] else: return [0, 0, 0, 0, 0]
MockEmbedding
python
pytorch__pytorch
test/inductor/test_inductor_annotations.py
{ "start": 280, "end": 1305 }
class ____(TestCase): def get_code(self): def f(a, b): return a + b, a * b a = torch.randn(5, device="cuda") b = torch.randn(5, device="cuda") f_comp = torch.compile(f) _, code = run_and_get_code(f_comp, a, b) return code[0] @requires_cuda_and_triton def test_no_annotations(self): code = self.get_code() self.assertTrue("from torch.cuda import nvtx" not in code) self.assertTrue("training_annotation" not in code) @inductor_config.patch(annotate_training=True) @requires_cuda_and_triton def test_training_annotation(self): code = self.get_code() self.assertTrue("from torch.cuda import nvtx" in code) self.assertTrue( code.count("training_annotation = nvtx._device_range_start('inference')") >= 1 ) self.assertTrue(code.count("nvtx._device_range_end(training_annotation)") >= 1) if __name__ == "__main__": run_tests()
InductorAnnotationTestCase
python
django__django
tests/model_forms/tests.py
{ "start": 28749, "end": 29508 }
class ____(forms.ModelForm): class Meta: model = Category fields = ["name", "url", "slug"] widgets = { "name": forms.Textarea, "url": forms.TextInput(attrs={"class": "url"}), } labels = { "name": "Title", } help_texts = { "slug": "Watch out! Letters, numbers, underscores and hyphens only.", } error_messages = { "slug": { "invalid": ( "Didn't you read the help text? " "We said letters, numbers, underscores and hyphens only!" ) } } field_classes = { "url": forms.URLField, }
FieldOverridesByFormMetaForm
python
falconry__falcon
examples/recipes/output_csv_text_wsgi.py
{ "start": 38, "end": 438 }
class ____: def on_get(self, req, resp): output = io.StringIO() writer = csv.writer(output, quoting=csv.QUOTE_NONNUMERIC) writer.writerow(('fruit', 'quantity')) writer.writerow(('apples', 13)) writer.writerow(('oranges', 37)) resp.content_type = falcon.MEDIA_CSV resp.downloadable_as = 'report.csv' resp.text = output.getvalue()
Report
python
getsentry__sentry
tests/sentry/workflow_engine/processors/test_delayed_workflow.py
{ "start": 38615, "end": 44798 }
class ____: def test_event_key_from_redis_key(self) -> None: key = "123:456:789:1,2,3:10,9,8" event_key = EventKey.from_redis_key(key) assert event_key.workflow_id == 123 assert event_key.group_id == 456 assert event_key.when_dcg_id == 789 assert event_key.if_dcg_ids == frozenset([1, 2, 3]) assert event_key.passing_dcg_ids == frozenset([10, 9, 8]) assert event_key.original_key == key def test_event_key_from_redis_key_invalid(self) -> None: # Test various invalid key formats invalid_cases = [ "invalid-key", # missing colons "1:2:3:4:5:6", # too many parts "1:2", # too few parts "1:2:3:invalid_type", # invalid type "1:2:3:invalid_type:2", # invalid dcg_ids format "not_a_number:2:3:4:5", # non-numeric workflow_id "1:not_a_number:3:4:5,6", # non-numeric group_id ] for key in invalid_cases: with pytest.raises(ValueError): EventKey.from_redis_key(key) def test_event_key_str_and_hash(self) -> None: key = "123:456:789:1,2,3:10,9,8" event_key = EventKey.from_redis_key(key) assert str(event_key) == key assert hash(event_key) == hash(key) assert event_key == EventKey.from_redis_key(key) assert event_key != EventKey.from_redis_key("122:456:789:1,2,3:10,9,8") def test_event_instance_validation(self) -> None: # Test valid event instance instance = EventInstance(event_id="test-event") assert instance.event_id == "test-event" assert instance.occurrence_id is None # Test with occurrence ID instance = EventInstance(event_id="test-event", occurrence_id="test-occurrence") assert instance.event_id == "test-event" assert instance.occurrence_id == "test-occurrence" # Test empty occurrence ID is converted to None instance = EventInstance(event_id="test-event", occurrence_id="") assert instance.event_id == "test-event" assert instance.occurrence_id is None # Test whitespace occurrence ID is converted to None instance = EventInstance(event_id="test-event", occurrence_id=" ") assert instance.event_id == "test-event" assert instance.occurrence_id is None # Test invalid cases invalid_cases = [ ('{"occurrence_id": "test-occurrence"}', "event_id"), # missing event_id ('{"event_id": ""}', "event_id"), # empty event_id ('{"event_id": " "}', "event_id"), # whitespace event_id ('{"event_id": null}', "event_id"), # null event_id ] for json_data, expected_error in invalid_cases: with pytest.raises(ValueError, match=expected_error): EventInstance.parse_raw(json_data) # Test that extra fields are ignored instance = EventInstance.parse_raw('{"event_id": "test", "extra": "field"}') assert instance.event_id == "test" assert instance.occurrence_id is None instance = EventInstance.parse_raw( '{"event_id": "test", "occurrence_id": "test", "extra": "field"}' ) assert instance.event_id == "test" assert instance.occurrence_id == "test" @patch("sentry.workflow_engine.processors.delayed_workflow.logger") def test_from_redis_data_continue_on_error(self, mock_logger: MagicMock) -> None: # Create a mix of valid and invalid data redis_data = { "123:456:789:1,2,3:10,9,8": '{"event_id": "valid-1"}', # valid "439:1:3487:134,6:34": '{"occurrence_id": "invalid-1"}', # missing event_id "5:456:22:1:44,33": '{"event_id": "valid-2"}', # valid } # With continue_on_error=True, should return valid entries and log errors result = EventRedisData.from_redis_data(redis_data, continue_on_error=True) assert len(result.events) == 2 assert ( result.events[EventKey.from_redis_key("123:456:789:1,2,3:10,9,8")].event_id == "valid-1" ) assert result.events[EventKey.from_redis_key("5:456:22:1:44,33")].event_id == "valid-2" # Verify error was logged mock_logger.exception.assert_called_once_with( "Failed to parse workflow event data", extra={ "key": "439:1:3487:134,6:34", "value": '{"occurrence_id": "invalid-1"}', "error": ANY, }, ) # With continue_on_error=False, should raise on first error with pytest.raises(ValueError, match="event_id"): EventRedisData.from_redis_data(redis_data, continue_on_error=False) @patch("sentry.workflow_engine.processors.delayed_workflow.logger") def test_from_redis_data_invalid_keys(self, mock_logger: MagicMock) -> None: # Create data with an invalid key structure redis_data = { "123:456:789:1,2,3:10,9,8": '{"event_id": "valid-1"}', # valid "invalid-key": '{"event_id": "valid-2"}', # invalid key format "5:456:22:1:44,33": '{"event_id": "valid-3"}', # valid } # With continue_on_error=True, should return valid entries and log errors result = EventRedisData.from_redis_data(redis_data, continue_on_error=True) assert len(result.events) == 2 assert ( result.events[EventKey.from_redis_key("123:456:789:1,2,3:10,9,8")].event_id == "valid-1" ) assert result.events[EventKey.from_redis_key("5:456:22:1:44,33")].event_id == "valid-3" # Verify error was logged mock_logger.exception.assert_called_once_with( "Failed to parse workflow event data", extra={ "key": "invalid-key", "value": '{"event_id": "valid-2"}', "error": ANY, }, ) # With continue_on_error=False, should raise on first error with pytest.raises(ValueError): EventRedisData.from_redis_data(redis_data, continue_on_error=False)
TestEventKeyAndInstance
python
getsentry__sentry
tests/sentry/integrations/msteams/test_message_builder.py
{ "start": 17555, "end": 19569 }
class ____(TestCase): def setUp(self) -> None: owner = self.create_user() self.org = self.create_organization(owner=owner) self.notification = DummyNotificationWithMoreFields(self.org) self.project1 = self.create_project(organization=self.org) self.group1 = self.create_group(project=self.project1) self.notification.group = self.group1 self.context = {"some_field": "some_value"} self.recipient = owner def test_simple(self) -> None: notification_card = MSTeamsNotificationsMessageBuilder( self.notification, self.context, Actor.from_object(self.recipient), ).build_notification_card() body = notification_card["body"] assert 4 == len(body) title = body[0] assert "Notification Title with some\\_value" == title["text"] group_title = body[1] assert "[My Title]" in group_title["text"] assert TextSize.LARGE == group_title["size"] assert TextWeight.BOLDER == group_title["weight"] description = body[2] assert "Message Description" in description["text"] assert TextSize.MEDIUM == description["size"] footer = body[3] assert 2 == len(footer) logo = footer["columns"][0]["items"][0] assert "Image" == logo["type"] assert "20px" == logo["height"] footer_text = footer["columns"][1]["items"][0] assert "Notification Footer" in footer_text["text"] assert TextSize.SMALL == footer_text["size"] def test_without_footer(self) -> None: dummy_notification = DummyNotification(self.org) dummy_notification.group = self.group1 notification_card = MSTeamsNotificationsMessageBuilder( dummy_notification, self.context, Actor.from_object(self.recipient), ).build_notification_card() assert 2 == len(notification_card["body"])
MSTeamsNotificationMessageBuilderTest
python
coleifer__peewee
tests/migrations.py
{ "start": 34081, "end": 34276 }
class ____(TestModel): key = TextField() value = IntegerField() class Meta: constraints = [ SQL("CHECK (key != '')"), SQL('CHECK (value > 0)')]
HasChecks
python
huggingface__transformers
src/transformers/models/fsmt/modeling_fsmt.py
{ "start": 43929, "end": 47040 }
class ____(nn.Embedding): """ This module produces sinusoidal positional embeddings of any length. We don't want to save the weight of this embedding since it's not trained (deterministic) and it can be huge. Padding symbols are ignored. These embeddings get automatically extended in forward if more positions is needed. """ def __init__(self, num_positions, embedding_dim, padding_idx): super().__init__(num_positions, embedding_dim, padding_idx) def make_weight(self, num_positions, embedding_dim, padding_idx): weight = self.get_embedding(num_positions, embedding_dim, padding_idx) # in forward put the weights on the correct dtype and device of the param weight = weight.to(dtype=self.weight.dtype, device=self.weight.device) self.weight = nn.Parameter(weight) self.weight.detach_() self.weight.requires_grad = False @staticmethod def get_embedding(num_embeddings, embedding_dim, padding_idx): """ Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) if padding_idx is not None: emb[padding_idx, :] = 0 return emb @staticmethod def make_positions(tensor, padding_idx: int): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. """ # The series of casts and type-conversions here are carefully # balanced to both work with ONNX export and XLA. In particular XLA # prefers ints, cumsum defaults to output longs, and ONNX doesn't know # how to handle the dtype kwarg in cumsum. mask = tensor.ne(padding_idx).int() return (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + padding_idx def forward( self, input, incremental_state: Optional[Any] = None, timestep: Optional[Tensor] = None, ): """Input is expected to be of size [bsz x seqlen].""" bsz, seq_len = input.shape[:2] max_pos = self.padding_idx + 1 + seq_len if max_pos > self.weight.size(0): # expand embeddings if needed self.make_weight(max_pos, self.embedding_dim, self.padding_idx) positions = self.make_positions(input, self.padding_idx) return super().forward(positions) __all__ = ["FSMTForConditionalGeneration", "FSMTModel", "PretrainedFSMTModel"]
SinusoidalPositionalEmbedding
python
huggingface__transformers
tests/models/smolvlm/test_modeling_smolvlm.py
{ "start": 5231, "end": 13530 }
class ____(ModelTesterMixin, unittest.TestCase): """ Model tester for `SmolVLM`. """ all_model_classes = (SmolVLMModel,) if is_torch_available() else () test_resize_embeddings = True def setUp(self): self.model_tester = SmolVLMVisionText2TextModelTester(self) self.config_tester = ConfigTester( self, config_class=SmolVLMConfig, has_text_modality=False, common_properties=["image_token_id"] ) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="Model does not support padding right") def test_flash_attn_2_inference_padding_right(self): pass @unittest.skip(reason="Compile not yet supported in SmolVLM models") @pytest.mark.torch_compile_test def test_sdpa_can_compile_dynamic(self): pass @unittest.skip(reason="Compile not yet supported in SmolVLM models") def test_sdpa_can_dispatch_on_flash(self): pass # We need to override as we need to prepare such that the image token is the last token def test_resize_tokens_embeddings(self): (original_config, inputs_dict) = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config) model.to(torch_device) if self.model_tester.is_training is False: model.eval() model_vocab_size = config.text_config.vocab_size # Retrieve the embeddings and clone theme model_embed = model.resize_token_embeddings(model_vocab_size) cloned_embeddings = model_embed.weight.clone() # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size + 10) self.assertEqual(model.config.text_config.vocab_size, model_vocab_size + 10) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size - 15) self.assertEqual(model.config.text_config.vocab_size, model_vocab_size - 15) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15) # Ignore copy # Check that the model can still do a forward pass successfully (every parameter should be resized) # Input ids should be clamped to the maximum size of the vocabulary - 1 and the image token should be the last token inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 2) n_images = self.model_tester.num_images * self.model_tester.seq_length model.image_token_id = model_vocab_size - 15 - 1 inputs_dict["input_ids"][:, -n_images:] = model.image_token_id # make sure that decoder_input_ids are resized as well if "decoder_input_ids" in inputs_dict: inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that adding and removing tokens has not modified the first part of the embedding matrix. models_equal = True for p1, p2 in zip(cloned_embeddings, model_embed.weight): if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) config = copy.deepcopy(original_config) model = model_class(config) model.to(torch_device) model_vocab_size = config.text_config.vocab_size model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1) self.assertTrue(model.config.text_config.vocab_size + 10, model_vocab_size) model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64) self.assertTrue(model_embed.weight.shape[0] // 64, 0) self.assertTrue(model_embed.weight.shape[0], model.config.text_config.vocab_size) self.assertTrue(model.config.text_config.vocab_size, model.vocab_size) model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64) self.assertTrue(model_embed.weight.shape[0] // 64, 0) # Check that resizing a model to a multiple of pad_to_multiple leads to a model of exactly that size target_dimension = 128 model_embed = model.resize_token_embeddings(target_dimension, pad_to_multiple_of=64) self.assertTrue(model_embed.weight.shape[0], target_dimension) with self.assertRaisesRegex( ValueError, "Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer", ): model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3) # We need to override as we need to prepare such that the image token is the last token def test_resize_embeddings_untied(self): (original_config, inputs_dict) = self.model_tester.prepare_config_and_inputs_for_common() original_config.tie_word_embeddings = False for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config).to(torch_device) model.eval() # if no output embeddings -> leave test if model.get_output_embeddings() is None: continue # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_vocab_size = config.text_config.vocab_size model.resize_token_embeddings(model_vocab_size + 10) self.assertEqual(model.config.text_config.vocab_size, model_vocab_size + 10) output_embeds = model.get_output_embeddings() self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10) # Check bias if present if output_embeds.bias is not None: self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model.resize_token_embeddings(model_vocab_size - 15) self.assertEqual(model.config.text_config.vocab_size, model_vocab_size - 15) # Check that it actually resizes the embeddings matrix output_embeds = model.get_output_embeddings() self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15) # Check bias if present if output_embeds.bias is not None: self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15) # Check that the model can still do a forward pass successfully (every parameter should be resized) # Input ids should be clamped to the maximum size of the vocabulary - 1 and the image token should be the last token inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 2) n_images = self.model_tester.num_images * self.model_tester.seq_length model.image_token_id = model_vocab_size - 15 - 1 inputs_dict["input_ids"][:, -n_images:] = model.image_token_id # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) @require_torch
SmolVLMModelTest
python
apache__airflow
providers/databricks/src/airflow/providers/databricks/operators/databricks.py
{ "start": 54005, "end": 68542 }
class ____(BaseOperator, ABC): """ Base class for operators that are run as Databricks job tasks or tasks within a Databricks workflow. :param caller: The name of the caller operator to be used in the logs. :param databricks_conn_id: The name of the Airflow connection to use. :param databricks_task_key: An optional task_key used to refer to the task by Databricks API. By default this will be set to the hash of ``dag_id + task_id``. :param databricks_retry_args: An optional dictionary with arguments passed to ``tenacity.Retrying`` class. :param databricks_retry_delay: Number of seconds to wait between retries. :param databricks_retry_limit: Amount of times to retry if the Databricks backend is unreachable. :param deferrable: Whether to run the operator in the deferrable mode. :param existing_cluster_id: ID for existing cluster on which to run this task. :param job_cluster_key: The key for the job cluster. :param new_cluster: Specs for a new cluster on which this task will be run. :param notebook_packages: A list of the Python libraries to be installed on the cluster running the notebook. :param notebook_params: A dict of key-value pairs to be passed as optional params to the notebook task. :param polling_period_seconds: Controls the rate which we poll for the result of this notebook job run. :param wait_for_termination: if we should wait for termination of the job run. ``True`` by default. :param workflow_run_metadata: Metadata for the workflow run. This is used when the operator is used within a workflow. It is expected to be a dictionary containing the run_id and conn_id for the workflow. """ def __init__( self, caller: str = "DatabricksTaskBaseOperator", databricks_conn_id: str = "databricks_default", databricks_task_key: str = "", databricks_retry_args: dict[Any, Any] | None = None, databricks_retry_delay: int = 1, databricks_retry_limit: int = 3, deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False), existing_cluster_id: str = "", job_cluster_key: str = "", new_cluster: dict[str, Any] | None = None, polling_period_seconds: int = 5, wait_for_termination: bool = True, workflow_run_metadata: dict[str, Any] | None = None, **kwargs: Any, ): self.caller = caller self.databricks_conn_id = databricks_conn_id self._databricks_task_key = databricks_task_key self.databricks_retry_args = databricks_retry_args self.databricks_retry_delay = databricks_retry_delay self.databricks_retry_limit = databricks_retry_limit self.deferrable = deferrable self.existing_cluster_id = existing_cluster_id self.job_cluster_key = job_cluster_key self.new_cluster = new_cluster or {} self.polling_period_seconds = polling_period_seconds self.wait_for_termination = wait_for_termination self.workflow_run_metadata = workflow_run_metadata self.databricks_run_id: int | None = None super().__init__(**kwargs) if self._databricks_workflow_task_group is not None: # Conditionally set operator_extra_links based on Airflow version. In Airflow 3, only show the job run link. # In Airflow 2, show the job run link and the repair link. # TODO: Once we expand the plugin functionality in Airflow 3.1, this can be re-evaluated on how to handle the repair link. if AIRFLOW_V_3_0_PLUS: self.operator_extra_links = (WorkflowJobRunLink(),) else: self.operator_extra_links = ( WorkflowJobRunLink(), WorkflowJobRepairSingleTaskLink(), ) else: # Databricks does not support repair for non-workflow tasks, hence do not show the repair link. self.operator_extra_links = (DatabricksJobRunLink(),) @cached_property def _hook(self) -> DatabricksHook: return self._get_hook(caller=self.caller) def _get_hook(self, caller: str) -> DatabricksHook: return DatabricksHook( self.databricks_conn_id, retry_limit=self.databricks_retry_limit, retry_delay=self.databricks_retry_delay, retry_args=self.databricks_retry_args, caller=caller, ) @cached_property def databricks_task_key(self) -> str: return self._generate_databricks_task_key() def _generate_databricks_task_key( self, task_id: str | None = None, task_dict: dict[str, BaseOperator] | None = None ) -> str: """Create a databricks task key using the hash of dag_id and task_id.""" if task_id: if not task_dict: raise ValueError( "Must pass task_dict if task_id is provided in _generate_databricks_task_key." ) _task = task_dict.get(task_id) if _task and hasattr(_task, "databricks_task_key"): _databricks_task_key = _task.databricks_task_key else: task_key = f"{self.dag_id}__{task_id}".encode() _databricks_task_key = hashlib.md5(task_key).hexdigest() return _databricks_task_key if not self._databricks_task_key or len(self._databricks_task_key) > 100: self.log.info( "databricks_task_key has not be provided or the provided one exceeds 100 characters and will be truncated by the Databricks API. This will cause failure when trying to monitor the task. A task_key will be generated using the hash value of dag_id+task_id" ) task_key = f"{self.dag_id}__{self.task_id}".encode() self._databricks_task_key = hashlib.md5(task_key).hexdigest() self.log.info("Generated databricks task_key: %s", self._databricks_task_key) return self._databricks_task_key @property def _databricks_workflow_task_group(self) -> DatabricksWorkflowTaskGroup | None: """ Traverse up parent TaskGroups until the `is_databricks` flag associated with the root DatabricksWorkflowTaskGroup is found. If found, returns the task group. Otherwise, return None. """ parent_tg: TaskGroup | DatabricksWorkflowTaskGroup | None = self.task_group while parent_tg: if getattr(parent_tg, "is_databricks", False): return parent_tg # type: ignore[return-value] if getattr(parent_tg, "task_group", None): parent_tg = parent_tg.task_group else: return None return None @abstractmethod def _get_task_base_json(self) -> dict[str, Any]: """Get the base json for the task.""" raise NotImplementedError() def _get_run_json(self) -> dict[str, Any]: """Get run json to be used for task submissions.""" run_json = { "run_name": self.databricks_task_key, **self._get_task_base_json(), } if self.new_cluster and self.existing_cluster_id: raise ValueError("Both new_cluster and existing_cluster_id are set. Only one should be set.") if self.new_cluster: run_json["new_cluster"] = self.new_cluster elif self.existing_cluster_id: run_json["existing_cluster_id"] = self.existing_cluster_id else: raise ValueError("Must specify either existing_cluster_id or new_cluster.") return run_json def _launch_job(self, context: Context | None = None) -> int | None: """Launch the job on Databricks.""" run_json = self._get_run_json() self.databricks_run_id = self._hook.submit_run(run_json) url = self._hook.get_run_page_url(self.databricks_run_id) self.log.info("Check the job run in Databricks: %s", url) if self.do_xcom_push and context is not None: context["ti"].xcom_push(key=XCOM_RUN_ID_KEY, value=self.databricks_run_id) context["ti"].xcom_push(key=XCOM_RUN_PAGE_URL_KEY, value=url) return self.databricks_run_id def _handle_terminal_run_state(self, run_state: RunState, errors: list) -> None: """Handle the terminal state of the run.""" if run_state.life_cycle_state != RunLifeCycleState.TERMINATED.value: raise AirflowException( f"Databricks job failed with state {run_state.life_cycle_state}. Message: {run_state.state_message}. Errors: {errors}" ) if not run_state.is_successful: raise AirflowException( f"Task failed. Final state {run_state.result_state}. Reason: {run_state.state_message}. Errors: {errors}" ) self.log.info("Task succeeded. Final state %s.", run_state.result_state) def _get_current_databricks_task(self) -> dict[str, Any]: """Retrieve the Databricks task corresponding to the current Airflow task.""" if self.databricks_run_id is None: raise ValueError("Databricks job not yet launched. Please run launch_notebook_job first.") tasks = self._hook.get_run(self.databricks_run_id)["tasks"] # Because the task_key remains the same across multiple runs, and the Databricks API does not return # tasks sorted by their attempts/start time, we sort the tasks by start time. This ensures that we # map the latest attempt (whose status is to be monitored) of the task run to the task_key while # building the {task_key: task} map below. sorted_task_runs = sorted(tasks, key=lambda x: x["start_time"]) return {task["task_key"]: task for task in sorted_task_runs}[self.databricks_task_key] def _convert_to_databricks_workflow_task( self, relevant_upstreams: list[BaseOperator], task_dict: dict[str, BaseOperator], context: Context | None = None, ) -> dict[str, object]: """Convert the operator to a Databricks workflow task that can be a task in a workflow.""" base_task_json = self._get_task_base_json() result = { "task_key": self.databricks_task_key, "depends_on": [ {"task_key": self._generate_databricks_task_key(task_id, task_dict)} for task_id in self.upstream_task_ids if task_id in relevant_upstreams ], **base_task_json, } if self.existing_cluster_id and self.job_cluster_key: raise ValueError( "Both existing_cluster_id and job_cluster_key are set. Only one can be set per task." ) if self.existing_cluster_id: result["existing_cluster_id"] = self.existing_cluster_id elif self.job_cluster_key: result["job_cluster_key"] = self.job_cluster_key return result def monitor_databricks_job(self) -> None: """ Monitor the Databricks job. Wait for the job to terminate. If deferrable, defer the task. """ if self.databricks_run_id is None: raise ValueError("Databricks job not yet launched. Please run launch_notebook_job first.") current_task_run_id = self._get_current_databricks_task()["run_id"] run = self._hook.get_run(current_task_run_id) run_page_url = run["run_page_url"] self.log.info("Check the task run in Databricks: %s", run_page_url) run_state = RunState(**run["state"]) self.log.info( "Current state of the the databricks task %s is %s", self.databricks_task_key, run_state.life_cycle_state, ) if self.deferrable and not run_state.is_terminal: self.defer( trigger=DatabricksExecutionTrigger( run_id=current_task_run_id, databricks_conn_id=self.databricks_conn_id, polling_period_seconds=self.polling_period_seconds, retry_limit=self.databricks_retry_limit, retry_delay=self.databricks_retry_delay, retry_args=self.databricks_retry_args, caller=self.caller, ), method_name=DEFER_METHOD_NAME, ) while not run_state.is_terminal: time.sleep(self.polling_period_seconds) run = self._hook.get_run(current_task_run_id) run_state = RunState(**run["state"]) self.log.info( "Current state of the databricks task %s is %s", self.databricks_task_key, run_state.life_cycle_state, ) # Extract errors from the run response using utility function errors = extract_failed_task_errors(self._hook, run, run_state) self._handle_terminal_run_state(run_state, errors) def execute(self, context: Context) -> None: """Execute the operator. Launch the job and monitor it if wait_for_termination is set to True.""" if self._databricks_workflow_task_group: # If we are in a DatabricksWorkflowTaskGroup, we should have an upstream task launched. if not self.workflow_run_metadata: launch_task_id = next(task for task in self.upstream_task_ids if task.endswith(".launch")) self.workflow_run_metadata = context["ti"].xcom_pull(task_ids=launch_task_id) workflow_run_metadata = WorkflowRunMetadata(**self.workflow_run_metadata) self.databricks_run_id = workflow_run_metadata.run_id self.databricks_conn_id = workflow_run_metadata.conn_id # Store operator links in XCom for Airflow 3 compatibility if AIRFLOW_V_3_0_PLUS: # Store the job run link store_databricks_job_run_link( context=context, metadata=workflow_run_metadata, logger=self.log, ) else: self._launch_job(context=context) if self.wait_for_termination: self.monitor_databricks_job() def execute_complete(self, context: dict | None, event: dict) -> None: run_state = RunState.from_json(event["run_state"]) errors = event.get("errors", []) self._handle_terminal_run_state(run_state, errors)
DatabricksTaskBaseOperator
python
h5py__h5py
h5py/tests/test_dataset.py
{ "start": 48187, "end": 48857 }
class ____(BaseDataset): """ Feature: Dataset dtype is available as .dtype property """ def test_dtype(self): """ Retrieve dtype from dataset """ dset = self.f.create_dataset(make_name(), (5,), '|S10') self.assertEqual(dset.dtype, np.dtype('|S10')) def test_dtype_complex32(self): """ Retrieve dtype from complex float16 dataset (gh-2156) """ # No native support in numpy as of v1.23.3, so expect compound type. complex32 = np.dtype([('r', np.float16), ('i', np.float16)]) dset = self.f.create_dataset(make_name(), (5,), complex32) self.assertEqual(dset.dtype, complex32)
TestDtype
python
huggingface__transformers
tests/models/dbrx/test_modeling_dbrx.py
{ "start": 955, "end": 2645 }
class ____(CausalLMModelTester): if is_torch_available(): base_model_class = DbrxModel def __init__( self, parent, clip_qkv=8, rope_theta=500000, attn_config_model_type="", moe_jitter_eps=0, moe_loss_weight=0.05, moe_num_experts=8, moe_top_k=4, ffn_config_model_type="", initializer_range=0.02, resid_pdrop=0.0, is_decoder=True, pad_token_id=0, ): # Call parent init super().__init__( parent=parent, hidden_dropout_prob=resid_pdrop, attention_probs_dropout_prob=resid_pdrop, initializer_range=initializer_range, pad_token_id=pad_token_id, is_decoder=is_decoder, ) # Set DBRX's unusual params self.clip_qkv = clip_qkv # DBRX takes sub-configurations for the FFN and attention layers, so we need to set that correctly here self.ffn_config = { "ffn_hidden_size": self.hidden_size, "hidden_size": 2 * self.hidden_size, "moe_jitter_eps": moe_jitter_eps, "moe_loss_weight": moe_loss_weight, "moe_num_experts": moe_num_experts, "moe_top_k": moe_top_k, "model_type": ffn_config_model_type, "ffn_act_fn": {"name": self.hidden_act}, } self.attn_config = { "clip_qkv": clip_qkv, "model_type": attn_config_model_type, "rope_theta": rope_theta, } @property def config_args(self): return super().config_args + ["ffn_config", "attn_config"] @require_torch
DbrxModelTester
python
python-markdown__markdown
markdown/blockprocessors.py
{ "start": 24365, "end": 25505 }
class ____(BlockProcessor): """ Process link references. """ RE = re.compile( r'^[ ]{0,3}\[([^\[\]]*)\]:[ ]*\n?[ ]*([^\s]+)[ ]*(?:\n[ ]*)?((["\'])(.*)\4[ ]*|\((.*)\)[ ]*)?$', re.MULTILINE ) def test(self, parent: etree.Element, block: str) -> bool: return True def run(self, parent: etree.Element, blocks: list[str]) -> bool: block = blocks.pop(0) m = self.RE.search(block) if m: id = m.group(1).strip().lower() link = m.group(2).lstrip('<').rstrip('>') title = m.group(5) or m.group(6) self.parser.md.references[id] = (link, title) if block[m.end():].strip(): # Add any content after match back to blocks as separate block blocks.insert(0, block[m.end():].lstrip('\n')) if block[:m.start()].strip(): # Add any content before match back to blocks as separate block blocks.insert(0, block[:m.start()].rstrip('\n')) return True # No match. Restore block. blocks.insert(0, block) return False
ReferenceProcessor
python
ray-project__ray
rllib/policy/policy.py
{ "start": 5860, "end": 69980 }
class ____(metaclass=ABCMeta): """RLlib's base class for all Policy implementations. Policy is the abstract superclass for all DL-framework specific sub-classes (e.g. TFPolicy or TorchPolicy). It exposes APIs to 1. Compute actions from observation (and possibly other) inputs. 2. Manage the Policy's NN model(s), like exporting and loading their weights. 3. Postprocess a given trajectory from the environment or other input via the `postprocess_trajectory` method. 4. Compute losses from a train batch. 5. Perform updates from a train batch on the NN-models (this normally includes loss calculations) either: a. in one monolithic step (`learn_on_batch`) b. via batch pre-loading, then n steps of actual loss computations and updates (`load_batch_into_buffer` + `learn_on_loaded_batch`). """ def __init__( self, observation_space: gym.Space, action_space: gym.Space, config: AlgorithmConfigDict, ): """Initializes a Policy instance. Args: observation_space: Observation space of the policy. action_space: Action space of the policy. config: A complete Algorithm/Policy config dict. For the default config keys and values, see rllib/algorithm/algorithm.py. """ self.observation_space: gym.Space = observation_space self.action_space: gym.Space = action_space # the policy id in the global context. self.__policy_id = config.get("__policy_id") # The base struct of the observation/action spaces. # E.g. action-space = gym.spaces.Dict({"a": Discrete(2)}) -> # action_space_struct = {"a": Discrete(2)} self.observation_space_struct = get_base_struct_from_space(observation_space) self.action_space_struct = get_base_struct_from_space(action_space) self.config: AlgorithmConfigDict = config self.framework = self.config.get("framework") # Create the callbacks object to use for handling custom callbacks. from ray.rllib.callbacks.callbacks import RLlibCallback callbacks = self.config.get("callbacks") if isinstance(callbacks, RLlibCallback): self.callbacks = callbacks() elif isinstance(callbacks, (str, type)): try: self.callbacks: "RLlibCallback" = deserialize_type( self.config.get("callbacks") )() except Exception: pass # TEST else: self.callbacks: "RLlibCallback" = RLlibCallback() # The global timestep, broadcast down from time to time from the # local worker to all remote workers. self.global_timestep: int = 0 # The number of gradient updates this policy has undergone. self.num_grad_updates: int = 0 # The action distribution class to use for action sampling, if any. # Child classes may set this. self.dist_class: Optional[Type] = None # Initialize view requirements. self.init_view_requirements() # Whether the Model's initial state (method) has been added # automatically based on the given view requirements of the model. self._model_init_state_automatically_added = False # Connectors. self.agent_connectors = None self.action_connectors = None @staticmethod def from_checkpoint( checkpoint: Union[str, Checkpoint], policy_ids: Optional[Collection[PolicyID]] = None, ) -> Union["Policy", Dict[PolicyID, "Policy"]]: """Creates new Policy instance(s) from a given Policy or Algorithm checkpoint. Note: This method must remain backward compatible from 2.1.0 on, wrt. checkpoints created with Ray 2.0.0 or later. Args: checkpoint: The path (str) to a Policy or Algorithm checkpoint directory or an AIR Checkpoint (Policy or Algorithm) instance to restore from. If checkpoint is a Policy checkpoint, `policy_ids` must be None and only the Policy in that checkpoint is restored and returned. If checkpoint is an Algorithm checkpoint and `policy_ids` is None, will return a list of all Policy objects found in the checkpoint, otherwise a list of those policies in `policy_ids`. policy_ids: List of policy IDs to extract from a given Algorithm checkpoint. If None and an Algorithm checkpoint is provided, will restore all policies found in that checkpoint. If a Policy checkpoint is given, this arg must be None. Returns: An instantiated Policy, if `checkpoint` is a Policy checkpoint. A dict mapping PolicyID to Policies, if `checkpoint` is an Algorithm checkpoint. In the latter case, returns all policies within the Algorithm if `policy_ids` is None, else a dict of only those Policies that are in `policy_ids`. """ checkpoint_info = get_checkpoint_info(checkpoint) # Algorithm checkpoint: Extract one or more policies from it and return them # in a dict (mapping PolicyID to Policy instances). if checkpoint_info["type"] == "Algorithm": from ray.rllib.algorithms.algorithm import Algorithm policies = {} # Old Algorithm checkpoints: State must be completely retrieved from: # algo state file -> worker -> "state". if checkpoint_info["checkpoint_version"] < version.Version("1.0"): with open(checkpoint_info["state_file"], "rb") as f: state = pickle.load(f) # In older checkpoint versions, the policy states are stored under # "state" within the worker state (which is pickled in itself). worker_state = pickle.loads(state["worker"]) policy_states = worker_state["state"] for pid, policy_state in policy_states.items(): # Get spec and config, merge config with serialized_policy_spec = worker_state["policy_specs"][pid] policy_config = Algorithm.merge_algorithm_configs( worker_state["policy_config"], serialized_policy_spec["config"] ) serialized_policy_spec.update({"config": policy_config}) policy_state.update({"policy_spec": serialized_policy_spec}) policies[pid] = Policy.from_state(policy_state) # Newer versions: Get policy states from "policies/" sub-dirs. elif checkpoint_info["policy_ids"] is not None: for policy_id in checkpoint_info["policy_ids"]: if policy_ids is None or policy_id in policy_ids: policy_checkpoint_info = get_checkpoint_info( os.path.join( checkpoint_info["checkpoint_dir"], "policies", policy_id, ) ) assert policy_checkpoint_info["type"] == "Policy" with open(policy_checkpoint_info["state_file"], "rb") as f: policy_state = pickle.load(f) policies[policy_id] = Policy.from_state(policy_state) return policies # Policy checkpoint: Return a single Policy instance. else: msgpack = None if checkpoint_info.get("format") == "msgpack": msgpack = try_import_msgpack(error=True) with open(checkpoint_info["state_file"], "rb") as f: if msgpack is not None: state = msgpack.load(f) else: state = pickle.load(f) return Policy.from_state(state) @staticmethod def from_state(state: PolicyState) -> "Policy": """Recovers a Policy from a state object. The `state` of an instantiated Policy can be retrieved by calling its `get_state` method. This only works for the V2 Policy classes (EagerTFPolicyV2, SynamicTFPolicyV2, and TorchPolicyV2). It contains all information necessary to create the Policy. No access to the original code (e.g. configs, knowledge of the policy's class, etc..) is needed. Args: state: The state to recover a new Policy instance from. Returns: A new Policy instance. """ serialized_pol_spec: Optional[dict] = state.get("policy_spec") if serialized_pol_spec is None: raise ValueError( "No `policy_spec` key was found in given `state`! " "Cannot create new Policy." ) pol_spec = PolicySpec.deserialize(serialized_pol_spec) actual_class = get_tf_eager_cls_if_necessary( pol_spec.policy_class, pol_spec.config, ) if pol_spec.config["framework"] == "tf": from ray.rllib.policy.tf_policy import TFPolicy return TFPolicy._tf1_from_state_helper(state) # Create the new policy. new_policy = actual_class( # Note(jungong) : we are intentionally not using keyward arguments here # because some policies name the observation space parameter obs_space, # and some others name it observation_space. pol_spec.observation_space, pol_spec.action_space, pol_spec.config, ) # Set the new policy's state (weights, optimizer vars, exploration state, # etc..). new_policy.set_state(state) # Return the new policy. return new_policy def init_view_requirements(self): """Maximal view requirements dict for `learn_on_batch()` and `compute_actions` calls. Specific policies can override this function to provide custom list of view requirements. """ # Maximal view requirements dict for `learn_on_batch()` and # `compute_actions` calls. # View requirements will be automatically filtered out later based # on the postprocessing and loss functions to ensure optimal data # collection and transfer performance. view_reqs = self._get_default_view_requirements() if not hasattr(self, "view_requirements"): self.view_requirements = view_reqs else: for k, v in view_reqs.items(): if k not in self.view_requirements: self.view_requirements[k] = v def get_connector_metrics(self) -> Dict: """Get metrics on timing from connectors.""" return { "agent_connectors": { name + "_ms": 1000 * timer.mean for name, timer in self.agent_connectors.timers.items() }, "action_connectors": { name + "_ms": 1000 * timer.mean for name, timer in self.agent_connectors.timers.items() }, } def reset_connectors(self, env_id) -> None: """Reset action- and agent-connectors for this policy.""" self.agent_connectors.reset(env_id=env_id) self.action_connectors.reset(env_id=env_id) def compute_single_action( self, obs: Optional[TensorStructType] = None, state: Optional[List[TensorType]] = None, *, prev_action: Optional[TensorStructType] = None, prev_reward: Optional[TensorStructType] = None, info: dict = None, input_dict: Optional[SampleBatch] = None, episode=None, explore: Optional[bool] = None, timestep: Optional[int] = None, # Kwars placeholder for future compatibility. **kwargs, ) -> Tuple[TensorStructType, List[TensorType], Dict[str, TensorType]]: """Computes and returns a single (B=1) action value. Takes an input dict (usually a SampleBatch) as its main data input. This allows for using this method in case a more complex input pattern (view requirements) is needed, for example when the Model requires the last n observations, the last m actions/rewards, or a combination of any of these. Alternatively, in case no complex inputs are required, takes a single `obs` values (and possibly single state values, prev-action/reward values, etc..). Args: obs: Single observation. state: List of RNN state inputs, if any. prev_action: Previous action value, if any. prev_reward: Previous reward, if any. info: Info object, if any. input_dict: A SampleBatch or input dict containing the single (unbatched) Tensors to compute actions. If given, it'll be used instead of `obs`, `state`, `prev_action|reward`, and `info`. episode: This provides access to all of the internal episode state, which may be useful for model-based or multi-agent algorithms. explore: Whether to pick an exploitation or exploration action (default: None -> use self.config["explore"]). timestep: The current (sampling) time step. Keyword Args: kwargs: Forward compatibility placeholder. Returns: Tuple consisting of the action, the list of RNN state outputs (if any), and a dictionary of extra features (if any). """ # Build the input-dict used for the call to # `self.compute_actions_from_input_dict()`. if input_dict is None: input_dict = {SampleBatch.OBS: obs} if state is not None: for i, s in enumerate(state): input_dict[f"state_in_{i}"] = s if prev_action is not None: input_dict[SampleBatch.PREV_ACTIONS] = prev_action if prev_reward is not None: input_dict[SampleBatch.PREV_REWARDS] = prev_reward if info is not None: input_dict[SampleBatch.INFOS] = info # Batch all data in input dict. input_dict = tree.map_structure_with_path( lambda p, s: ( s if p == "seq_lens" else s.unsqueeze(0) if torch and isinstance(s, torch.Tensor) else np.expand_dims(s, 0) ), input_dict, ) episodes = None if episode is not None: episodes = [episode] out = self.compute_actions_from_input_dict( input_dict=SampleBatch(input_dict), episodes=episodes, explore=explore, timestep=timestep, ) # Some policies don't return a tuple, but always just a single action. # E.g. ES and ARS. if not isinstance(out, tuple): single_action = out state_out = [] info = {} # Normal case: Policy should return (action, state, info) tuple. else: batched_action, state_out, info = out single_action = unbatch(batched_action) assert len(single_action) == 1 single_action = single_action[0] # Return action, internal state(s), infos. return ( single_action, tree.map_structure(lambda x: x[0], state_out), tree.map_structure(lambda x: x[0], info), ) def compute_actions_from_input_dict( self, input_dict: Union[SampleBatch, Dict[str, TensorStructType]], explore: Optional[bool] = None, timestep: Optional[int] = None, episodes=None, **kwargs, ) -> Tuple[TensorType, List[TensorType], Dict[str, TensorType]]: """Computes actions from collected samples (across multiple-agents). Takes an input dict (usually a SampleBatch) as its main data input. This allows for using this method in case a more complex input pattern (view requirements) is needed, for example when the Model requires the last n observations, the last m actions/rewards, or a combination of any of these. Args: input_dict: A SampleBatch or input dict containing the Tensors to compute actions. `input_dict` already abides to the Policy's as well as the Model's view requirements and can thus be passed to the Model as-is. explore: Whether to pick an exploitation or exploration action (default: None -> use self.config["explore"]). timestep: The current (sampling) time step. episodes: This provides access to all of the internal episodes' state, which may be useful for model-based or multi-agent algorithms. Keyword Args: kwargs: Forward compatibility placeholder. Returns: actions: Batch of output actions, with shape like [BATCH_SIZE, ACTION_SHAPE]. state_outs: List of RNN state output batches, if any, each with shape [BATCH_SIZE, STATE_SIZE]. info: Dictionary of extra feature batches, if any, with shape like {"f1": [BATCH_SIZE, ...], "f2": [BATCH_SIZE, ...]}. """ # Default implementation just passes obs, prev-a/r, and states on to # `self.compute_actions()`. state_batches = [s for k, s in input_dict.items() if k.startswith("state_in")] return self.compute_actions( input_dict[SampleBatch.OBS], state_batches, prev_action_batch=input_dict.get(SampleBatch.PREV_ACTIONS), prev_reward_batch=input_dict.get(SampleBatch.PREV_REWARDS), info_batch=input_dict.get(SampleBatch.INFOS), explore=explore, timestep=timestep, episodes=episodes, **kwargs, ) @abstractmethod def compute_actions( self, obs_batch: Union[List[TensorStructType], TensorStructType], state_batches: Optional[List[TensorType]] = None, prev_action_batch: Union[List[TensorStructType], TensorStructType] = None, prev_reward_batch: Union[List[TensorStructType], TensorStructType] = None, info_batch: Optional[Dict[str, list]] = None, episodes: Optional[List] = None, explore: Optional[bool] = None, timestep: Optional[int] = None, **kwargs, ) -> Tuple[TensorType, List[TensorType], Dict[str, TensorType]]: """Computes actions for the current policy. Args: obs_batch: Batch of observations. state_batches: List of RNN state input batches, if any. prev_action_batch: Batch of previous action values. prev_reward_batch: Batch of previous rewards. info_batch: Batch of info objects. episodes: List of Episode objects, one for each obs in obs_batch. This provides access to all of the internal episode state, which may be useful for model-based or multi-agent algorithms. explore: Whether to pick an exploitation or exploration action. Set to None (default) for using the value of `self.config["explore"]`. timestep: The current (sampling) time step. Keyword Args: kwargs: Forward compatibility placeholder Returns: actions: Batch of output actions, with shape like [BATCH_SIZE, ACTION_SHAPE]. state_outs (List[TensorType]): List of RNN state output batches, if any, each with shape [BATCH_SIZE, STATE_SIZE]. info (List[dict]): Dictionary of extra feature batches, if any, with shape like {"f1": [BATCH_SIZE, ...], "f2": [BATCH_SIZE, ...]}. """ raise NotImplementedError def compute_log_likelihoods( self, actions: Union[List[TensorType], TensorType], obs_batch: Union[List[TensorType], TensorType], state_batches: Optional[List[TensorType]] = None, prev_action_batch: Optional[Union[List[TensorType], TensorType]] = None, prev_reward_batch: Optional[Union[List[TensorType], TensorType]] = None, actions_normalized: bool = True, in_training: bool = True, ) -> TensorType: """Computes the log-prob/likelihood for a given action and observation. The log-likelihood is calculated using this Policy's action distribution class (self.dist_class). Args: actions: Batch of actions, for which to retrieve the log-probs/likelihoods (given all other inputs: obs, states, ..). obs_batch: Batch of observations. state_batches: List of RNN state input batches, if any. prev_action_batch: Batch of previous action values. prev_reward_batch: Batch of previous rewards. actions_normalized: Is the given `actions` already normalized (between -1.0 and 1.0) or not? If not and `normalize_actions=True`, we need to normalize the given actions first, before calculating log likelihoods. in_training: Whether to use the forward_train() or forward_exploration() of the underlying RLModule. Returns: Batch of log probs/likelihoods, with shape: [BATCH_SIZE]. """ raise NotImplementedError @OverrideToImplementCustomLogic_CallToSuperRecommended def postprocess_trajectory( self, sample_batch: SampleBatch, other_agent_batches: Optional[ Dict[AgentID, Tuple["Policy", SampleBatch]] ] = None, episode=None, ) -> SampleBatch: """Implements algorithm-specific trajectory postprocessing. This will be called on each trajectory fragment computed during policy evaluation. Each fragment is guaranteed to be only from one episode. The given fragment may or may not contain the end of this episode, depending on the `batch_mode=truncate_episodes|complete_episodes`, `rollout_fragment_length`, and other settings. Args: sample_batch: batch of experiences for the policy, which will contain at most one episode trajectory. other_agent_batches: In a multi-agent env, this contains a mapping of agent ids to (policy, agent_batch) tuples containing the policy and experiences of the other agents. episode: An optional multi-agent episode object to provide access to all of the internal episode state, which may be useful for model-based or multi-agent algorithms. Returns: The postprocessed sample batch. """ # The default implementation just returns the same, unaltered batch. return sample_batch @OverrideToImplementCustomLogic def loss( self, model: ModelV2, dist_class: ActionDistribution, train_batch: SampleBatch ) -> Union[TensorType, List[TensorType]]: """Loss function for this Policy. Override this method in order to implement custom loss computations. Args: model: The model to calculate the loss(es). dist_class: The action distribution class to sample actions from the model's outputs. train_batch: The input batch on which to calculate the loss. Returns: Either a single loss tensor or a list of loss tensors. """ raise NotImplementedError def learn_on_batch(self, samples: SampleBatch) -> Dict[str, TensorType]: """Perform one learning update, given `samples`. Either this method or the combination of `compute_gradients` and `apply_gradients` must be implemented by subclasses. Args: samples: The SampleBatch object to learn from. Returns: Dictionary of extra metadata from `compute_gradients()`. .. testcode:: :skipif: True policy, sample_batch = ... policy.learn_on_batch(sample_batch) """ # The default implementation is simply a fused `compute_gradients` plus # `apply_gradients` call. grads, grad_info = self.compute_gradients(samples) self.apply_gradients(grads) return grad_info def learn_on_batch_from_replay_buffer( self, replay_actor: ActorHandle, policy_id: PolicyID ) -> Dict[str, TensorType]: """Samples a batch from given replay actor and performs an update. Args: replay_actor: The replay buffer actor to sample from. policy_id: The ID of this policy. Returns: Dictionary of extra metadata from `compute_gradients()`. """ # Sample a batch from the given replay actor. # Note that for better performance (less data sent through the # network), this policy should be co-located on the same node # as `replay_actor`. Such a co-location step is usually done during # the Algorithm's `setup()` phase. batch = ray.get(replay_actor.replay.remote(policy_id=policy_id)) if batch is None: return {} # Send to own learn_on_batch method for updating. # TODO: hack w/ `hasattr` if hasattr(self, "devices") and len(self.devices) > 1: self.load_batch_into_buffer(batch, buffer_index=0) return self.learn_on_loaded_batch(offset=0, buffer_index=0) else: return self.learn_on_batch(batch) def load_batch_into_buffer(self, batch: SampleBatch, buffer_index: int = 0) -> int: """Bulk-loads the given SampleBatch into the devices' memories. The data is split equally across all the Policy's devices. If the data is not evenly divisible by the batch size, excess data should be discarded. Args: batch: The SampleBatch to load. buffer_index: The index of the buffer (a MultiGPUTowerStack) to use on the devices. The number of buffers on each device depends on the value of the `num_multi_gpu_tower_stacks` config key. Returns: The number of tuples loaded per device. """ raise NotImplementedError def get_num_samples_loaded_into_buffer(self, buffer_index: int = 0) -> int: """Returns the number of currently loaded samples in the given buffer. Args: buffer_index: The index of the buffer (a MultiGPUTowerStack) to use on the devices. The number of buffers on each device depends on the value of the `num_multi_gpu_tower_stacks` config key. Returns: The number of tuples loaded per device. """ raise NotImplementedError def learn_on_loaded_batch(self, offset: int = 0, buffer_index: int = 0): """Runs a single step of SGD on an already loaded data in a buffer. Runs an SGD step over a slice of the pre-loaded batch, offset by the `offset` argument (useful for performing n minibatch SGD updates repeatedly on the same, already pre-loaded data). Updates the model weights based on the averaged per-device gradients. Args: offset: Offset into the preloaded data. Used for pre-loading a train-batch once to a device, then iterating over (subsampling through) this batch n times doing minibatch SGD. buffer_index: The index of the buffer (a MultiGPUTowerStack) to take the already pre-loaded data from. The number of buffers on each device depends on the value of the `num_multi_gpu_tower_stacks` config key. Returns: The outputs of extra_ops evaluated over the batch. """ raise NotImplementedError def compute_gradients( self, postprocessed_batch: SampleBatch ) -> Tuple[ModelGradients, Dict[str, TensorType]]: """Computes gradients given a batch of experiences. Either this in combination with `apply_gradients()` or `learn_on_batch()` must be implemented by subclasses. Args: postprocessed_batch: The SampleBatch object to use for calculating gradients. Returns: grads: List of gradient output values. grad_info: Extra policy-specific info values. """ raise NotImplementedError def apply_gradients(self, gradients: ModelGradients) -> None: """Applies the (previously) computed gradients. Either this in combination with `compute_gradients()` or `learn_on_batch()` must be implemented by subclasses. Args: gradients: The already calculated gradients to apply to this Policy. """ raise NotImplementedError def get_weights(self) -> ModelWeights: """Returns model weights. Note: The return value of this method will reside under the "weights" key in the return value of Policy.get_state(). Model weights are only one part of a Policy's state. Other state information contains: optimizer variables, exploration state, and global state vars such as the sampling timestep. Returns: Serializable copy or view of model weights. """ raise NotImplementedError def set_weights(self, weights: ModelWeights) -> None: """Sets this Policy's model's weights. Note: Model weights are only one part of a Policy's state. Other state information contains: optimizer variables, exploration state, and global state vars such as the sampling timestep. Args: weights: Serializable copy or view of model weights. """ raise NotImplementedError def get_exploration_state(self) -> Dict[str, TensorType]: """Returns the state of this Policy's exploration component. Returns: Serializable information on the `self.exploration` object. """ return self.exploration.get_state() def is_recurrent(self) -> bool: """Whether this Policy holds a recurrent Model. Returns: True if this Policy has-a RNN-based Model. """ return False def num_state_tensors(self) -> int: """The number of internal states needed by the RNN-Model of the Policy. Returns: int: The number of RNN internal states kept by this Policy's Model. """ return 0 def get_initial_state(self) -> List[TensorType]: """Returns initial RNN state for the current policy. Returns: List[TensorType]: Initial RNN state for the current policy. """ return [] @OverrideToImplementCustomLogic_CallToSuperRecommended def get_state(self) -> PolicyState: """Returns the entire current state of this Policy. Note: Not to be confused with an RNN model's internal state. State includes the Model(s)' weights, optimizer weights, the exploration component's state, as well as global variables, such as sampling timesteps. Note that the state may contain references to the original variables. This means that you may need to deepcopy() the state before mutating it. Returns: Serialized local state. """ state = { # All the policy's weights. "weights": self.get_weights(), # The current global timestep. "global_timestep": self.global_timestep, # The current num_grad_updates counter. "num_grad_updates": self.num_grad_updates, } # Add this Policy's spec so it can be retreived w/o access to the original # code. policy_spec = PolicySpec( policy_class=type(self), observation_space=self.observation_space, action_space=self.action_space, config=self.config, ) state["policy_spec"] = policy_spec.serialize() # Checkpoint connectors state as well if enabled. connector_configs = {} if self.agent_connectors: connector_configs["agent"] = self.agent_connectors.to_state() if self.action_connectors: connector_configs["action"] = self.action_connectors.to_state() state["connector_configs"] = connector_configs return state def restore_connectors(self, state: PolicyState): """Restore agent and action connectors if configs available. Args: state: The new state to set this policy to. Can be obtained by calling `self.get_state()`. """ # To avoid a circular dependency problem cause by SampleBatch. from ray.rllib.connectors.util import restore_connectors_for_policy connector_configs = state.get("connector_configs", {}) if "agent" in connector_configs: self.agent_connectors = restore_connectors_for_policy( self, connector_configs["agent"] ) logger.debug("restoring agent connectors:") logger.debug(self.agent_connectors.__str__(indentation=4)) if "action" in connector_configs: self.action_connectors = restore_connectors_for_policy( self, connector_configs["action"] ) logger.debug("restoring action connectors:") logger.debug(self.action_connectors.__str__(indentation=4)) @OverrideToImplementCustomLogic_CallToSuperRecommended def set_state(self, state: PolicyState) -> None: """Restores the entire current state of this Policy from `state`. Args: state: The new state to set this policy to. Can be obtained by calling `self.get_state()`. """ if "policy_spec" in state: policy_spec = PolicySpec.deserialize(state["policy_spec"]) # Assert spaces remained the same. if ( policy_spec.observation_space is not None and policy_spec.observation_space != self.observation_space ): logger.warning( "`observation_space` in given policy state (" f"{policy_spec.observation_space}) does not match this Policy's " f"observation space ({self.observation_space})." ) if ( policy_spec.action_space is not None and policy_spec.action_space != self.action_space ): logger.warning( "`action_space` in given policy state (" f"{policy_spec.action_space}) does not match this Policy's " f"action space ({self.action_space})." ) # Override config, if part of the spec. if policy_spec.config: self.config = policy_spec.config # Override NN weights. self.set_weights(state["weights"]) self.restore_connectors(state) def apply( self, func: Callable[["Policy", Optional[Any], Optional[Any]], T], *args, **kwargs, ) -> T: """Calls the given function with this Policy instance. Useful for when the Policy class has been converted into a ActorHandle and the user needs to execute some functionality (e.g. add a property) on the underlying policy object. Args: func: The function to call, with this Policy as first argument, followed by args, and kwargs. args: Optional additional args to pass to the function call. kwargs: Optional additional kwargs to pass to the function call. Returns: The return value of the function call. """ return func(self, *args, **kwargs) def on_global_var_update(self, global_vars: Dict[str, TensorType]) -> None: """Called on an update to global vars. Args: global_vars: Global variables by str key, broadcast from the driver. """ # Store the current global time step (sum over all policies' sample # steps). # Make sure, we keep global_timestep as a Tensor for tf-eager # (leads to memory leaks if not doing so). if self.framework == "tf2": self.global_timestep.assign(global_vars["timestep"]) else: self.global_timestep = global_vars["timestep"] # Update our lifetime gradient update counter. num_grad_updates = global_vars.get("num_grad_updates") if num_grad_updates is not None: self.num_grad_updates = num_grad_updates def export_checkpoint( self, export_dir: str, filename_prefix=DEPRECATED_VALUE, *, policy_state: Optional[PolicyState] = None, checkpoint_format: str = "cloudpickle", ) -> None: """Exports Policy checkpoint to a local directory and returns an AIR Checkpoint. Args: export_dir: Local writable directory to store the AIR Checkpoint information into. policy_state: An optional PolicyState to write to disk. Used by `Algorithm.save_checkpoint()` to save on the additional `self.get_state()` calls of its different Policies. checkpoint_format: Either one of 'cloudpickle' or 'msgpack'. .. testcode:: :skipif: True from ray.rllib.algorithms.ppo import PPOTorchPolicy policy = PPOTorchPolicy(...) policy.export_checkpoint("/tmp/export_dir") """ # `filename_prefix` should not longer be used as new Policy checkpoints # contain more than one file with a fixed filename structure. if filename_prefix != DEPRECATED_VALUE: deprecation_warning( old="Policy.export_checkpoint(filename_prefix=...)", error=True, ) if checkpoint_format not in ["cloudpickle", "msgpack"]: raise ValueError( f"Value of `checkpoint_format` ({checkpoint_format}) must either be " "'cloudpickle' or 'msgpack'!" ) if policy_state is None: policy_state = self.get_state() # Write main policy state file. os.makedirs(export_dir, exist_ok=True) if checkpoint_format == "cloudpickle": policy_state["checkpoint_version"] = CHECKPOINT_VERSION state_file = "policy_state.pkl" with open(os.path.join(export_dir, state_file), "w+b") as f: pickle.dump(policy_state, f) else: from ray.rllib.algorithms.algorithm_config import AlgorithmConfig msgpack = try_import_msgpack(error=True) policy_state["checkpoint_version"] = str(CHECKPOINT_VERSION) # Serialize the config for msgpack dump'ing. policy_state["policy_spec"]["config"] = AlgorithmConfig._serialize_dict( policy_state["policy_spec"]["config"] ) state_file = "policy_state.msgpck" with open(os.path.join(export_dir, state_file), "w+b") as f: msgpack.dump(policy_state, f) # Write RLlib checkpoint json. with open(os.path.join(export_dir, "rllib_checkpoint.json"), "w") as f: json.dump( { "type": "Policy", "checkpoint_version": str(policy_state["checkpoint_version"]), "format": checkpoint_format, "state_file": state_file, "ray_version": ray.__version__, "ray_commit": ray.__commit__, }, f, ) # Add external model files, if required. if self.config["export_native_model_files"]: self.export_model(os.path.join(export_dir, "model")) def export_model(self, export_dir: str, onnx: Optional[int] = None) -> None: """Exports the Policy's Model to local directory for serving. Note: The file format will depend on the deep learning framework used. See the child classed of Policy and their `export_model` implementations for more details. Args: export_dir: Local writable directory. onnx: If given, will export model in ONNX format. The value of this parameter set the ONNX OpSet version to use. Raises: ValueError: If a native DL-framework based model (e.g. a keras Model) cannot be saved to disk for various reasons. """ raise NotImplementedError def import_model_from_h5(self, import_file: str) -> None: """Imports Policy from local file. Args: import_file: Local readable file. """ raise NotImplementedError def get_session(self) -> Optional["tf1.Session"]: """Returns tf.Session object to use for computing actions or None. Note: This method only applies to TFPolicy sub-classes. All other sub-classes should expect a None to be returned from this method. Returns: The tf Session to use for computing actions and losses with this policy or None. """ return None def get_host(self) -> str: """Returns the computer's network name. Returns: The computer's networks name or an empty string, if the network name could not be determined. """ return platform.node() def _get_num_gpus_for_policy(self) -> int: """Decide on the number of CPU/GPU nodes this policy should run on. Return: 0 if policy should run on CPU. >0 if policy should run on 1 or more GPUs. """ worker_idx = self.config.get("worker_index", 0) fake_gpus = self.config.get("_fake_gpus", False) if ( ray._private.worker._mode() == ray._private.worker.LOCAL_MODE and not fake_gpus ): # If in local debugging mode, and _fake_gpus is not on. num_gpus = 0 elif worker_idx == 0: # If head node, take num_gpus. num_gpus = self.config["num_gpus"] else: # If worker node, take `num_gpus_per_env_runner`. num_gpus = self.config["num_gpus_per_env_runner"] if num_gpus == 0: dev = "CPU" else: dev = "{} {}".format(num_gpus, "fake-GPUs" if fake_gpus else "GPUs") logger.info( "Policy (worker={}) running on {}.".format( worker_idx if worker_idx > 0 else "local", dev ) ) return num_gpus def _create_exploration(self) -> Exploration: """Creates the Policy's Exploration object. This method only exists b/c some Algorithms do not use TfPolicy nor TorchPolicy, but inherit directly from Policy. Others inherit from TfPolicy w/o using DynamicTFPolicy. Returns: Exploration: The Exploration object to be used by this Policy. """ if getattr(self, "exploration", None) is not None: return self.exploration exploration = from_config( Exploration, self.config.get("exploration_config", {"type": "StochasticSampling"}), action_space=self.action_space, policy_config=self.config, model=getattr(self, "model", None), num_workers=self.config.get("num_env_runners", 0), worker_index=self.config.get("worker_index", 0), framework=getattr(self, "framework", self.config.get("framework", "tf")), ) return exploration def _get_default_view_requirements(self): """Returns a default ViewRequirements dict. Note: This is the base/maximum requirement dict, from which later some requirements will be subtracted again automatically to streamline data collection, batch creation, and data transfer. Returns: ViewReqDict: The default view requirements dict. """ # Default view requirements (equal to those that we would use before # the trajectory view API was introduced). return { SampleBatch.OBS: ViewRequirement(space=self.observation_space), SampleBatch.NEXT_OBS: ViewRequirement( data_col=SampleBatch.OBS, shift=1, space=self.observation_space, used_for_compute_actions=False, ), SampleBatch.ACTIONS: ViewRequirement( space=self.action_space, used_for_compute_actions=False ), # For backward compatibility with custom Models that don't specify # these explicitly (will be removed by Policy if not used). SampleBatch.PREV_ACTIONS: ViewRequirement( data_col=SampleBatch.ACTIONS, shift=-1, space=self.action_space ), SampleBatch.REWARDS: ViewRequirement(), # For backward compatibility with custom Models that don't specify # these explicitly (will be removed by Policy if not used). SampleBatch.PREV_REWARDS: ViewRequirement( data_col=SampleBatch.REWARDS, shift=-1 ), SampleBatch.TERMINATEDS: ViewRequirement(), SampleBatch.TRUNCATEDS: ViewRequirement(), SampleBatch.INFOS: ViewRequirement(used_for_compute_actions=False), SampleBatch.EPS_ID: ViewRequirement(), SampleBatch.UNROLL_ID: ViewRequirement(), SampleBatch.AGENT_INDEX: ViewRequirement(), SampleBatch.T: ViewRequirement(), } def _initialize_loss_from_dummy_batch( self, auto_remove_unneeded_view_reqs: bool = True, stats_fn=None, ) -> None: """Performs test calls through policy's model and loss. NOTE: This base method should work for define-by-run Policies such as torch and tf-eager policies. If required, will thereby detect automatically, which data views are required by a) the forward pass, b) the postprocessing, and c) the loss functions, and remove those from self.view_requirements that are not necessary for these computations (to save data storage and transfer). Args: auto_remove_unneeded_view_reqs: Whether to automatically remove those ViewRequirements records from self.view_requirements that are not needed. stats_fn (Optional[Callable[[Policy, SampleBatch], Dict[str, TensorType]]]): An optional stats function to be called after the loss. """ if self.config.get("_disable_initialize_loss_from_dummy_batch", False): return # Signal Policy that currently we do not like to eager/jit trace # any function calls. This is to be able to track, which columns # in the dummy batch are accessed by the different function (e.g. # loss) such that we can then adjust our view requirements. self._no_tracing = True # Save for later so that loss init does not change global timestep global_ts_before_init = int(convert_to_numpy(self.global_timestep)) sample_batch_size = min( max(self.batch_divisibility_req * 4, 32), self.config["train_batch_size"], # Don't go over the asked batch size. ) self._dummy_batch = self._get_dummy_batch_from_view_requirements( sample_batch_size ) self._lazy_tensor_dict(self._dummy_batch) explore = False actions, state_outs, extra_outs = self.compute_actions_from_input_dict( self._dummy_batch, explore=explore ) for key, view_req in self.view_requirements.items(): if key not in self._dummy_batch.accessed_keys: view_req.used_for_compute_actions = False # Add all extra action outputs to view reqirements (these may be # filtered out later again, if not needed for postprocessing or loss). for key, value in extra_outs.items(): self._dummy_batch[key] = value if key not in self.view_requirements: if isinstance(value, (dict, np.ndarray)): # the assumption is that value is a nested_dict of np.arrays leaves space = get_gym_space_from_struct_of_tensors(value) self.view_requirements[key] = ViewRequirement( space=space, used_for_compute_actions=False ) else: raise ValueError( "policy.compute_actions_from_input_dict() returns an " "extra action output that is neither a numpy array nor a dict." ) for key in self._dummy_batch.accessed_keys: if key not in self.view_requirements: self.view_requirements[key] = ViewRequirement() self.view_requirements[key].used_for_compute_actions = False # TODO (kourosh) Why did we use to make used_for_compute_actions True here? new_batch = self._get_dummy_batch_from_view_requirements(sample_batch_size) # Make sure the dummy_batch will return numpy arrays when accessed self._dummy_batch.set_get_interceptor(None) # try to re-use the output of the previous run to avoid overriding things that # would break (e.g. scale = 0 of Normal distribution cannot be zero) for k in new_batch: if k not in self._dummy_batch: self._dummy_batch[k] = new_batch[k] # Make sure the book-keeping of dummy_batch keys are reset to correcly track # what is accessed, what is added and what's deleted from now on. self._dummy_batch.accessed_keys.clear() self._dummy_batch.deleted_keys.clear() self._dummy_batch.added_keys.clear() if self.exploration: # Policies with RLModules don't have an exploration object. self.exploration.postprocess_trajectory(self, self._dummy_batch) postprocessed_batch = self.postprocess_trajectory(self._dummy_batch) seq_lens = None if state_outs: B = 4 # For RNNs, have B=4, T=[depends on sample_batch_size] i = 0 while "state_in_{}".format(i) in postprocessed_batch: postprocessed_batch["state_in_{}".format(i)] = postprocessed_batch[ "state_in_{}".format(i) ][:B] if "state_out_{}".format(i) in postprocessed_batch: postprocessed_batch["state_out_{}".format(i)] = postprocessed_batch[ "state_out_{}".format(i) ][:B] i += 1 seq_len = sample_batch_size // B seq_lens = np.array([seq_len for _ in range(B)], dtype=np.int32) postprocessed_batch[SampleBatch.SEQ_LENS] = seq_lens # Switch on lazy to-tensor conversion on `postprocessed_batch`. train_batch = self._lazy_tensor_dict(postprocessed_batch) # Calling loss, so set `is_training` to True. train_batch.set_training(True) if seq_lens is not None: train_batch[SampleBatch.SEQ_LENS] = seq_lens train_batch.count = self._dummy_batch.count # Call the loss function, if it exists. # TODO(jungong) : clean up after all agents get migrated. # We should simply do self.loss(...) here. if self._loss is not None: self._loss(self, self.model, self.dist_class, train_batch) elif is_overridden(self.loss) and not self.config["in_evaluation"]: self.loss(self.model, self.dist_class, train_batch) # Call the stats fn, if given. # TODO(jungong) : clean up after all agents get migrated. # We should simply do self.stats_fn(train_batch) here. if stats_fn is not None: stats_fn(self, train_batch) if hasattr(self, "stats_fn") and not self.config["in_evaluation"]: self.stats_fn(train_batch) # Re-enable tracing. self._no_tracing = False # Add new columns automatically to view-reqs. if auto_remove_unneeded_view_reqs: # Add those needed for postprocessing and training. all_accessed_keys = ( train_batch.accessed_keys | self._dummy_batch.accessed_keys | self._dummy_batch.added_keys ) for key in all_accessed_keys: if key not in self.view_requirements and key != SampleBatch.SEQ_LENS: self.view_requirements[key] = ViewRequirement( used_for_compute_actions=False ) if self._loss or is_overridden(self.loss): # Tag those only needed for post-processing (with some # exceptions). for key in self._dummy_batch.accessed_keys: if ( key not in train_batch.accessed_keys and key in self.view_requirements and key not in self.model.view_requirements and key not in [ SampleBatch.EPS_ID, SampleBatch.AGENT_INDEX, SampleBatch.UNROLL_ID, SampleBatch.TERMINATEDS, SampleBatch.TRUNCATEDS, SampleBatch.REWARDS, SampleBatch.INFOS, SampleBatch.T, ] ): self.view_requirements[key].used_for_training = False # Remove those not needed at all (leave those that are needed # by Sampler to properly execute sample collection). Also always leave # TERMINATEDS, TRUNCATEDS, REWARDS, INFOS, no matter what. for key in list(self.view_requirements.keys()): if ( key not in all_accessed_keys and key not in [ SampleBatch.EPS_ID, SampleBatch.AGENT_INDEX, SampleBatch.UNROLL_ID, SampleBatch.TERMINATEDS, SampleBatch.TRUNCATEDS, SampleBatch.REWARDS, SampleBatch.INFOS, SampleBatch.T, ] and key not in self.model.view_requirements ): # If user deleted this key manually in postprocessing # fn, warn about it and do not remove from # view-requirements. if key in self._dummy_batch.deleted_keys: logger.warning( "SampleBatch key '{}' was deleted manually in " "postprocessing function! RLlib will " "automatically remove non-used items from the " "data stream. Remove the `del` from your " "postprocessing function.".format(key) ) # If we are not writing output to disk, save to erase # this key to save space in the sample batch. elif self.config["output"] is None: del self.view_requirements[key] if type(self.global_timestep) is int: self.global_timestep = global_ts_before_init elif isinstance(self.global_timestep, tf.Variable): self.global_timestep.assign(global_ts_before_init) else: raise ValueError( "Variable self.global_timestep of policy {} needs to be " "either of type `int` or `tf.Variable`, " "but is of type {}.".format(self, type(self.global_timestep)) ) def maybe_remove_time_dimension(self, input_dict: Dict[str, TensorType]): """Removes a time dimension for recurrent RLModules. Args: input_dict: The input dict. Returns: The input dict with a possibly removed time dimension. """ raise NotImplementedError def _get_dummy_batch_from_view_requirements( self, batch_size: int = 1 ) -> SampleBatch: """Creates a numpy dummy batch based on the Policy's view requirements. Args: batch_size: The size of the batch to create. Returns: Dict[str, TensorType]: The dummy batch containing all zero values. """ ret = {} for view_col, view_req in self.view_requirements.items(): data_col = view_req.data_col or view_col # Flattened dummy batch. if (isinstance(view_req.space, (gym.spaces.Tuple, gym.spaces.Dict))) and ( ( data_col == SampleBatch.OBS and not self.config["_disable_preprocessor_api"] ) or ( data_col == SampleBatch.ACTIONS and not self.config.get("_disable_action_flattening") ) ): _, shape = ModelCatalog.get_action_shape( view_req.space, framework=self.config["framework"] ) ret[view_col] = np.zeros((batch_size,) + shape[1:], np.float32) # Non-flattened dummy batch. else: # Range of indices on time-axis, e.g. "-50:-1". if isinstance(view_req.space, gym.spaces.Space): time_size = ( len(view_req.shift_arr) if len(view_req.shift_arr) > 1 else None ) ret[view_col] = get_dummy_batch_for_space( view_req.space, batch_size=batch_size, time_size=time_size ) else: ret[view_col] = [view_req.space for _ in range(batch_size)] # Due to different view requirements for the different columns, # columns in the resulting batch may not all have the same batch size. return SampleBatch(ret) def _update_model_view_requirements_from_init_state(self): """Uses Model's (or this Policy's) init state to add needed ViewReqs. Can be called from within a Policy to make sure RNNs automatically update their internal state-related view requirements. Changes the `self.view_requirements` dict. """ self._model_init_state_automatically_added = True model = getattr(self, "model", None) obj = model or self if model and not hasattr(model, "view_requirements"): model.view_requirements = { SampleBatch.OBS: ViewRequirement(space=self.observation_space) } view_reqs = obj.view_requirements # Add state-ins to this model's view. init_state = [] if hasattr(obj, "get_initial_state") and callable(obj.get_initial_state): init_state = obj.get_initial_state() else: # Add this functionality automatically for new native model API. if ( tf and isinstance(model, tf.keras.Model) and "state_in_0" not in view_reqs ): obj.get_initial_state = lambda: [ np.zeros_like(view_req.space.sample()) for k, view_req in model.view_requirements.items() if k.startswith("state_in_") ] else: obj.get_initial_state = lambda: [] if "state_in_0" in view_reqs: self.is_recurrent = lambda: True # Make sure auto-generated init-state view requirements get added # to both Policy and Model, no matter what. view_reqs = [view_reqs] + ( [self.view_requirements] if hasattr(self, "view_requirements") else [] ) for i, state in enumerate(init_state): # Allow `state` to be either a Space (use zeros as initial values) # or any value (e.g. a dict or a non-zero tensor). fw = ( np if isinstance(state, np.ndarray) else torch if torch and torch.is_tensor(state) else None ) if fw: space = ( Box(-1.0, 1.0, shape=state.shape) if fw.all(state == 0.0) else state ) else: space = state for vr in view_reqs: # Only override if user has not already provided # custom view-requirements for state_in_n. if "state_in_{}".format(i) not in vr: vr["state_in_{}".format(i)] = ViewRequirement( "state_out_{}".format(i), shift=-1, used_for_compute_actions=True, batch_repeat_value=self.config.get("model", {}).get( "max_seq_len", 1 ), space=space, ) # Only override if user has not already provided # custom view-requirements for state_out_n. if "state_out_{}".format(i) not in vr: vr["state_out_{}".format(i)] = ViewRequirement( space=space, used_for_training=True ) def __repr__(self): return type(self).__name__ @OldAPIStack def get_gym_space_from_struct_of_tensors( value: Union[Dict, Tuple, List, TensorType], batched_input=True, ) -> gym.Space: start_idx = 1 if batched_input else 0 struct = tree.map_structure( lambda x: gym.spaces.Box( -1.0, 1.0, shape=x.shape[start_idx:], dtype=get_np_dtype(x) ), value, ) space = get_gym_space_from_struct_of_spaces(struct) return space @OldAPIStack def get_gym_space_from_struct_of_spaces(value: Union[Dict, Tuple]) -> gym.spaces.Dict: if isinstance(value, dict): return gym.spaces.Dict( {k: get_gym_space_from_struct_of_spaces(v) for k, v in value.items()} ) elif isinstance(value, (tuple, list)): return gym.spaces.Tuple([get_gym_space_from_struct_of_spaces(v) for v in value]) else: assert isinstance(value, gym.spaces.Space), ( f"The struct of spaces should only contain dicts, tiples and primitive " f"gym spaces. Space is of type {type(value)}" ) return value
Policy
python
encode__django-rest-framework
tests/test_permissions.py
{ "start": 18723, "end": 18941 }
class ____(permissions.BasePermission): message = 'Custom: You cannot access this resource' code = 'permission_denied_custom' def has_permission(self, request, view): return False
BasicPermWithDetail
python
getsentry__sentry
src/sentry/workflow_engine/migration_helpers/issue_alert_migration.py
{ "start": 1568, "end": 12686 }
class ____: def __init__( self, rule: Rule, user_id: int | None = None, is_dry_run: bool | None = False, should_create_actions: bool | None = True, ): self.rule = rule self.user_id = user_id self.is_dry_run = is_dry_run self.should_create_actions = should_create_actions self.data = rule.data self.project = rule.project self.organization = self.project.organization def run(self) -> Workflow: conditions, filters = split_conditions_and_filters(self.data["conditions"]) action_match = self.data.get("action_match") or Rule.DEFAULT_CONDITION_MATCH workflow = self._create_workflow_and_lookup( conditions=conditions, filters=filters, action_match=action_match, ) filter_match = self.data.get("filter_match") or Rule.DEFAULT_FILTER_MATCH if_dcg = self._create_if_dcg( filter_match=filter_match, workflow=workflow, conditions=conditions, filters=filters, ) if self.should_create_actions: self._create_workflow_actions(if_dcg=if_dcg, actions=self.data["actions"]) return workflow def _create_detector_lookups(self) -> list[Detector | None]: if self.rule.source == RuleSource.CRON_MONITOR: # Find the cron detector that was created before the rule monitor_slug = None for condition in self.data.get("conditions", []): if condition.get("key") == "monitor.slug": monitor_slug = condition.get("value") break if not monitor_slug: return [None] try: with in_test_hide_transaction_boundary(): monitor = Monitor.objects.get( slug=monitor_slug, organization_id=self.organization.id, ) detector = Detector.objects.get( datasource__type=DATA_SOURCE_CRON_MONITOR, datasource__source_id=str(monitor.id), datasource__organization_id=self.organization.id, ) return [detector] except (Monitor.DoesNotExist, Detector.DoesNotExist): pass return [None] if self.is_dry_run: error_detector = Detector.objects.filter( type=ErrorGroupType.slug, project=self.project ).first() if not error_detector: error_detector = Detector(type=ErrorGroupType.slug, project=self.project) issue_stream_detector = Detector.objects.filter( type=IssueStreamGroupType.slug, project=self.project ).first() if not issue_stream_detector: issue_stream_detector = Detector( type=IssueStreamGroupType.slug, project=self.project ) else: error_detector, _ = Detector.objects.get_or_create( type=ErrorGroupType.slug, project=self.project, defaults={"config": {}, "name": ERROR_DETECTOR_NAME}, ) AlertRuleDetector.objects.get_or_create(detector=error_detector, rule_id=self.rule.id) issue_stream_detector, _ = Detector.objects.get_or_create( type=IssueStreamGroupType.slug, project=self.project, defaults={"config": {}, "name": ISSUE_STREAM_DETECTOR_NAME}, ) return [error_detector, issue_stream_detector] def _connect_default_detectors(self, workflow: Workflow) -> None: default_detectors = self._create_detector_lookups() for detector in default_detectors: if detector: DetectorWorkflow.objects.get_or_create(detector=detector, workflow=workflow) def _bulk_create_data_conditions( self, conditions: list[dict[str, Any]], dcg: DataConditionGroup, filters: list[dict[str, Any]] | None = None, ): dcg_conditions: list[DataCondition] = [] for condition in conditions: try: if ( condition["id"] == EventUniqueUserFrequencyConditionWithConditions.id ): # special case: this condition uses filters, so the migration needs to combine the filters into the condition dcg_conditions.append( create_event_unique_user_frequency_condition_with_conditions( dict(condition), dcg, filters ) ) else: dcg_conditions.append(translate_to_data_condition(dict(condition), dcg=dcg)) except Exception as e: logger.exception( "workflow_engine.issue_alert_migration.error", extra={"rule_id": self.rule.id, "error": str(e)}, ) if self.is_dry_run: raise else: continue filtered_data_conditions = [ dc for dc in dcg_conditions if dc.type not in SKIPPED_CONDITIONS ] if self.is_dry_run: for dc in filtered_data_conditions: dc.full_clean( exclude=["condition_group"] ) # condition_group will be null, which is not allowed enforce_data_condition_json_schema(dc) return filtered_data_conditions data_conditions: list[DataCondition] = [] # try one by one, ignoring errors for dc in filtered_data_conditions: try: dc.save() data_conditions.append(dc) except Exception as e: logger.exception( "workflow_engine.issue_alert_migration.error", extra={"rule_id": self.rule.id, "error": str(e)}, ) return data_conditions def _create_when_dcg( self, action_match: str, ): if action_match == "any": logic_type = DataConditionGroup.Type.ANY_SHORT_CIRCUIT.value else: logic_type = DataConditionGroup.Type(action_match) kwargs = {"organization": self.organization, "logic_type": logic_type} if self.is_dry_run: when_dcg = DataConditionGroup(**kwargs) when_dcg.full_clean() else: when_dcg = DataConditionGroup.objects.create(**kwargs) return when_dcg def _create_workflow_and_lookup( self, conditions: list[dict[str, Any]], filters: list[dict[str, Any]], action_match: str, ) -> Workflow: when_dcg = self._create_when_dcg(action_match=action_match) data_conditions = self._bulk_create_data_conditions( conditions=conditions, filters=filters, dcg=when_dcg ) # the only time the data_conditions list will be empty is if somebody only has EveryEventCondition in their conditions list. # if it's empty and this is not the case, we should not migrate no_conditions = len(conditions) == 0 no_data_conditions = len(data_conditions) == 0 only_has_every_event_cond = ( len( [condition for condition in conditions if condition["id"] == EveryEventCondition.id] ) > 0 ) if not self.is_dry_run: if no_data_conditions and no_conditions: # originally no conditions and we expect no data conditions pass elif no_data_conditions and not only_has_every_event_cond: raise Exception("No valid trigger conditions, skipping migration") enabled = True rule_snooze = RuleSnooze.objects.filter(rule=self.rule, user_id=None).first() if rule_snooze and rule_snooze.until is None: enabled = False if self.rule.status == ObjectStatus.DISABLED: enabled = False config = {"frequency": self.rule.data.get("frequency") or Workflow.DEFAULT_FREQUENCY} kwargs = { "organization": self.organization, "name": self.rule.label, "environment_id": self.rule.environment_id, "when_condition_group": when_dcg, "created_by_id": self.user_id, "owner_user_id": self.rule.owner_user_id, "owner_team": self.rule.owner_team, "config": config, "enabled": enabled, } if self.is_dry_run: workflow = Workflow(**kwargs) workflow.full_clean(exclude=["when_condition_group"]) workflow.validate_config(workflow.config_schema) if AlertRuleWorkflow.objects.filter(rule_id=self.rule.id).exists(): raise Exception("Issue alert already migrated") else: workflow = Workflow.objects.create(**kwargs) workflow.update(date_added=self.rule.date_added) self._connect_default_detectors(workflow=workflow) AlertRuleWorkflow.objects.create(rule_id=self.rule.id, workflow=workflow) return workflow def _create_if_dcg( self, filter_match: str, workflow: Workflow, conditions: list[dict[str, Any]], filters: list[dict[str, Any]], ) -> DataConditionGroup: if ( filter_match == "any" or filter_match is None ): # must create IF DCG even if it's empty, to attach actions logic_type = DataConditionGroup.Type.ANY_SHORT_CIRCUIT else: logic_type = DataConditionGroup.Type(filter_match) kwargs = { "organization": self.organization, "logic_type": logic_type, } if self.is_dry_run: if_dcg = DataConditionGroup(**kwargs) if_dcg.full_clean() else: if_dcg = DataConditionGroup.objects.create(**kwargs) WorkflowDataConditionGroup.objects.create(workflow=workflow, condition_group=if_dcg) conditions_ids = [condition["id"] for condition in conditions] # skip migrating filters for special case if EventUniqueUserFrequencyConditionWithConditions.id not in conditions_ids: self._bulk_create_data_conditions(conditions=filters, dcg=if_dcg) return if_dcg def _create_workflow_actions( self, if_dcg: DataConditionGroup, actions: list[dict[str, Any]] ) -> None: notification_actions = build_notification_actions_from_rule_data_actions( actions, is_dry_run=self.is_dry_run or False ) dcg_actions = [ DataConditionGroupAction(action=action, condition_group=if_dcg) for action in notification_actions ] if not self.is_dry_run: DataConditionGroupAction.objects.bulk_create(dcg_actions)
IssueAlertMigrator
python
h5py__h5py
h5py/tests/test_h5t.py
{ "start": 357, "end": 1703 }
class ____(ut.TestCase): """ Feature: Compound types can be created from Python dtypes """ def test_ref(self): """ Reference types are correctly stored in compound types (issue 144) """ dt = np.dtype([('a', h5py.ref_dtype), ('b', '<f4')]) tid = h5t.py_create(dt, logical=True) t1, t2 = tid.get_member_type(0), tid.get_member_type(1) self.assertEqual(t1, h5t.STD_REF_OBJ) self.assertEqual(t2, h5t.IEEE_F32LE) self.assertEqual(tid.get_member_offset(0), 0) self.assertEqual(tid.get_member_offset(1), h5t.STD_REF_OBJ.get_size()) def test_out_of_order_offsets(self): size = 20 type_dict = { 'names': ['f1', 'f2', 'f3'], 'formats': ['<f4', '<i4', '<f8'], 'offsets': [0, 16, 8] } expected_dtype = np.dtype(type_dict) tid = h5t.create(h5t.COMPOUND, size) for name, offset, dt in zip( type_dict["names"], type_dict["offsets"], type_dict["formats"], strict=True ): tid.insert( name.encode("utf8") if isinstance(name, str) else name, offset, h5t.py_create(dt) ) self.assertEqual(tid.dtype, expected_dtype) self.assertEqual(tid.dtype.itemsize, size)
TestCompound
python
PyCQA__pylint
tests/functional/d/deprecated/deprecated_decorators.py
{ "start": 169, "end": 277 }
class ____: @abc.abstractclassmethod # [deprecated-decorator] def my_method(cls): pass
MyClass
python
tensorflow__tensorflow
tensorflow/python/kernel_tests/v1_compat_tests/array_ops_test.py
{ "start": 2876, "end": 3291 }
class ____(test_util.TensorFlowTestCase): @test_util.run_v1_only("Variables need initialization only in V1") def testUninitialized(self): with self.assertRaisesRegex( errors.FailedPreconditionError, "Attempting to use uninitialized value Variable"): v = variable_v1.VariableV1([1, 2]) self.evaluate(v[:].assign([1, 2])) if __name__ == "__main__": test_lib.main()
SliceAssignTest
python
pypa__pip
src/pip/_internal/metadata/pkg_resources.py
{ "start": 8415, "end": 10544 }
class ____(BaseEnvironment): def __init__(self, ws: pkg_resources.WorkingSet) -> None: self._ws = ws @classmethod def default(cls) -> BaseEnvironment: return cls(pkg_resources.working_set) @classmethod def from_paths(cls, paths: list[str] | None) -> BaseEnvironment: return cls(pkg_resources.WorkingSet(paths)) def _iter_distributions(self) -> Iterator[BaseDistribution]: for dist in self._ws: yield Distribution(dist) def _search_distribution(self, name: str) -> BaseDistribution | None: """Find a distribution matching the ``name`` in the environment. This searches from *all* distributions available in the environment, to match the behavior of ``pkg_resources.get_distribution()``. """ canonical_name = canonicalize_name(name) for dist in self.iter_all_distributions(): if dist.canonical_name == canonical_name: return dist return None def get_distribution(self, name: str) -> BaseDistribution | None: # Search the distribution by looking through the working set. dist = self._search_distribution(name) if dist: return dist # If distribution could not be found, call working_set.require to # update the working set, and try to find the distribution again. # This might happen for e.g. when you install a package twice, once # using setup.py develop and again using setup.py install. Now when # running pip uninstall twice, the package gets removed from the # working set in the first uninstall, so we have to populate the # working set again so that pip knows about it and the packages gets # picked up and is successfully uninstalled the second time too. try: # We didn't pass in any version specifiers, so this can never # raise pkg_resources.VersionConflict. self._ws.require(name) except pkg_resources.DistributionNotFound: return None return self._search_distribution(name)
Environment
python
apache__airflow
providers/amazon/src/airflow/providers/amazon/aws/sensors/batch.py
{ "start": 1376, "end": 4853 }
class ____(AwsBaseSensor[BatchClientHook]): """ Poll the state of the Batch Job until it reaches a terminal state; fails if the job fails. .. seealso:: For more information on how to use this sensor, take a look at the guide: :ref:`howto/sensor:BatchSensor` :param job_id: Batch job_id to check the state for :param aws_conn_id: The Airflow connection used for AWS credentials. If this is ``None`` or empty then the default boto3 behaviour is used. If running Airflow in a distributed manner and aws_conn_id is None or empty, then default boto3 configuration would be used (and must be maintained on each worker node). :param region_name: AWS region_name. If not specified then the default boto3 behaviour is used. :param verify: Whether or not to verify SSL certificates. See: https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html :param deferrable: Run sensor in the deferrable mode. :param poke_interval: polling period in seconds to check for the status of the job. :param max_retries: Number of times to poll for job state before returning the current state. """ aws_hook_class = BatchClientHook template_fields: Sequence[str] = aws_template_fields( "job_id", ) template_ext: Sequence[str] = () ui_color = "#66c3ff" def __init__( self, *, job_id: str, deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False), poke_interval: float = 30, max_retries: int = 4200, **kwargs, ): super().__init__(**kwargs) self.job_id = job_id self.deferrable = deferrable self.poke_interval = poke_interval self.max_retries = max_retries def poke(self, context: Context) -> bool: job_description = self.hook.get_job_description(self.job_id) state = job_description["status"] if state == BatchClientHook.SUCCESS_STATE: return True if state in BatchClientHook.INTERMEDIATE_STATES: return False raise AirflowException(f"Batch sensor failed. AWS Batch job status: {state}") def execute(self, context: Context) -> None: if not self.deferrable: super().execute(context=context) else: timeout = ( timedelta(seconds=self.max_retries * self.poke_interval + 60) if self.max_retries else self.execution_timeout ) self.defer( timeout=timeout, trigger=BatchJobTrigger( job_id=self.job_id, aws_conn_id=self.aws_conn_id, region_name=self.region_name, waiter_delay=int(self.poke_interval), waiter_max_attempts=self.max_retries, ), method_name="execute_complete", ) def execute_complete(self, context: Context, event: dict[str, Any]) -> None: """ Execute when the trigger fires - returns immediately. Relies on trigger to throw an exception, otherwise it assumes execution was successful. """ if event["status"] != "success": raise AirflowException(f"Error while running job: {event}") job_id = event["job_id"] self.log.info("Batch Job %s complete", job_id)
BatchSensor
python
huggingface__transformers
src/transformers/models/roformer/modeling_roformer.py
{ "start": 3327, "end": 4578 }
class ____(nn.Module): """Construct the embeddings from word and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size) self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids=None, token_type_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=inputs_embeds.device) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings
RoFormerEmbeddings
python
huggingface__transformers
tests/models/hiera/test_modeling_hiera.py
{ "start": 8158, "end": 22106 }
class ____(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as Hiera does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = ( ( HieraModel, HieraBackbone, HieraForImageClassification, HieraForPreTraining, ) if is_torch_available() else () ) pipeline_model_mapping = ( {"image-feature-extraction": HieraModel, "image-classification": HieraForImageClassification} if is_torch_available() else {} ) test_resize_embeddings = False test_torch_exportable = True def setUp(self): self.model_tester = HieraModelTester(self) self.config_tester = ConfigTester(self, config_class=HieraConfig, has_text_modality=False) def test_config(self): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def test_batching_equivalence(self, atol=3e-4, rtol=3e-4): super().test_batching_equivalence(atol=atol, rtol=rtol) # Overriding as Hiera `get_input_embeddings` returns HieraPatchEmbeddings def test_model_get_set_embeddings(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) # Overriding as attention shape depends on patch_stride and mask_unit_size def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class._from_config(config, attn_implementation="eager") config = model.config model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions expected_num_attentions = len(self.model_tester.depths) self.assertEqual(len(attentions), expected_num_attentions) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True seq_len = math.prod([i // s for i, s in zip(config.image_size, config.patch_stride)]) mask_unit_area = math.prod(config.masked_unit_size) num_windows = seq_len // mask_unit_area if model_class.__name__ == "HieraForPreTraining": num_windows = int(num_windows * (1 - config.mask_ratio)) seq_len = int(num_windows * mask_unit_area) model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), expected_num_attentions) self.assertListEqual( list(attentions[0].shape[-4:]), [self.model_tester.num_heads[0], num_windows, mask_unit_area, seq_len // num_windows], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) # also another +1 for reshaped_hidden_states added_hidden_states = 1 if model_class.__name__ == "HieraBackbone" else 2 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), expected_num_attentions) self.assertListEqual( list(self_attentions[0].shape[-4:]), [self.model_tester.num_heads[0], num_windows, mask_unit_area, seq_len // num_windows], ) # Overriding as attention shape depends on patch_stride and mask_unit_size def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class, image_size): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", len(self.model_tester.depths) + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) # Hiera has a different seq_length patch_size = config.patch_stride num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) if model_class.__name__ == "HieraForPreTraining": mask_unit_area = math.prod(config.masked_unit_size) num_windows = num_patches // mask_unit_area num_windows = int(num_windows * (1 - config.mask_ratio)) num_patches = int(num_windows * mask_unit_area) self.assertListEqual( list(hidden_states[0].shape[-2:]), [num_patches, self.model_tester.embed_dim], ) if model_class.__name__ != "HieraBackbone": reshaped_hidden_states = outputs.reshaped_hidden_states self.assertEqual(len(reshaped_hidden_states), expected_num_layers) batch_size = reshaped_hidden_states[0].shape[0] num_channels = reshaped_hidden_states[0].shape[-1] reshaped_hidden_states = reshaped_hidden_states[0].view(batch_size, -1, num_channels) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]), [num_patches, self.model_tester.embed_dim], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() image_size = self.model_tester.image_size for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class, image_size) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class, image_size) # Overriding since HieraForPreTraining outputs bool_masked_pos which has to be converted to float in the msg def test_model_outputs_equivalence(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(t): t[t != t] = 0 return t def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): with torch.no_grad(): tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs) dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple() def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (list, tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): recursive_check(tuple_iterable_value, dict_iterable_value) elif isinstance(tuple_object, dict): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values(), dict_object.values() ): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 ), msg=( "Tuple and dict output are not equal. Difference:" f" {torch.max(torch.abs(tuple_object.float() - dict_object.float()))}. Tuple has `nan`:" f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." ), ) recursive_check(tuple_output, dict_output) for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() additional_kwargs = {} tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) additional_kwargs["output_hidden_states"] = True check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs) if self.has_attentions: # Removing "output_hidden_states" del additional_kwargs["output_hidden_states"] tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) additional_kwargs["output_attentions"] = True check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) additional_kwargs["output_hidden_states"] = True check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs) @unittest.skip(reason="Hiera Transformer does not use feedforward chunking") def test_feed_forward_chunking(self): pass @unittest.skip(reason="Hiera does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_backbone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in ["facebook/hiera-tiny-224-hf"]: model = HieraModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision @slow
HieraModelTest
python
pandas-dev__pandas
pandas/core/groupby/ops.py
{ "start": 40491, "end": 40846 }
class ____(DataSplitter): def _chop(self, sdata: Series, slice_obj: slice) -> Series: # fastpath equivalent to `sdata.iloc[slice_obj]` mgr = sdata._mgr.get_slice(slice_obj) ser = sdata._constructor_from_mgr(mgr, axes=mgr.axes) ser._name = sdata.name return ser.__finalize__(sdata, method="groupby")
SeriesSplitter
python
getsentry__sentry
tests/sentry/utils/test_samples.py
{ "start": 1508, "end": 4296 }
class ____: @pytest.mark.parametrize("platform", list(CONSOLES)) def test_console_platforms_trigger_screenshot_attachment( self, default_project: Project, platform: str ): with mock.patch( "sentry.utils.samples.create_console_screenshot_attachment" ) as mock_attachment: event = create_sample_event(default_project, platform=platform) assert event is not None mock_attachment.assert_called_once_with(event, default_project, platform) def test_non_console_platforms_skip_screenshot_attachment(self, default_project): with mock.patch( "sentry.utils.samples.create_console_screenshot_attachment" ) as mock_attachment: event = create_sample_event(default_project, platform="python") assert event is not None mock_attachment.assert_not_called() # TODO(telemetry): Enable test when we have the screenshots # @pytest.mark.parametrize("platform", list(CONSOLES)) # def test_console_platforms_create_screenshot_attachment(self, default_project, platform): # from sentry.models.eventattachment import EventAttachment # EventAttachment.objects.filter(project_id=default_project.id).delete() # event = create_sample_event(default_project, platform=platform) # assert event is not None # attachments = EventAttachment.objects.filter( # event_id=event.event_id, project_id=default_project.id, name="screenshot.png" # ) # assert attachments.exists() # attachment = attachments.first() # assert attachment.content_type == "image/png" # assert attachment.name == "screenshot.png" # assert attachment.size > 0 def test_screenshot_attachment_handles_error_gracefully(self, default_project): with mock.patch("sentry.utils.samples.load_console_screenshot") as mock_load: mock_load.return_value = None event = create_sample_event(default_project, platform="xbox") assert event is not None from sentry.models.eventattachment import EventAttachment attachments = EventAttachment.objects.filter( event_id=event.event_id, project_id=default_project.id, name="screenshot.png" ) assert not attachments.exists() def test_screenshot_attachment_handles_database_error_gracefully(self, default_project): with mock.patch( "sentry.models.eventattachment.EventAttachment.objects.create" ) as mock_create: mock_create.side_effect = Exception("Database connection failed") event = create_sample_event(default_project, platform="xbox") assert event is not None
TestConsoleSamples
python
networkx__networkx
networkx/algorithms/isomorphism/tests/test_isomorphvf2.py
{ "start": 192, "end": 2143 }
class ____: # Source: https://en.wikipedia.org/wiki/Graph_isomorphism # Nodes 'a', 'b', 'c' and 'd' form a column. # Nodes 'g', 'h', 'i' and 'j' form a column. g1edges = [ ["a", "g"], ["a", "h"], ["a", "i"], ["b", "g"], ["b", "h"], ["b", "j"], ["c", "g"], ["c", "i"], ["c", "j"], ["d", "h"], ["d", "i"], ["d", "j"], ] # Nodes 1,2,3,4 form the clockwise corners of a large square. # Nodes 5,6,7,8 form the clockwise corners of a small square g2edges = [ [1, 2], [2, 3], [3, 4], [4, 1], [5, 6], [6, 7], [7, 8], [8, 5], [1, 5], [2, 6], [3, 7], [4, 8], ] def test_graph(self): g1 = nx.Graph() g2 = nx.Graph() g1.add_edges_from(self.g1edges) g2.add_edges_from(self.g2edges) gm = iso.GraphMatcher(g1, g2) assert gm.is_isomorphic() # Just testing some cases assert gm.subgraph_is_monomorphic() mapping = sorted(gm.mapping.items()) # this mapping is only one of the possibilities # so this test needs to be reconsidered # isomap = [('a', 1), ('b', 6), ('c', 3), ('d', 8), # ('g', 2), ('h', 5), ('i', 4), ('j', 7)] # assert_equal(mapping, isomap) def test_subgraph(self): g1 = nx.Graph() g2 = nx.Graph() g1.add_edges_from(self.g1edges) g2.add_edges_from(self.g2edges) g3 = g2.subgraph([1, 2, 3, 4]) gm = iso.GraphMatcher(g1, g3) assert gm.subgraph_is_isomorphic() def test_subgraph_mono(self): g1 = nx.Graph() g2 = nx.Graph() g1.add_edges_from(self.g1edges) g2.add_edges_from([[1, 2], [2, 3], [3, 4]]) gm = iso.GraphMatcher(g1, g2) assert gm.subgraph_is_monomorphic()
TestWikipediaExample
python
getsentry__sentry
src/sentry/integrations/discord/handlers/discord_handler.py
{ "start": 790, "end": 2331 }
class ____(IntegrationActionHandler): group = ActionHandler.Group.NOTIFICATION provider_slug = IntegrationProviderSlug.DISCORD # Main difference between the discord and slack action config schemas is that the target_display is possibly null config_schema = { "$schema": "https://json-schema.org/draft/2020-12/schema", "description": "The configuration schema for a Discord Action", "type": "object", "properties": { "target_identifier": {"type": "string"}, "target_display": { "type": ["string", "null"], }, "target_type": { "type": ["integer"], "enum": [ActionTarget.SPECIFIC.value], }, }, "required": ["target_identifier", "target_type"], "additionalProperties": False, } data_schema = { "$schema": "https://json-schema.org/draft/2020-12/schema", "type": "object", "description": "Schema for Discord action data blob", "properties": { "tags": TAGS_SCHEMA, }, "additionalProperties": False, } @staticmethod def get_config_transformer() -> ConfigTransformer | None: return TargetTypeConfigTransformer.from_config_schema(DiscordActionHandler.config_schema) @staticmethod def execute( job: WorkflowEventData, action: Action, detector: Detector, ) -> None: execute_via_group_type_registry(job, action, detector)
DiscordActionHandler
python
pytorch__pytorch
test/distributed/fsdp/test_fsdp_fx.py
{ "start": 1321, "end": 4720 }
class ____(TestCase): def test_symbolic_tracing_outputs(self): """ Tests running ``tracer.trace()`` inside ``patch_tracer()`` by checking the saved data structures. """ model = Model() tracer = torch.fx.Tracer() orig_call_module = tracer.call_module orig_create_proxy = tracer.create_proxy exec_order_tracer = _ExecOrderTracer() with exec_order_tracer.patch_tracer(tracer=tracer, root_module=model): concrete_args = {"run_all_layers": True} tracer.trace(model, concrete_args) # Check that the tracer methods are unchanged after exiting the context self.assertEqual(orig_call_module, tracer.call_module) self.assertEqual(orig_create_proxy, tracer.create_proxy) # Check `module_forward_order` correct_module_forward_order = [ model, model.layer0, model.relu, model.layer2, model.layer2[0], model.layer2[1], model.layer2[2], model.relu, model.layer1, model.relu, model.layer0, model.relu, ] exec_info = exec_order_tracer.exec_info self.assertEqual(exec_info.module_forward_order, correct_module_forward_order) # Check `module_to_param_usage_infos` self.assertEqual( exec_info.module_to_param_usage_infos[model], [ (model.layer0, list(model.layer0.named_parameters())), (model.layer2, list(model.layer2.named_parameters())), (model, [("weight1", model.weight1)]), (model.layer1, list(model.layer1.named_parameters())), (model, [("weight2", model.weight2)]), (model.layer0, list(model.layer0.named_parameters())), ], ) self.assertEqual( exec_info.module_to_param_usage_infos[model.layer0], [(model.layer0, list(model.layer0.named_parameters()))], ) self.assertEqual( exec_info.module_to_param_usage_infos[model.layer1], [(model.layer1, list(model.layer1.named_parameters()))], ) self.assertEqual( exec_info.module_to_param_usage_infos[model.layer2], [ (model.layer2[0], list(model.layer2[0].named_parameters())), (model.layer2[2], list(model.layer2[2].named_parameters())), ], ) self.assertEqual(exec_info.module_to_param_usage_infos[model.relu], []) # Check `param_forward_order` correct_param_order = [ model.layer0.weight, model.layer0.bias, model.layer2[0].weight, model.layer2[2].weight, model.weight1, model.layer1.weight, model.weight2, ] self.assertEqual(exec_info.param_forward_order, correct_param_order) # Check `visited_params` self.assertEqual( len(exec_info.visited_params), len(exec_info.param_forward_order) ) self.assertEqual(exec_info.visited_params, set(exec_info.param_forward_order)) devices = ("cuda", "hpu", "xpu") instantiate_device_type_tests( TestSymbolicTracing, globals(), only_for=devices, allow_xpu=True ) if __name__ == "__main__": run_tests()
TestSymbolicTracing
python
sqlalchemy__sqlalchemy
test/orm/test_unitofworkv2.py
{ "start": 1970, "end": 2617 }
class ____: def _get_test_uow(self, session): uow = unitofwork.UOWTransaction(session) deleted = set(session._deleted) new = set(session._new) dirty = set(session._dirty_states).difference(deleted) for s in new.union(dirty): uow.register_object(s) for d in deleted: uow.register_object(d, isdelete=True) return uow def _assert_uow_size(self, session, expected): uow = self._get_test_uow(session) postsort_actions = uow._generate_actions() print(postsort_actions) eq_(len(postsort_actions), expected, postsort_actions)
AssertsUOW
python
dagster-io__dagster
examples/docs_snippets/docs_snippets/guides/dagster/dagster_pipes/dagster_pipes_details_and_customization/custom_bootstrap_loader.py
{ "start": 216, "end": 582 }
class ____(PipesParamsLoader): def is_dagster_pipes_process(self) -> bool: return DAGSTER_PIPES_CONTEXT_ENV_VAR in METADATA def load_context_params(self) -> PipesParams: return METADATA[DAGSTER_PIPES_CONTEXT_ENV_VAR] def load_messages_params(self) -> PipesParams: return METADATA[DAGSTER_PIPES_MESSAGES_ENV_VAR]
MyCustomParamsLoader
python
streamlit__streamlit
lib/streamlit/runtime/caching/storage/cache_storage_protocol.py
{ "start": 5695, "end": 8610 }
class ____(Protocol): """Cache storage manager protocol, that should be implemented by the concrete cache storage managers. It is responsible for: - Creating cache storage instances for the specific decorated functions, - Validating the context for the cache storages. - Optionally clearing all cache storages in optimal way. It should be created during Runtime initialization. """ @abstractmethod def create(self, context: CacheStorageContext) -> CacheStorage: """Creates a new cache storage instance Please note that the ttl, max_entries and other context fields are specific for whole storage, not for individual key. Notes ----- Threading: Should be safe to call from any thread. """ raise NotImplementedError def clear_all(self) -> None: """Remove everything what possible from the cache storages in optimal way. meaningful default behaviour is to raise NotImplementedError, so this is not abstractmethod. The method is optional to implement: cache data API will fall back to remove all available storages one by one via storage.clear() method if clear_all raises NotImplementedError. Raises ------ NotImplementedError Raised if the storage manager does not provide an ability to clear all storages at once in optimal way. Notes ----- Threading: This method could be called from multiple threads. This is a responsibility of the concrete implementation to ensure thread safety guarantees. """ raise NotImplementedError def check_context(self, context: CacheStorageContext) -> None: """Checks if the context is valid for the storage manager. This method should not return anything, but log message or raise an exception if the context is invalid. In case of raising an exception, we not handle it and let the exception to be propagated. check_context is called only once at the moment of creating `@st.cache_data` decorator for specific function, so it is not called for every cache hit. Parameters ---------- context: CacheStorageContext The context to check for the storage manager, dummy function_key in context will be used, since it is not computed at the point of calling this method. Raises ------ InvalidCacheStorageContext Raised if the cache storage manager is not able to work with provided CacheStorageContext. When possible we should log message instead, since this exception will be propagated to the user. Notes ----- Threading: Should be safe to call from any thread. """ pass
CacheStorageManager
python
django__django
tests/i18n/tests.py
{ "start": 19753, "end": 20815 }
class ____(SimpleTestCase): def setUp(self): self._old_language = get_language() self._translations = trans_real._translations # here we rely on .split() being called inside the _fetch() # in trans_real.translation() class sideeffect_str(str): def split(self, *args, **kwargs): res = str.split(self, *args, **kwargs) trans_real._translations["en-YY"] = None return res trans_real._translations = {sideeffect_str("en-XX"): None} def tearDown(self): trans_real._translations = self._translations activate(self._old_language) def test_bug14894_translation_activate_thread_safety(self): translation_count = len(trans_real._translations) # May raise RuntimeError if translation.activate() isn't thread-safe. translation.activate("pl") # make sure sideeffect_str actually added a new translation self.assertLess(translation_count, len(trans_real._translations))
TranslationThreadSafetyTests
python
getsentry__sentry
tests/sentry/middleware/test_access_log_middleware.py
{ "start": 3533, "end": 5711 }
class ____(ControlSiloOrganizationEndpoint): def get(self, request, organization_context, organization): return Response({"ok": True}) urlpatterns = [ re_path(r"^/dummy$", DummyEndpoint.as_view(), name="dummy-endpoint"), re_path(r"^api/0/internal/test$", DummyEndpoint.as_view(), name="internal-dummy-endpoint"), re_path(r"^/dummyfail$", DummyFailEndpoint.as_view(), name="dummy-fail-endpoint"), re_path( r"^snubaratelimit$", SnubaRateLimitedEndpoint.as_view(), name="snuba-ratelimit-endpoint" ), re_path(r"^/dummyratelimit$", RateLimitedEndpoint.as_view(), name="ratelimit-endpoint"), re_path( r"^/dummyratelimitconcurrent$", ConcurrentRateLimitedEndpoint.as_view(), name="concurrent-ratelimit-endpoint", ), re_path( r"^(?P<organization_id_or_slug>[^/]+)/stats_v2/$", MyOrganizationEndpoint.as_view(), name="sentry-api-0-organization-stats-v2", ), re_path( r"^(?P<organization_id_or_slug>[^/]+)/members/$", MyControlOrganizationEndpoint.as_view(), name="sentry-api-0-organization-members", ), # Need to retain RPC endpoint for cross-silo calls re_path( r"^api/0/internal/rpc/(?P<service_name>\w+)/(?P<method_name>\w+)/$", InternalRpcServiceEndpoint.as_view(), name="sentry-api-0-rpc-service", ), ] required_access_log_fields = ( "method", "view", "response", "path", "rate_limit_type", "rate_limited", "caller_ip", "request_duration_seconds", ) # All of these fields may be None, and thus may not appear in every access log optional_access_log_fields = ( "organization_id", "is_app", "user_id", "token_type", "entity_id", "user_agent", "rate_limit_category", "group", "concurrent_limit", "concurrent_requests", "reset_time", "limit", "remaining", "snuba_policy", "snuba_quota_unit", "snuba_storage_key", "snuba_quota_used", "snuba_rejection_threshold", "token_last_characters", ) @override_settings(ROOT_URLCONF=__name__) @override_settings(LOG_API_ACCESS=True)
MyControlOrganizationEndpoint
python
etianen__django-reversion
tests/test_app/tests/base.py
{ "start": 2566, "end": 2618 }
class ____(TestBaseMixin, TestCase): pass
TestBase
python
pydantic__pydantic
tests/mypy/modules/pydantic_settings.py
{ "start": 288, "end": 461 }
class ____(BaseSettings): bar: str model_config = SettingsConfigDict(env_file='.env', env_file_encoding='utf-8') scd = SettingsWithConfigDict()
SettingsWithConfigDict
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/protocol53.py
{ "start": 4412, "end": 4603 }
class ____(Proto_ContraGeneric): # This should not generate a reportIncompatibleMethodOverride error # but does currently. def m(self, x: Self) -> None: ...
Impl_ContraSelfExplicit3
python
getsentry__sentry
src/sentry/discover/endpoints/discover_saved_query_detail.py
{ "start": 2050, "end": 6094 }
class ____(DiscoverSavedQueryBase): publish_status = { "DELETE": ApiPublishStatus.PUBLIC, "GET": ApiPublishStatus.PUBLIC, "PUT": ApiPublishStatus.PUBLIC, } def has_feature(self, organization, request): return features.has( "organizations:discover", organization, actor=request.user ) or features.has("organizations:discover-query", organization, actor=request.user) @extend_schema( operation_id="Retrieve an Organization's Discover Saved Query", parameters=[ GlobalParams.ORG_ID_OR_SLUG, DiscoverSavedQueryParams.DISCOVER_SAVED_QUERY_ID, ], request=None, responses={ 200: DiscoverSavedQueryModelSerializer, 403: RESPONSE_FORBIDDEN, 404: RESPONSE_NOT_FOUND, }, examples=DiscoverExamples.DISCOVER_SAVED_QUERY_GET_RESPONSE, ) def get(self, request: Request, organization, query) -> Response: """ Retrieve a saved query. """ if not self.has_feature(organization, request): return self.respond(status=404) self.check_object_permissions(request, query) return Response(serialize(query), status=200) @extend_schema( operation_id="Edit an Organization's Discover Saved Query", parameters=[GlobalParams.ORG_ID_OR_SLUG, DiscoverSavedQueryParams.DISCOVER_SAVED_QUERY_ID], request=DiscoverSavedQuerySerializer, responses={ 200: DiscoverSavedQueryModelSerializer, 400: RESPONSE_BAD_REQUEST, 403: RESPONSE_FORBIDDEN, 404: RESPONSE_NOT_FOUND, }, examples=DiscoverExamples.DISCOVER_SAVED_QUERY_GET_RESPONSE, ) def put(self, request: Request, organization: Organization, query) -> Response: """ Modify a saved query. """ if not self.has_feature(organization, request): return self.respond(status=404) self.check_object_permissions(request, query) try: params = self.get_filter_params( request, organization, project_ids=request.data.get("projects") ) except NoProjects: raise ParseError(detail="No Projects found, join a Team") serializer = DiscoverSavedQuerySerializer( data=request.data, context={"params": params, "organization": organization, "user": request.user}, ) if not serializer.is_valid(): return Response(serializer.errors, status=400) data = serializer.validated_data user_selected_dataset = data["query_dataset"] != DiscoverSavedQueryTypes.DISCOVER query.update( organization=organization, name=data["name"], query=data["query"], version=data["version"], dataset=data["query_dataset"], dataset_source=( DatasetSourcesTypes.USER.value if user_selected_dataset else DatasetSourcesTypes.UNKNOWN.value ), ) query.set_projects(data["project_ids"]) return Response(serialize(query), status=200) @extend_schema( operation_id="Delete an Organization's Discover Saved Query", parameters=[GlobalParams.ORG_ID_OR_SLUG, DiscoverSavedQueryParams.DISCOVER_SAVED_QUERY_ID], responses={ 204: RESPONSE_NO_CONTENT, 403: RESPONSE_FORBIDDEN, 404: RESPONSE_NOT_FOUND, }, ) def delete(self, request: Request, organization, query) -> Response: """ Delete a saved query. """ if not self.has_feature(organization, request): return self.respond(status=404) self.check_object_permissions(request, query) query.delete() return Response(status=204) from rest_framework.request import Request from rest_framework.response import Response @region_silo_endpoint
DiscoverSavedQueryDetailEndpoint
python
boto__boto3
tests/unit/resources/test_params.py
{ "start": 6655, "end": 8520 }
class ____(BaseTestCase): def test_simple_value(self): params = {} build_param_structure(params, 'foo', 'bar') assert params['foo'] == 'bar' def test_nested_dict(self): params = {} build_param_structure(params, 'foo.bar.baz', 123) assert params['foo']['bar']['baz'] == 123 def test_nested_list(self): params = {} build_param_structure(params, 'foo.bar[0]', 'test') assert params['foo']['bar'][0] == 'test' def test_strange_offset(self): params = {} build_param_structure(params, 'foo[2]', 'test') assert params['foo'] == [{}, {}, 'test'] def test_nested_list_dict(self): params = {} build_param_structure(params, 'foo.bar[0].baz', 123) assert params['foo']['bar'][0]['baz'] == 123 def test_modify_existing(self): params = {'foo': [{'key': 'abc'}]} build_param_structure(params, 'foo[0].secret', 123) assert params['foo'][0]['key'] == 'abc' assert params['foo'][0]['secret'] == 123 def test_append_no_index(self): params = {} build_param_structure(params, 'foo[]', 123) assert params['foo'] == [123] build_param_structure(params, 'foo[]', 456) assert params['foo'] == [123, 456] def test_provided_index_with_wildcard(self): params = {} index = 0 build_param_structure(params, 'foo[*].bar', 123, index) build_param_structure(params, 'foo[*].baz', 456, index) assert params['foo'][index] == {'bar': 123, 'baz': 456} index = 1 build_param_structure(params, 'foo[*].bar', 789, index) build_param_structure(params, 'foo[*].baz', 123, index) assert params['foo'] == [ {'bar': 123, 'baz': 456}, {'bar': 789, 'baz': 123}, ]
TestStructBuilder
python
apache__airflow
airflow-core/src/airflow/api_fastapi/execution_api/datamodels/taskinstance.py
{ "start": 9334, "end": 10192 }
class ____(StrictBaseModel): """Schema for DagRun model with minimal required fields needed for Runtime.""" # TODO: `dag_id` and `run_id` are duplicated from TaskInstance # See if we can avoid sending these fields from API server and instead # use the TaskInstance data to get the DAG run information in the client (Task Execution Interface). dag_id: str run_id: str logical_date: UtcDateTime | None data_interval_start: UtcDateTime | None data_interval_end: UtcDateTime | None run_after: UtcDateTime start_date: UtcDateTime end_date: UtcDateTime | None clear_number: int = 0 run_type: DagRunType state: DagRunState conf: dict[str, Any] | None = None triggering_user_name: str | None = None consumed_asset_events: list[AssetEventDagRunReference] partition_key: str | None
DagRun
python
tensorflow__tensorflow
tensorflow/python/ops/clustering_ops.py
{ "start": 25455, "end": 36028 }
class ____: """Internal class to create the op to initialize the clusters. The op performs this algorithm (see constructor args): num_remaining = num_clusters - length(cluster_centers) if num_remaining == 0: assert that cluster_centers_initialized is true else: assert that num_remaining > 0 new_centers = choose up to num_remaining initial centers l2-normalize new_centers if using cosine distance all_centers = concat(cluster_centers, new_centers) cluster_centers := all_centers if there is a cluster_centers_updated variable: cluster_centers_updated := cluster_centers num_now_remaining = num_clusters - length(cluster_centers) if num_now_remaining == 0: cluster_centers_initialized := true """ # TODO(ccolby): Refactor this class so that kmc2 isn't so much a special case. def __init__(self, inputs, num_clusters, initial_clusters, distance_metric, random_seed, kmeans_plus_plus_num_retries, kmc2_chain_length, cluster_centers, cluster_centers_updated, cluster_centers_initialized): """Creates an op factory. Args: inputs: See KMeans constructor. num_clusters: An integer Tensor providing the number of clusters. initial_clusters: See KMeans constructor. distance_metric: See KMeans constructor. random_seed: See KMeans constructor. kmeans_plus_plus_num_retries: See KMeans constructor. kmc2_chain_length: See KMeans constructor. cluster_centers: The TF variable holding the initial centers. It may already contain some centers when the op is executed. cluster_centers_updated: A second TF variable to hold a copy of the initial centers, used for full-batch mode. In mini-batch mode, cluster_centers_updated is the same variable as cluster_centers. cluster_centers_initialized: A boolean TF variable that will be set to true when all the initial centers have been chosen. """ # All of these instance variables are constants. self._inputs = inputs self._num_clusters = num_clusters self._initial_clusters = initial_clusters self._distance_metric = distance_metric self._seed = random_seed self._kmeans_plus_plus_num_retries = kmeans_plus_plus_num_retries self._kmc2_chain_length = kmc2_chain_length self._cluster_centers = cluster_centers self._cluster_centers_updated = cluster_centers_updated self._cluster_centers_initialized = cluster_centers_initialized self._num_selected = array_ops.shape(self._cluster_centers)[0] self._num_remaining = self._num_clusters - self._num_selected self._num_data = math_ops.add_n( [array_ops.shape(i)[0] for i in self._inputs]) def _random(self): indices = random_ops.random_uniform( array_ops.reshape(self._num_remaining, [-1]), minval=0, maxval=math_ops.cast(self._num_data, dtypes.int64), seed=self._seed, dtype=dtypes.int64) return embedding_lookup(self._inputs, indices, partition_strategy='div') def _kmeans_plus_plus(self): # Points from only the first shard are used for initializing centers. # TODO(ands): Use all points. inp = self._inputs[0] if self._distance_metric == COSINE_DISTANCE: inp = nn_impl.l2_normalize(inp, dim=1) return gen_clustering_ops.kmeans_plus_plus_initialization( inp, math_ops.cast(self._num_remaining, dtypes.int64), self._seed, self._kmeans_plus_plus_num_retries) def _kmc2_multiple_centers(self): """Adds new initial cluster centers using the k-MC2 algorithm. In each call to the op, the provided batch is split into subsets based on the specified `kmc2_chain_length`. On each subset, a single Markov chain of the k-MC2 algorithm is used to add *one* new center cluster center. If there are less than `kmc2_chain_length` points in the subset, a single center is added using one Markov chain on the full input. It is assumed that the provided batch has previously been randomly permuted. Otherwise, k-MC2 may return suboptimal centers. Returns: An op that adds new cluster centers. """ # The op only operates on the first shard of data. first_shard = self._inputs[0] # Number of points in the input that can be used. batch_size = array_ops.shape(first_shard)[0] # Maximum number of subsets such that the size of each subset is at least # `kmc2_chain_length`. Final subsets may be larger. max_to_sample = math_ops.cast( batch_size / self._kmc2_chain_length, dtype=dtypes.int32) # We sample at least one new center and at most all remaining centers. num_to_sample = math_ops.maximum( math_ops.minimum(self._num_remaining, max_to_sample), 1) def _cond(i, _): """Stopping condition for the while loop.""" return math_ops.less(i, num_to_sample) def _body(i, _): """Body that adds a single new center based on a subset.""" def _sample_random(): """Returns a random point as a cluster center.""" # By assumption the batch is reshuffled and _sample_random is always # called for i=0. Hence, we simply return the first point. new_center = array_ops.reshape(first_shard[0], [1, -1]) if self._distance_metric == COSINE_DISTANCE: new_center = nn_impl.l2_normalize(new_center, dim=1) return new_center def _sample_kmc2_chain(): """Returns previous centers as well as a new center sampled using k-MC2.""" # Extract the subset from the underlying batch. start = i * self._kmc2_chain_length end = start + self._kmc2_chain_length subset = first_shard[start:end] # Compute the distances from points in the subset to previous centers. _, distances = gen_clustering_ops.nearest_neighbors( subset, self._cluster_centers, 1) # Sample index of new center using k-MC2 Markov chain. new_center_index = gen_clustering_ops.kmc2_chain_initialization( array_ops.squeeze(distances), self._seed) # Extract actual new center. newly_sampled_center = array_ops.reshape(subset[new_center_index], [1, -1]) # Return concatenation with previously sampled centers. if self._distance_metric == COSINE_DISTANCE: newly_sampled_center = nn_impl.l2_normalize( newly_sampled_center, dim=1) return array_ops.concat([self._cluster_centers, newly_sampled_center], 0) # Obtain a random point if there are no previously sampled centers. # Otherwise, construct a k-MC2 Markov chain. new_centers = cond.cond( math_ops.equal(self._num_selected, 0), _sample_random, _sample_kmc2_chain) # Assign new cluster centers to underlying variable. assigned_centers = state_ops.assign( self._cluster_centers, new_centers, validate_shape=False) if self._cluster_centers_updated is not self._cluster_centers: assigned_centers = state_ops.assign( self._cluster_centers_updated, assigned_centers, validate_shape=False) return i + 1, self._num_clusters - array_ops.shape(assigned_centers)[0] # Add num_to_sample new data points. _, num_remaining = while_loop.while_loop(_cond, _body, [0, 0]) return num_remaining def _greedy_batch_sampler(self, sampler): # If the input dataset size is smaller than the number of centers # remaining, choose the entire input dataset as centers. This can happen # with mini-batch. Otherwise, sample the batch according to the provided # sampler. return cond.cond(self._num_data <= self._num_remaining, lambda: array_ops.concat(self._inputs, 0), sampler) def _single_batch_sampler(self, sampler): # Enforce that there are at least as many data points as centers # remaining. This gives the provided sampler the chance to select all # remaining centers from a single batch. with ops.control_dependencies( [check_ops.assert_greater_equal(self._num_data, self._num_remaining)]): return sampler() def _choose_initial_centers(self): if isinstance(self._initial_clusters, str): if self._initial_clusters == RANDOM_INIT: return self._greedy_batch_sampler(self._random) else: # self._initial_clusters == KMEANS_PLUS_PLUS_INIT return self._single_batch_sampler(self._kmeans_plus_plus) elif callable(self._initial_clusters): return self._initial_clusters(self._inputs, self._num_remaining) else: with ops.control_dependencies([ check_ops.assert_equal(self._num_remaining, array_ops.shape(self._initial_clusters)[0]) ]): return self._initial_clusters def _add_new_centers(self): """Adds some centers and returns the number of centers remaining.""" new_centers = self._choose_initial_centers() if self._distance_metric == COSINE_DISTANCE: new_centers = nn_impl.l2_normalize(new_centers, dim=1) # If cluster_centers is empty, it doesn't have the right shape for concat. all_centers = cond.cond( math_ops.equal(self._num_selected, 0), lambda: new_centers, lambda: array_ops.concat([self._cluster_centers, new_centers], 0)) # TODO(ccolby): De-dupe all_centers? a = state_ops.assign( self._cluster_centers, all_centers, validate_shape=False) if self._cluster_centers_updated is not self._cluster_centers: a = state_ops.assign( self._cluster_centers_updated, a, validate_shape=False) return self._num_clusters - array_ops.shape(a)[0] def _initialize(self): with ops.control_dependencies([ check_ops.assert_positive(self._num_remaining), ]): if self._initial_clusters == KMC2_INIT: num_now_remaining = self._kmc2_multiple_centers() else: num_now_remaining = self._add_new_centers() return cond.cond( math_ops.equal(num_now_remaining, 0), lambda: state_ops.assign(self._cluster_centers_initialized, True), control_flow_ops.no_op) def op(self): """Returns the cluster initializer op.""" return cond.cond( math_ops.equal(self._num_remaining, 0), lambda: check_ops.assert_equal(self._cluster_centers_initialized, True), self._initialize)
_InitializeClustersOpFactory
python
nedbat__coveragepy
tests/test_plugins.py
{ "start": 11682, "end": 11775 }
class ____(CoverageTest): """Tests of plugins that implement file_tracer."""
FileTracerTest
python
ray-project__ray
python/ray/actor.py
{ "start": 3716, "end": 4199 }
class ____(Generic[_Ret, _T0, _T1, _T2, _T3, _T4]): def remote( self, __arg0: "Union[_T0, ObjectRef[_T0]]", __arg1: "Union[_T1, ObjectRef[_T1]]", __arg2: "Union[_T2, ObjectRef[_T2]]", __arg3: "Union[_T3, ObjectRef[_T3]]", __arg4: "Union[_T4, ObjectRef[_T4]]", ) -> "ObjectRef[_Ret]": ... def bind( self, __arg0: _T0, __arg1: _T1, __arg2: _T2, __arg3: _T3, __arg4: _T4 ) -> Any: ...
_RemoteMethod4
python
TheAlgorithms__Python
data_structures/heap/randomized_heap.py
{ "start": 175, "end": 1812 }
class ____[T: bool]: """ One node of the randomized heap. Contains the value and references to two children. """ def __init__(self, value: T) -> None: self._value: T = value self.left: RandomizedHeapNode[T] | None = None self.right: RandomizedHeapNode[T] | None = None @property def value(self) -> T: """ Return the value of the node. >>> rhn = RandomizedHeapNode(10) >>> rhn.value 10 >>> rhn = RandomizedHeapNode(-10) >>> rhn.value -10 """ return self._value @staticmethod def merge( root1: RandomizedHeapNode[T] | None, root2: RandomizedHeapNode[T] | None ) -> RandomizedHeapNode[T] | None: """ Merge 2 nodes together. >>> rhn1 = RandomizedHeapNode(10) >>> rhn2 = RandomizedHeapNode(20) >>> RandomizedHeapNode.merge(rhn1, rhn2).value 10 >>> rhn1 = RandomizedHeapNode(20) >>> rhn2 = RandomizedHeapNode(10) >>> RandomizedHeapNode.merge(rhn1, rhn2).value 10 >>> rhn1 = RandomizedHeapNode(5) >>> rhn2 = RandomizedHeapNode(0) >>> RandomizedHeapNode.merge(rhn1, rhn2).value 0 """ if not root1: return root2 if not root2: return root1 if root1.value > root2.value: root1, root2 = root2, root1 if random.choice([True, False]): root1.left, root1.right = root1.right, root1.left root1.left = RandomizedHeapNode.merge(root1.left, root2) return root1
RandomizedHeapNode
python
airbytehq__airbyte
airbyte-integrations/connectors/source-github/source_github/github_schema.py
{ "start": 168680, "end": 169591 }
class ____(sgqlc.types.Input): """Autogenerated input type of CopyProjectV2""" __schema__ = github_schema __field_names__ = ("project_id", "owner_id", "title", "include_draft_issues", "client_mutation_id") project_id = sgqlc.types.Field(sgqlc.types.non_null(ID), graphql_name="projectId") """The ID of the source Project to copy.""" owner_id = sgqlc.types.Field(sgqlc.types.non_null(ID), graphql_name="ownerId") """The owner ID of the new project.""" title = sgqlc.types.Field(sgqlc.types.non_null(String), graphql_name="title") """The title of the project.""" include_draft_issues = sgqlc.types.Field(Boolean, graphql_name="includeDraftIssues") """Include draft issues in the new project""" client_mutation_id = sgqlc.types.Field(String, graphql_name="clientMutationId") """A unique identifier for the client performing the mutation."""
CopyProjectV2Input
python
pypa__hatch
backend/src/hatchling/version/source/env.py
{ "start": 126, "end": 911 }
class ____(VersionSourceInterface): PLUGIN_NAME = "env" def get_version_data(self) -> dict: variable = self.config.get("variable", "") if not variable: message = "option `variable` must be specified" raise ValueError(message) if not isinstance(variable, str): message = "option `variable` must be a string" raise TypeError(message) if variable not in os.environ: message = f"environment variable `{variable}` is not set" raise RuntimeError(message) return {"version": os.environ[variable]} def set_version(self, version: str, version_data: dict) -> None: message = "Cannot set environment variables" raise NotImplementedError(message)
EnvSource