language
stringclasses
1 value
repo
stringclasses
346 values
path
stringlengths
6
201
class_span
dict
source
stringlengths
21
2.38M
target
stringlengths
1
96
python
mahmoud__boltons
tests/test_iterutils.py
{ "start": 1701, "end": 11672 }
class ____: # TODO: test namedtuples and other immutable containers def test_basic_clone(self): orig = {"a": "b", "c": [1, 2]} assert orig == remap(orig) orig2 = [{1: 2}, {"a": "b", "c": [1, 2, {"cat": "dog"}]}] assert orig2 == remap(orig2) def test_empty(self): assert [] == remap([]) assert {} == remap({}) assert set() == remap(set()) def test_unremappable(self): obj = object() with pytest.raises(TypeError): remap(obj) def test_basic_upper(self): orig = {'a': 1, 'b': object(), 'c': {'d': set()}} remapped = remap(orig, lambda p, k, v: (k.upper(), v)) assert orig['a'] == remapped['A'] assert orig['b'] == remapped['B'] assert orig['c']['d'] == remapped['C']['D'] def test_item_drop(self): orig = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] even_items = remap(orig, lambda p, k, v: not (v % 2)) assert even_items == [0, 2, 4, 6, 8] def test_noncallables(self): with pytest.raises(TypeError): remap([], visit='test') with pytest.raises(TypeError): remap([], enter='test') with pytest.raises(TypeError): remap([], exit='test') def test_sub_selfref(self): coll = [0, 1, 2, 3] sub = [] sub.append(sub) coll.append(sub) with pytest.raises(RuntimeError): # if equal, should recurse infinitely assert coll == remap(coll) def test_root_selfref(self): selfref = [0, 1, 2, 3] selfref.append(selfref) with pytest.raises(RuntimeError): assert selfref == remap(selfref) selfref2 = {} selfref2['self'] = selfref2 with pytest.raises(RuntimeError): assert selfref2 == remap(selfref2) def test_duperef(self): val = ['hello'] duperef = [val, val] remapped = remap(duperef) assert remapped[0] is remapped[1] assert remapped[0] is not duperef[0] def test_namedtuple(self): """TODO: this fails right now because namedtuples' __new__ is overridden to accept arguments. remap's default_enter tries to create an empty namedtuple and gets a TypeError. Could make it so that immutable types actually don't create a blank new parent and instead use the old_parent as a placeholder, creating a new one at exit-time from the value's __class__ (how default_exit works now). But even then it would have to *args in the values, as namedtuple constructors don't take an iterable. """ Point = namedtuple('Point', 'x y') point_map = {'origin': [Point(0, 0)]} with pytest.raises(TypeError): remapped = remap(point_map) assert isinstance(remapped['origin'][0], Point) def test_path(self): path_map = {} # test visit's path target_str = 'test' orig = [[[target_str]]] ref_path = (0, 0, 0) def visit(path, key, value): if value is target_str: path_map['target_str'] = path + (key,) return key, value remapped = remap(orig, visit=visit) assert remapped == orig assert path_map['target_str'] == ref_path # test enter's path target_obj = object() orig = {'a': {'b': {'c': {'d': ['e', target_obj, 'f']}}}} ref_path = ('a', 'b', 'c', 'd', 1) def enter(path, key, value): if value is target_obj: path_map['target_obj'] = path + (key,) return default_enter(path, key, value) remapped = remap(orig, enter=enter) assert remapped == orig assert path_map['target_obj'] == ref_path # test exit's path target_set = frozenset([1, 7, 3, 8]) orig = [0, 1, 2, [3, 4, [5, target_set]]] ref_path = (3, 2, 1) def exit(path, key, old_parent, new_parent, new_items): if old_parent is target_set: path_map['target_set'] = path + (key,) return default_exit(path, key, old_parent, new_parent, new_items) remapped = remap(orig, exit=exit) assert remapped == orig assert path_map['target_set'] == ref_path def test_reraise_visit(self): root = {'A': 'b', 1: 2} key_to_lower = lambda p, k, v: (k.lower(), v) with pytest.raises(AttributeError): remap(root, key_to_lower) remapped = remap(root, key_to_lower, reraise_visit=False) assert remapped['a'] == 'b' assert remapped[1] == 2 def test_drop_nones(self): orig = {'a': 1, 'b': None, 'c': [3, None, 4, None]} ref = {'a': 1, 'c': [3, 4]} drop_none = lambda p, k, v: v is not None remapped = remap(orig, visit=drop_none) assert remapped == ref orig = [None] * 100 remapped = remap(orig, drop_none) assert not remapped def test_dict_to_omd(self): def enter(path, key, value): if isinstance(value, dict): return OMD(), sorted(value.items()) return default_enter(path, key, value) orig = [{'title': 'Wild Palms', 'ratings': {1: 1, 2: 3, 3: 5, 4: 6, 5: 3}}, {'title': 'Twin Peaks', 'ratings': {1: 3, 2: 2, 3: 8, 4: 12, 5: 15}}] remapped = remap(orig, enter=enter) assert remapped == orig assert isinstance(remapped[0], OMD) assert isinstance(remapped[0]['ratings'], OMD) assert isinstance(remapped[1], OMD) assert isinstance(remapped[1]['ratings'], OMD) def test_sort_all_lists(self): def exit(path, key, old_parent, new_parent, new_items): # NB: in this case, I'd normally use *a, **kw ret = default_exit(path, key, old_parent, new_parent, new_items) if isinstance(ret, list): ret.sort() return ret # NB: Airplane model numbers (Boeing and Airbus) orig = [[[7, 0, 7], [7, 2, 7], [7, 7, 7], [7, 3, 7]], [[3, 8, 0], [3, 2, 0], [3, 1, 9], [3, 5, 0]]] ref = [[[0, 2, 3], [0, 3, 5], [0, 3, 8], [1, 3, 9]], [[0, 7, 7], [2, 7, 7], [3, 7, 7], [7, 7, 7]]] remapped = remap(orig, exit=exit) assert remapped == ref def test_collector_pattern(self): all_interests = set() def enter(path, key, value): try: all_interests.update(value['interests']) except: pass return default_enter(path, key, value) orig = [{'name': 'Kate', 'interests': ['theater', 'manga'], 'dads': [{'name': 'Chris', 'interests': ['biking', 'python']}]}, {'name': 'Avery', 'interests': ['museums', 'pears'], 'dads': [{'name': 'Kurt', 'interests': ['python', 'recursion']}]}] ref = {'python', 'recursion', 'biking', 'museums', 'pears', 'theater', 'manga'} remap(orig, enter=enter) assert all_interests == ref def test_add_length(self): def exit(path, key, old_parent, new_parent, new_items): ret = default_exit(path, key, old_parent, new_parent, new_items) try: ret['review_length'] = len(ret['review']) except: pass return ret orig = {'Star Trek': {'TNG': {'stars': 10, 'review': "Episodic AND deep. <3 Data."}, 'DS9': {'stars': 8.5, 'review': "Like TNG, but with a story and no Data."}, 'ENT': {'stars': None, 'review': "Can't review what you can't watch."}}, 'Babylon 5': {'stars': 6, 'review': "Sophomoric, like a bitter laugh."}, 'Dr. Who': {'stars': None, 'review': "800 episodes is too many to review."}} remapped = remap(orig, exit=exit) assert (remapped['Star Trek']['TNG']['review_length'] < remapped['Star Trek']['DS9']['review_length']) def test_prepop(self): """Demonstrating normalization and ID addition through prepopulating the objects with an enter callback. """ base_obj = {'name': None, 'rank': None, 'id': 1} def enter(path, key, value): new_parent, new_items = default_enter(path, key, value) try: new_parent.update(base_obj) base_obj['id'] += 1 except: pass return new_parent, new_items orig = [{'name': 'Firefox', 'rank': 1}, {'name': 'Chrome', 'rank': 2}, {'name': 'IE'}] ref = [{'name': 'Firefox', 'rank': 1, 'id': 1}, {'name': 'Chrome', 'rank': 2, 'id': 2}, {'name': 'IE', 'rank': None, 'id': 3}] remapped = remap(orig, enter=enter) assert remapped == ref def test_remap_set(self): # explicit test for sets to make sure #84 is covered s = {1, 2, 3} assert remap(s) == s fs = frozenset([1, 2, 3]) assert remap(fs) == fs def test_remap_file(self): with open(CUR_PATH, 'rb') as f: x = {'a': [1, 2, 3], 'f': [f]} assert remap(x) == x f.read() assert remap(x) == x f.close() # see #146 assert remap(x) == x return
TestRemap
python
ray-project__ray
python/ray/llm/_internal/batch/observability/usage_telemetry/usage.py
{ "start": 1605, "end": 3871 }
class ____: """Named Actor to keep the state of all deployed models and record telemetry.""" def __init__(self): self._tracking_telemetries: List[BatchModelTelemetry] = [] self._record_tag_func = record_extra_usage_tag def _update_record_tag_func(self, record_tag_func: Callable) -> None: self._record_tag_func = record_tag_func def generate_report(self) -> Dict[str, str]: return { BatchTelemetryTags.LLM_BATCH_PROCESSOR_CONFIG_NAME: ",".join( [t.processor_config_name for t in self._tracking_telemetries] ), BatchTelemetryTags.LLM_BATCH_MODEL_ARCHITECTURE: ",".join( [t.model_architecture for t in self._tracking_telemetries] ), BatchTelemetryTags.LLM_BATCH_SIZE: ",".join( [str(t.batch_size) for t in self._tracking_telemetries] ), BatchTelemetryTags.LLM_BATCH_ACCELERATOR_TYPE: ",".join( [t.accelerator_type for t in self._tracking_telemetries] ), BatchTelemetryTags.LLM_BATCH_CONCURRENCY: ",".join( [str(t.concurrency) for t in self._tracking_telemetries] ), BatchTelemetryTags.LLM_BATCH_TASK_TYPE: ",".join( [t.task_type for t in self._tracking_telemetries] ), BatchTelemetryTags.LLM_BATCH_PIPELINE_PARALLEL_SIZE: ",".join( [str(t.pipeline_parallel_size) for t in self._tracking_telemetries] ), BatchTelemetryTags.LLM_BATCH_TENSOR_PARALLEL_SIZE: ",".join( [str(t.tensor_parallel_size) for t in self._tracking_telemetries] ), BatchTelemetryTags.LLM_BATCH_DATA_PARALLEL_SIZE: ",".join( [str(t.data_parallel_size) for t in self._tracking_telemetries] ), } def record(self, telemetry: BatchModelTelemetry) -> None: """Append and record telemetries.""" from ray._common.usage.usage_lib import TagKey self._tracking_telemetries.append(telemetry) telemetry_dict = self.generate_report() for key, value in telemetry_dict.items(): self._record_tag_func(TagKey.Value(key), value)
_TelemetryAgent
python
numba__numba
numba/cuda/tests/cudapy/test_ipc.py
{ "start": 8029, "end": 10039 }
class ____(ContextResettingTestCase): def test_staged(self): # prepare data for IPC arr = np.arange(10, dtype=np.intp) devarr = cuda.to_device(arr) # spawn new process for testing mpctx = mp.get_context('spawn') result_queue = mpctx.Queue() # create IPC handle ctx = cuda.current_context() ipch = ctx.get_ipc_handle(devarr.gpu_data) # pickle buf = pickle.dumps(ipch) ipch_recon = pickle.loads(buf) self.assertIs(ipch_recon.base, None) if driver.USE_NV_BINDING: self.assertEqual(ipch_recon.handle.reserved, ipch.handle.reserved) else: self.assertEqual(tuple(ipch_recon.handle), tuple(ipch.handle)) self.assertEqual(ipch_recon.size, ipch.size) # Test on every CUDA devices for device_num in range(len(cuda.gpus)): args = (ipch, device_num, result_queue) proc = mpctx.Process(target=staged_ipc_handle_test, args=args) proc.start() succ, out = result_queue.get() proc.join(3) if not succ: self.fail(out) else: np.testing.assert_equal(arr, out) def test_ipc_array(self): for device_num in range(len(cuda.gpus)): # prepare data for IPC arr = np.random.random(10) devarr = cuda.to_device(arr) ipch = devarr.get_ipc_handle() # spawn new process for testing ctx = mp.get_context('spawn') result_queue = ctx.Queue() args = (ipch, device_num, result_queue) proc = ctx.Process(target=staged_ipc_array_test, args=args) proc.start() succ, out = result_queue.get() proc.join(3) if not succ: self.fail(out) else: np.testing.assert_equal(arr, out) @windows_only @skip_on_cudasim('Ipc not available in CUDASIM')
TestIpcStaged
python
jazzband__django-polymorphic
src/polymorphic/tests/test_admin.py
{ "start": 548, "end": 4678 }
class ____(AdminTestCase): def test_admin_registration(self): """ Test how the registration works """ @self.register(Model2A) class Model2Admin(PolymorphicParentModelAdmin): base_model = Model2A list_filter = (PolymorphicChildModelFilter,) child_models = (Model2B, Model2C, Model2D) @self.register(Model2B) @self.register(Model2C) @self.register(Model2D) class Model2ChildAdmin(PolymorphicChildModelAdmin): base_model = Model2A base_fieldsets = (("Base fields", {"fields": ("field1",)}),) # -- add page ct_id = ContentType.objects.get_for_model(Model2D).pk self.admin_get_add(Model2A) # shows type page self.admin_get_add(Model2A, qs=f"?ct_id={ct_id}") # shows type page self.admin_get_add(Model2A) # shows type page self.admin_post_add( Model2A, {"field1": "A", "field2": "B", "field3": "C", "field4": "D"}, qs=f"?ct_id={ct_id}", ) d_obj = Model2A.objects.all()[0] assert d_obj.__class__ == Model2D assert d_obj.field1 == "A" assert d_obj.field2 == "B" # -- list page self.admin_get_changelist(Model2A) # asserts 200 # -- edit response = self.admin_get_change(Model2A, d_obj.pk) self.assertContains(response, "field4") self.admin_post_change( Model2A, d_obj.pk, {"field1": "A2", "field2": "B2", "field3": "C2", "field4": "D2"}, ) d_obj.refresh_from_db() assert d_obj.field1 == "A2" assert d_obj.field2 == "B2" assert d_obj.field3 == "C2" assert d_obj.field4 == "D2" # -- history self.admin_get_history(Model2A, d_obj.pk) # -- delete self.admin_get_delete(Model2A, d_obj.pk) self.admin_post_delete(Model2A, d_obj.pk) pytest.raises(Model2A.DoesNotExist, (lambda: d_obj.refresh_from_db())) def test_admin_inlines(self): """ Test the registration of inline models. """ class InlineModelAChild(StackedPolymorphicInline.Child): model = InlineModelA class InlineModelBChild(StackedPolymorphicInline.Child): model = InlineModelB class Inline(StackedPolymorphicInline): model = InlineModelA child_inlines = (InlineModelAChild, InlineModelBChild) @self.register(InlineParent) class InlineParentAdmin(PolymorphicInlineSupportMixin, admin.ModelAdmin): inlines = (Inline,) parent = InlineParent.objects.create(title="FOO") assert parent.inline_children.count() == 0 # -- get edit page response = self.admin_get_change(InlineParent, parent.pk) # Make sure the fieldset has the right data exposed in data-inline-formset self.assertContains(response, "childTypes") self.assertContains(response, escape('"type": "inlinemodela"')) self.assertContains(response, escape('"type": "inlinemodelb"')) # -- post edit page self.admin_post_change( InlineParent, parent.pk, { "title": "FOO2", "inline_children-INITIAL_FORMS": 0, "inline_children-TOTAL_FORMS": 1, "inline_children-MIN_NUM_FORMS": 0, "inline_children-MAX_NUM_FORMS": 1000, "inline_children-0-parent": parent.pk, "inline_children-0-polymorphic_ctype": ContentType.objects.get_for_model( InlineModelB ).pk, "inline_children-0-field1": "A2", "inline_children-0-field2": "B2", }, ) parent.refresh_from_db() assert parent.title == "FOO2" assert parent.inline_children.count() == 1 child = parent.inline_children.all()[0] assert child.__class__ == InlineModelB assert child.field1 == "A2" assert child.field2 == "B2"
PolymorphicAdminTests
python
spyder-ide__spyder
external-deps/spyder-remote-services/spyder_remote_services/services/environ/handler.py
{ "start": 188, "end": 2130 }
class ____(JupyterHandler): """Handler for environment variables.""" auth_resource = "spyder-services" def write_json(self, data, status=HTTPStatus.OK): """Write JSON response.""" self.set_status(status) self.set_header("Content-Type", "application/json") self.finish(orjson.dumps(data)) def write_value(self, value, status=HTTPStatus.OK): """Write a value response.""" self.set_status(status) self.set_header("Content-Type", "text/plain") self.finish(value) def finish_with_status(self, status): """Finish the request with a specific status.""" self.set_status(status) self.finish() @web.authenticated @authorized def get(self, name=None): """Get the value of an environment variable.""" if name is None: self.write_json( os.environ.copy(), ) return value = os.environ.get(name) if value is None: raise web.HTTPError( HTTPStatus.NOT_FOUND, f"Environment variable {name} not found", ) self.write_value(value) @web.authenticated @authorized def post(self, name): """Set the value of an environment variable.""" value = self.get_body_argument("value") os.environ[name] = value self.finish_with_status(HTTPStatus.CREATED) @web.authenticated @authorized def delete(self, name): """Delete an environment variable.""" if name in os.environ: del os.environ[name] self.finish_with_status(HTTPStatus.NO_CONTENT) else: raise web.HTTPError( HTTPStatus.NOT_FOUND, f"Environment variable {name} not found", ) _name_regex = r"(?P<name>.+)" handlers = [ (r"/environ", EnvVarsHandler), (rf"/environ/{_name_regex}", EnvVarsHandler), ]
EnvVarsHandler
python
PrefectHQ__prefect
src/integrations/prefect-github/prefect_github/schemas/graphql_schema.py
{ "start": 807274, "end": 808109 }
class ____(sgqlc.types.Type, Node, UniformResourceLocatable): """ See source code for more info. """ __schema__ = graphql_schema __field_names__ = ( "actor", "commit", "created_at", "merge_ref", "merge_ref_name", "pull_request", ) actor = sgqlc.types.Field(Actor, graphql_name="actor") commit = sgqlc.types.Field(Commit, graphql_name="commit") created_at = sgqlc.types.Field( sgqlc.types.non_null(DateTime), graphql_name="createdAt" ) merge_ref = sgqlc.types.Field("Ref", graphql_name="mergeRef") merge_ref_name = sgqlc.types.Field( sgqlc.types.non_null(String), graphql_name="mergeRefName" ) pull_request = sgqlc.types.Field( sgqlc.types.non_null("PullRequest"), graphql_name="pullRequest" )
MergedEvent
python
pyca__cryptography
tests/hazmat/primitives/test_aead.py
{ "start": 1560, "end": 9601 }
class ____: @pytest.mark.skipif( sys.platform not in {"linux", "darwin"} or sys.maxsize < 2**31, reason="mmap and 64-bit platform required", ) def test_data_too_large(self): key = ChaCha20Poly1305.generate_key() chacha = ChaCha20Poly1305(key) nonce = b"0" * 12 large_data = large_mmap() with pytest.raises(OverflowError): chacha.encrypt(nonce, large_data, b"") with pytest.raises(OverflowError): chacha.encrypt(nonce, b"", large_data) def test_generate_key(self): key = ChaCha20Poly1305.generate_key() assert len(key) == 32 def test_bad_key(self, backend): with pytest.raises(TypeError): ChaCha20Poly1305(object()) # type:ignore[arg-type] with pytest.raises(ValueError): ChaCha20Poly1305(b"0" * 31) @pytest.mark.parametrize( ("nonce", "data", "associated_data"), [ [object(), b"data", b""], [b"0" * 12, object(), b""], [b"0" * 12, b"data", object()], ], ) def test_params_not_bytes_encrypt( self, nonce, data, associated_data, backend ): key = ChaCha20Poly1305.generate_key() chacha = ChaCha20Poly1305(key) with pytest.raises(TypeError): chacha.encrypt(nonce, data, associated_data) with pytest.raises(TypeError): chacha.decrypt(nonce, data, associated_data) def test_nonce_not_12_bytes(self, backend): key = ChaCha20Poly1305.generate_key() chacha = ChaCha20Poly1305(key) with pytest.raises(ValueError): chacha.encrypt(b"00", b"hello", b"") with pytest.raises(ValueError): buf = bytearray(16) chacha.encrypt_into(b"00", b"hello", b"", buf) with pytest.raises(ValueError): chacha.decrypt(b"00", b"hello", b"") with pytest.raises(ValueError): buf = bytearray(1) chacha.decrypt_into(b"00", b"hello", b"", buf) def test_decrypt_data_too_short(self, backend): key = ChaCha20Poly1305.generate_key() chacha = ChaCha20Poly1305(key) with pytest.raises(InvalidTag): chacha.decrypt(b"0" * 12, b"0", None) with pytest.raises(InvalidTag): buf = bytearray(16) chacha.decrypt_into(b"0" * 12, b"0", None, buf) def test_associated_data_none_equal_to_empty_bytestring(self, backend): key = ChaCha20Poly1305.generate_key() chacha = ChaCha20Poly1305(key) nonce = os.urandom(12) ct1 = chacha.encrypt(nonce, b"some_data", None) ct2 = chacha.encrypt(nonce, b"some_data", b"") assert ct1 == ct2 pt1 = chacha.decrypt(nonce, ct1, None) pt2 = chacha.decrypt(nonce, ct2, b"") assert pt1 == pt2 def test_openssl_vectors(self, subtests, backend): vectors = load_vectors_from_file( os.path.join("ciphers", "ChaCha20Poly1305", "openssl.txt"), load_nist_vectors, ) for vector in vectors: with subtests.test(): key = binascii.unhexlify(vector["key"]) nonce = binascii.unhexlify(vector["iv"]) aad = binascii.unhexlify(vector["aad"]) tag = binascii.unhexlify(vector["tag"]) pt = binascii.unhexlify(vector["plaintext"]) ct = binascii.unhexlify(vector["ciphertext"]) chacha = ChaCha20Poly1305(key) if vector.get("result") == b"CIPHERFINAL_ERROR": with pytest.raises(InvalidTag): chacha.decrypt(nonce, ct + tag, aad) else: computed_pt = chacha.decrypt(nonce, ct + tag, aad) assert computed_pt == pt computed_ct = chacha.encrypt(nonce, pt, aad) assert computed_ct == ct + tag def test_boringssl_vectors(self, subtests, backend): vectors = load_vectors_from_file( os.path.join("ciphers", "ChaCha20Poly1305", "boringssl.txt"), load_nist_vectors, ) for vector in vectors: with subtests.test(): key = binascii.unhexlify(vector["key"]) nonce = binascii.unhexlify(vector["nonce"]) if vector["ad"].startswith(b'"'): aad = vector["ad"][1:-1] else: aad = binascii.unhexlify(vector["ad"]) tag = binascii.unhexlify(vector["tag"]) if vector["in"].startswith(b'"'): pt = vector["in"][1:-1] else: pt = binascii.unhexlify(vector["in"]) ct = binascii.unhexlify(vector["ct"].strip(b'"')) chacha = ChaCha20Poly1305(key) computed_pt = chacha.decrypt(nonce, ct + tag, aad) assert computed_pt == pt computed_ct = chacha.encrypt(nonce, pt, aad) assert computed_ct == ct + tag def test_buffer_protocol(self, backend): key = ChaCha20Poly1305.generate_key() chacha = ChaCha20Poly1305(key) pt = b"encrypt me" ad = b"additional" nonce = os.urandom(12) ct = chacha.encrypt(nonce, pt, ad) computed_pt = chacha.decrypt(nonce, ct, ad) assert computed_pt == pt chacha2 = ChaCha20Poly1305(bytearray(key)) ct2 = chacha2.encrypt(bytearray(nonce), pt, ad) assert ct2 == ct computed_pt2 = chacha2.decrypt(bytearray(nonce), ct2, ad) assert computed_pt2 == pt def test_encrypt_into(self, backend): key = ChaCha20Poly1305.generate_key() chacha = ChaCha20Poly1305(key) nonce = os.urandom(12) pt = b"encrypt me" ad = b"additional" buf = bytearray(len(pt) + 16) n = chacha.encrypt_into(nonce, pt, ad, buf) assert n == len(pt) + 16 ct = chacha.encrypt(nonce, pt, ad) assert buf == ct @pytest.mark.parametrize( ("ptlen", "buflen"), [(10, 25), (10, 27), (15, 30), (20, 37)] ) def test_encrypt_into_buffer_incorrect_size(self, ptlen, buflen, backend): key = ChaCha20Poly1305.generate_key() chacha = ChaCha20Poly1305(key) nonce = os.urandom(12) pt = b"x" * ptlen buf = bytearray(buflen) with pytest.raises(ValueError, match="buffer must be"): chacha.encrypt_into(nonce, pt, None, buf) def test_decrypt_into(self, backend): key = ChaCha20Poly1305.generate_key() chacha = ChaCha20Poly1305(key) nonce = os.urandom(12) pt = b"decrypt me" ad = b"additional" ct = chacha.encrypt(nonce, pt, ad) buf = bytearray(len(pt)) n = chacha.decrypt_into(nonce, ct, ad, buf) assert n == len(pt) assert buf == pt @pytest.mark.parametrize( ("ctlen", "buflen"), [(26, 9), (26, 11), (31, 14), (36, 21)] ) def test_decrypt_into_buffer_incorrect_size(self, ctlen, buflen, backend): key = ChaCha20Poly1305.generate_key() chacha = ChaCha20Poly1305(key) nonce = os.urandom(12) ct = b"x" * ctlen buf = bytearray(buflen) with pytest.raises(ValueError, match="buffer must be"): chacha.decrypt_into(nonce, ct, None, buf) def test_decrypt_into_invalid_tag(self, backend): key = ChaCha20Poly1305.generate_key() chacha = ChaCha20Poly1305(key) nonce = os.urandom(12) pt = b"some data" ad = b"additional" ct = chacha.encrypt(nonce, pt, ad) # Corrupt the ciphertext corrupted_ct = bytearray(ct) corrupted_ct[0] ^= 1 buf = bytearray(len(pt)) with pytest.raises(InvalidTag): chacha.decrypt_into(nonce, bytes(corrupted_ct), ad, buf) @pytest.mark.skipif( not _aead_supported(AESCCM), reason="Does not support AESCCM", )
TestChaCha20Poly1305
python
getsentry__sentry
src/sentry/dynamic_sampling/rules/helpers/latest_releases.py
{ "start": 2264, "end": 4442 }
class ____: """ Class that hides the complexity of extending boosted releases. """ boosted_releases: list[BoostedRelease] = field(default_factory=list) def add_release( self, cache_key: str, id: int, timestamp: float, environment: str | None ) -> None: self.boosted_releases.append( BoostedRelease(cache_key=cache_key, id=id, timestamp=timestamp, environment=environment) ) def to_extended_boosted_releases( self, project_id: int ) -> tuple[list[ExtendedBoostedRelease], list[str]]: # We get release models in order to have all the information to extend the releases we get from the cache. models = self._get_releases_models() current_timestamp = datetime.now(timezone.utc).timestamp() extended_boosted_releases = [] expired_boosted_releases = [] for boosted_release in self.boosted_releases: release_model = models.get(boosted_release.id, None) # In case we are unable to find the release in the database, it means that it has been deleted but # it still present in Redis. For this reason, we will mark this as expired, in order to have it deleted # during cleanup. if release_model is None: expired_boosted_releases.append(boosted_release.cache_key) continue extended_boosted_release = boosted_release.extend( release=release_model, project_id=project_id ) if extended_boosted_release.is_active(current_timestamp): extended_boosted_releases.append(extended_boosted_release) else: expired_boosted_releases.append(boosted_release.cache_key) return extended_boosted_releases, expired_boosted_releases def _get_last_release_ids(self) -> list[int]: return [boosted_release.id for boosted_release in self.boosted_releases] def _get_releases_models(self) -> dict[int, Release]: return { release.id: release for release in Release.objects.filter(id__in=self._get_last_release_ids()) }
BoostedReleases
python
streamlit__streamlit
lib/tests/streamlit/runtime/state/session_state_test.py
{ "start": 13116, "end": 17890 }
class ____(DeltaGeneratorTestCase): def test_widget_presence(self): state = st.session_state assert "foo" not in state state.foo = "foo" assert "foo" in state assert state.foo == "foo" def test_widget_outputs_dont_alias(self): color = st.select_slider( "Select a color of the rainbow", options=[ ["red", "orange"], ["yellow", "green"], ["blue", "indigo"], ["violet"], ], key="color", ) ctx = get_script_run_ctx() assert ctx.session_state["color"] is not color def test_callbacks_with_rerun(): """Calling 'rerun' from within a widget callback is disallowed and results in a warning. """ def script(): import streamlit as st def callback(): st.session_state["message"] = "ran callback" st.rerun() st.checkbox("cb", on_change=callback) at = AppTest.from_function(script).run() at.checkbox[0].check().run() assert at.session_state["message"] == "ran callback" warning = at.warning[0] assert "no-op" in warning.value def test_fragment_callback_flag_resets_on_rerun_exception() -> None: """Ensure fragment callback context flag is cleared on RerunException. This guards against leaving `ctx.in_fragment_callback` stuck to True if a callback raises, which could contaminate subsequent runs. """ from streamlit.runtime.scriptrunner import RerunException ss = SessionState() wid = "w-frag" # A callback that raises RerunException def cb() -> None: raise RerunException(None) meta = WidgetMetadata( id=wid, deserializer=lambda v: v, serializer=lambda v: v, value_type="int_value", callbacks={"change": cb}, fragment_id="frag-1", ) ss._set_widget_metadata(meta) ss._old_state[wid] = 1 ss._new_widget_state.set_from_value(wid, 2) # ensure _widget_changed is True mock_ctx = MagicMock() mock_ctx.in_fragment_callback = False with patch( "streamlit.runtime.state.session_state.get_script_run_ctx", return_value=mock_ctx, ): # Callbacks internally catch RerunException and log a warning. ss._call_callbacks() assert mock_ctx.in_fragment_callback is False def test_updates(): at = AppTest.from_file("test_data/linked_sliders.py").run() assert at.slider.values == [-100.0, -148.0] assert at.markdown.values == ["Celsius `-100.0`", "Fahrenheit `-148.0`"] # Both sliders update when first is changed at.slider[0].set_value(0.0).run() assert at.slider.values == [0.0, 32.0] assert at.markdown.values == ["Celsius `0.0`", "Fahrenheit `32.0`"] # Both sliders update when second is changed at.slider[1].set_value(212.0).run() assert at.slider.values == [100.0, 212.0] assert at.markdown.values == ["Celsius `100.0`", "Fahrenheit `212.0`"] # Sliders update when one is changed repeatedly at.slider[0].set_value(0.0).run() assert at.slider.values == [0.0, 32.0] at.slider[0].set_value(100.0).run() assert at.slider.values == [100.0, 212.0] def test_serializable_check(): """When the config option is on, adding unserializable data to session state should result in an exception. """ with patch_config_options({"runner.enforceSerializableSessionState": True}): def script(): import streamlit as st def unserializable_data(): return lambda x: x st.session_state.unserializable = unserializable_data() at = AppTest.from_function(script).run() assert at.exception assert "pickle" in at.exception[0].value def test_serializable_check_off(): """When the config option is off, adding unserializable data to session state should work without errors. """ with patch_config_options({"runner.enforceSerializableSessionState": False}): def script(): import streamlit as st def unserializable_data(): return lambda x: x st.session_state.unserializable = unserializable_data() at = AppTest.from_function(script).run() assert not at.exception def check_roundtrip(widget_id: str, value: Any) -> None: session_state = _raw_session_state() wid = session_state._get_widget_id(widget_id) metadata = session_state._new_widget_state.widget_metadata[wid] serializer = metadata.serializer deserializer = metadata.deserializer assert deserializer(serializer(value)) == value @patch("streamlit.runtime.Runtime.exists", MagicMock(return_value=True))
SessionStateTest
python
huggingface__transformers
src/transformers/data/datasets/glue.py
{ "start": 1106, "end": 2164 }
class ____: """ Arguments pertaining to what data we are going to input our model for training and eval. Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. """ task_name: str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys())}) data_dir: str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) max_seq_length: int = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __post_init__(self): self.task_name = self.task_name.lower()
GlueDataTrainingArguments
python
huggingface__transformers
src/transformers/models/olmo2/modular_olmo2.py
{ "start": 12273, "end": 14002 }
class ____(OlmoDecoderLayer): def __init__(self, config: Olmo2Config, layer_idx: int): super().__init__(config, layer_idx=layer_idx) self.post_attention_layernorm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_feedforward_layernorm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.self_attn = Olmo2Attention(config=config, layer_idx=layer_idx) del self.input_layernorm def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, **kwargs: Unpack[TransformersKwargs], ) -> torch.Tensor: residual = hidden_states hidden_states, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.mlp(hidden_states) hidden_states = self.post_feedforward_layernorm(hidden_states) hidden_states = residual + hidden_states return hidden_states
Olmo2DecoderLayer
python
airbytehq__airbyte
airbyte-integrations/connectors/source-github/source_github/github_schema.py
{ "start": 1050394, "end": 1050867 }
class ____(sgqlc.types.Type): """Email attributes from External Identity""" __schema__ = github_schema __field_names__ = ("primary", "type", "value") primary = sgqlc.types.Field(Boolean, graphql_name="primary") """Boolean to identify primary emails""" type = sgqlc.types.Field(String, graphql_name="type") """Type of email""" value = sgqlc.types.Field(sgqlc.types.non_null(String), graphql_name="value") """Email id"""
UserEmailMetadata
python
doocs__leetcode
lcci/17.25.Word Rectangle/Solution.py
{ "start": 356, "end": 1697 }
class ____: def maxRectangle(self, words: List[str]) -> List[str]: def check(mat): m, n = len(mat), len(mat[0]) ans = 1 for j in range(n): node = trie for i in range(m): idx = ord(mat[i][j]) - ord("a") if node.children[idx] is None: return 0 node = node.children[idx] if not node.is_end: ans = 2 return ans def dfs(ws): nonlocal ans, max_s, max_l if len(ws[0]) * max_l <= max_s or len(t) >= max_l: return for w in ws: t.append(w) st = check(t) if st == 0: t.pop() continue if st == 1 and max_s < len(t) * len(t[0]): ans = t[:] max_s = len(t) * len(t[0]) dfs(ws) t.pop() d = defaultdict(list) trie = Trie() max_l = 0 for w in words: trie.insert(w) max_l = max(max_l, len(w)) d[len(w)].append(w) max_s = 0 ans = [] for ws in d.values(): t = [] dfs(ws) return ans
Solution
python
streamlit__streamlit
lib/tests/streamlit/runtime/uploaded_file_manager_test.py
{ "start": 1143, "end": 4279 }
class ____(unittest.TestCase): def setUp(self): self.mgr = MemoryUploadedFileManager("/mock/upload") def test_added_file_id(self): """Presigned file URL should have a unique ID.""" info1, info2 = self.mgr.get_upload_urls("session", ["name1", "name1"]) assert info1.file_id != info2.file_id def test_retrieve_added_file(self): """An added file should maintain all its source properties except its ID.""" self.mgr.add_file("session", FILE_1) self.mgr.add_file("session", FILE_2) file1_from_storage, *rest_files = self.mgr.get_files("session", ["url1"]) assert len(rest_files) == 0 assert file1_from_storage.file_id == FILE_1.file_id assert file1_from_storage.name == FILE_1.name assert file1_from_storage.type == FILE_1.type assert file1_from_storage.data == FILE_1.data file2_from_storage, *other_files = self.mgr.get_files("session", ["url2"]) assert len(other_files) == 0 assert file2_from_storage.file_id == FILE_2.file_id assert file2_from_storage.name == FILE_2.name assert file2_from_storage.type == FILE_2.type assert file2_from_storage.data == FILE_2.data def test_remove_file(self): # This should not error. self.mgr.remove_file("non-session", "non-file-id") self.mgr.add_file("session", FILE_1) self.mgr.remove_file("session", FILE_1.file_id) assert self.mgr.get_files("session", [FILE_1.file_id]) == [] # Remove the file again. It doesn't exist, but this isn't an error. self.mgr.remove_file("session", FILE_1.file_id) assert self.mgr.get_files("session", [FILE_1.file_id]) == [] self.mgr.add_file("session", FILE_1) self.mgr.add_file("session", FILE_2) self.mgr.remove_file("session", FILE_1.file_id) assert self.mgr.get_files("session", [FILE_1.file_id, FILE_2.file_id]) == [ FILE_2 ] def test_remove_session_files(self): # This should not error. self.mgr.remove_session_files("non-report") # Add two files with different session IDs, but the same widget ID. self.mgr.add_file("session1", FILE_1) self.mgr.add_file("session1", FILE_2) self.mgr.add_file("session2", FILE_1) self.mgr.remove_session_files("session1") assert self.mgr.get_files("session1", [FILE_1.file_id, FILE_2.file_id]) == [] assert self.mgr.get_files("session2", [FILE_1.file_id]) == [FILE_1] def test_cache_stats_provider(self): """Test CacheStatsProvider implementation.""" # Test empty manager assert self.mgr.get_stats() == [] # Test manager with files self.mgr.add_file("session1", FILE_1) self.mgr.add_file("session1", FILE_2) expected = [ CacheStat( category_name="UploadedFileManager", cache_name="", byte_length=len(FILE_1.data) + len(FILE_2.data), ), ] assert expected == self.mgr.get_stats()
UploadedFileManagerTest
python
apache__airflow
providers/amazon/tests/unit/amazon/aws/triggers/test_emr.py
{ "start": 2059, "end": 2827 }
class ____: def test_serialization(self): job_flow_id = "test_job_flow_id" waiter_delay = 30 waiter_max_attempts = 60 aws_conn_id = "aws_default" trigger = EmrCreateJobFlowTrigger( job_flow_id=job_flow_id, waiter_delay=waiter_delay, waiter_max_attempts=waiter_max_attempts, aws_conn_id=aws_conn_id, ) classpath, kwargs = trigger.serialize() assert classpath == "airflow.providers.amazon.aws.triggers.emr.EmrCreateJobFlowTrigger" assert kwargs == { "job_flow_id": "test_job_flow_id", "waiter_delay": 30, "waiter_max_attempts": 60, "aws_conn_id": "aws_default", }
TestEmrCreateJobFlowTrigger
python
django-guardian__django-guardian
guardian/backends.py
{ "start": 1914, "end": 5792 }
class ____: """Django backend for checking object-level permissions.""" supports_object_permissions = True supports_anonymous_user = True supports_inactive_user = True def authenticate(self, request: HttpRequest, username: Optional[str] = None, password: Optional[str] = None) -> Any: return None def has_perm(self, user_obj: Any, perm: str, obj: Optional[Model] = None) -> bool: """Check if a user has the permission for a given object. Returns `True` if given `user_obj` has `perm` for `obj`. If no `obj` is given, `False` is returned. The main difference between Django's `ModelBackend` is that we can pass `obj` instance here and `perm` doesn't have to contain `app_label` as it can be retrieved from given `obj`. **Inactive user support** If `user` is authenticated but inactive at the same time, all checks always return `False`. Note: Remember, that if user is not *active*, all checks would return `False`. Parameters: user_obj (User): User instance. perm (str): Permission string. obj (Model): Model instance. Returns: `True` if `user_obj` has permission, `False` otherwise. """ # check if user_obj and object are supported support, user_obj = check_support(user_obj, obj) if not support: return False if "." in perm: app_label, _ = perm.split(".", 1) # TODO (David Graham): Check if obj is None or change the method signature if app_label != obj._meta.app_label: # type: ignore[union-attr] # Check the content_type app_label when permission # and obj app labels don't match. ctype = get_content_type(obj) if app_label != ctype.app_label: raise WrongAppError( "Passed perm has app label of '%s' while " "given obj has app label '%s' and given obj" "content_type has app label '%s'" % (app_label, obj._meta.app_label, ctype.app_label) # type: ignore[union-attr] ) check = ObjectPermissionChecker(user_obj) return check.has_perm(perm, obj) def get_group_permissions(self, user_obj: Any, obj: Optional[Model] = None) -> Iterable[str]: """Returns group permissions for a given object. Parameters: user_obj (User): User instance. obj (Model): Django Model instance. If None, returns empty set since this backend only handles object-level permissions. Returns: a set of permission strings that the given `user_obj` has for `obj` through their group memberships. """ # This backend only handles object-level permissions if obj is None: return set() # check if user_obj and object are supported support, user_obj = check_support(user_obj, obj) if not support: return set() check = ObjectPermissionChecker(user_obj) return set(check.get_group_perms(obj)) def get_all_permissions(self, user_obj: Any, obj: Optional[Model] = None) -> Iterable[str]: """Returns all permissions for a given object. Parameters: user_obj (User): User instance. obj (Model): Django Model instance. Returns: a set of permission strings that the given `user_obj` has for `obj`. """ # check if user_obj and object are supported support, user_obj = check_support(user_obj, obj) if not support: return set() check = ObjectPermissionChecker(user_obj) return set(check.get_perms(obj))
ObjectPermissionBackend
python
ray-project__ray
rllib/policy/torch_policy_v2.py
{ "start": 1890, "end": 49486 }
class ____(Policy): """PyTorch specific Policy class to use with RLlib.""" def __init__( self, observation_space: gym.spaces.Space, action_space: gym.spaces.Space, config: AlgorithmConfigDict, *, max_seq_len: int = 20, ): """Initializes a TorchPolicy instance. Args: observation_space: Observation space of the policy. action_space: Action space of the policy. config: The Policy's config dict. max_seq_len: Max sequence length for LSTM training. """ self.framework = config["framework"] = "torch" self._loss_initialized = False super().__init__(observation_space, action_space, config) # Create model. model, dist_class = self._init_model_and_dist_class() # Create multi-GPU model towers, if necessary. # - The central main model will be stored under self.model, residing # on self.device (normally, a CPU). # - Each GPU will have a copy of that model under # self.model_gpu_towers, matching the devices in self.devices. # - Parallelization is done by splitting the train batch and passing # it through the model copies in parallel, then averaging over the # resulting gradients, applying these averages on the main model and # updating all towers' weights from the main model. # - In case of just one device (1 (fake or real) GPU or 1 CPU), no # parallelization will be done. # Get devices to build the graph on. num_gpus = self._get_num_gpus_for_policy() gpu_ids = list(range(torch.cuda.device_count())) logger.info(f"Found {len(gpu_ids)} visible cuda devices.") # Place on one or more CPU(s) when either: # - Fake GPU mode. # - num_gpus=0 (either set by user or we are in local_mode=True). # - No GPUs available. if config["_fake_gpus"] or num_gpus == 0 or not gpu_ids: self.device = torch.device("cpu") self.devices = [self.device for _ in range(int(math.ceil(num_gpus)) or 1)] self.model_gpu_towers = [ model if i == 0 else copy.deepcopy(model) for i in range(int(math.ceil(num_gpus)) or 1) ] if hasattr(self, "target_model"): self.target_models = { m: self.target_model for m in self.model_gpu_towers } self.model = model # Place on one or more actual GPU(s), when: # - num_gpus > 0 (set by user) AND # - local_mode=False AND # - actual GPUs available AND # - non-fake GPU mode. else: # We are a remote worker (WORKER_MODE=1): # GPUs should be assigned to us by ray. if ray._private.worker._mode() == ray._private.worker.WORKER_MODE: gpu_ids = ray.get_gpu_ids() if len(gpu_ids) < num_gpus: raise ValueError( "TorchPolicy was not able to find enough GPU IDs! Found " f"{gpu_ids}, but num_gpus={num_gpus}." ) self.devices = [ torch.device("cuda:{}".format(i)) for i, id_ in enumerate(gpu_ids) if i < num_gpus ] self.device = self.devices[0] ids = [id_ for i, id_ in enumerate(gpu_ids) if i < num_gpus] self.model_gpu_towers = [] for i, _ in enumerate(ids): model_copy = copy.deepcopy(model) self.model_gpu_towers.append(model_copy.to(self.devices[i])) if hasattr(self, "target_model"): self.target_models = { m: copy.deepcopy(self.target_model).to(self.devices[i]) for i, m in enumerate(self.model_gpu_towers) } self.model = self.model_gpu_towers[0] self.dist_class = dist_class self.unwrapped_model = model # used to support DistributedDataParallel # Lock used for locking some methods on the object-level. # This prevents possible race conditions when calling the model # first, then its value function (e.g. in a loss function), in # between of which another model call is made (e.g. to compute an # action). self._lock = threading.RLock() self._state_inputs = self.model.get_initial_state() self._is_recurrent = len(tree.flatten(self._state_inputs)) > 0 # Auto-update model's inference view requirements, if recurrent. self._update_model_view_requirements_from_init_state() # Combine view_requirements for Model and Policy. self.view_requirements.update(self.model.view_requirements) self.exploration = self._create_exploration() self._optimizers = force_list(self.optimizer()) # Backward compatibility workaround so Policy will call self.loss() # directly. # TODO (jungong): clean up after all policies are migrated to new sub-class # implementation. self._loss = None # Store, which params (by index within the model's list of # parameters) should be updated per optimizer. # Maps optimizer idx to set or param indices. self.multi_gpu_param_groups: List[Set[int]] = [] main_params = {p: i for i, p in enumerate(self.model.parameters())} for o in self._optimizers: param_indices = [] for pg_idx, pg in enumerate(o.param_groups): for p in pg["params"]: param_indices.append(main_params[p]) self.multi_gpu_param_groups.append(set(param_indices)) # Create n sample-batch buffers (num_multi_gpu_tower_stacks), each # one with m towers (num_gpus). num_buffers = self.config.get("num_multi_gpu_tower_stacks", 1) self._loaded_batches = [[] for _ in range(num_buffers)] # If set, means we are using distributed allreduce during learning. self.distributed_world_size = None self.batch_divisibility_req = self.get_batch_divisibility_req() self.max_seq_len = max_seq_len # If model is an RLModule it won't have tower_stats instead there will be a # self.tower_state[model] -> dict for each tower. self.tower_stats = {} if not hasattr(self.model, "tower_stats"): for model in self.model_gpu_towers: self.tower_stats[model] = {} def loss_initialized(self): return self._loss_initialized @OverrideToImplementCustomLogic @override(Policy) def loss( self, model: ModelV2, dist_class: Type[TorchDistributionWrapper], train_batch: SampleBatch, ) -> Union[TensorType, List[TensorType]]: """Constructs the loss function. Args: model: The Model to calculate the loss for. dist_class: The action distr. class. train_batch: The training data. Returns: Loss tensor given the input batch. """ raise NotImplementedError @OverrideToImplementCustomLogic def action_sampler_fn( self, model: ModelV2, *, obs_batch: TensorType, state_batches: TensorType, **kwargs, ) -> Tuple[TensorType, TensorType, TensorType, List[TensorType]]: """Custom function for sampling new actions given policy. Args: model: Underlying model. obs_batch: Observation tensor batch. state_batches: Action sampling state batch. Returns: Sampled action Log-likelihood Action distribution inputs Updated state """ return None, None, None, None @OverrideToImplementCustomLogic def action_distribution_fn( self, model: ModelV2, *, obs_batch: TensorType, state_batches: TensorType, **kwargs, ) -> Tuple[TensorType, type, List[TensorType]]: """Action distribution function for this Policy. Args: model: Underlying model. obs_batch: Observation tensor batch. state_batches: Action sampling state batch. Returns: Distribution input. ActionDistribution class. State outs. """ return None, None, None @OverrideToImplementCustomLogic def make_model(self) -> ModelV2: """Create model. Note: only one of make_model or make_model_and_action_dist can be overridden. Returns: ModelV2 model. """ return None @OverrideToImplementCustomLogic def make_model_and_action_dist( self, ) -> Tuple[ModelV2, Type[TorchDistributionWrapper]]: """Create model and action distribution function. Returns: ModelV2 model. ActionDistribution class. """ return None, None @OverrideToImplementCustomLogic def get_batch_divisibility_req(self) -> int: """Get batch divisibility request. Returns: Size N. A sample batch must be of size K*N. """ # By default, any sized batch is ok, so simply return 1. return 1 @OverrideToImplementCustomLogic def stats_fn(self, train_batch: SampleBatch) -> Dict[str, TensorType]: """Stats function. Returns a dict of statistics. Args: train_batch: The SampleBatch (already) used for training. Returns: The stats dict. """ return {} @OverrideToImplementCustomLogic_CallToSuperRecommended def extra_grad_process( self, optimizer: "torch.optim.Optimizer", loss: TensorType ) -> Dict[str, TensorType]: """Called after each optimizer.zero_grad() + loss.backward() call. Called for each self._optimizers/loss-value pair. Allows for gradient processing before optimizer.step() is called. E.g. for gradient clipping. Args: optimizer: A torch optimizer object. loss: The loss tensor associated with the optimizer. Returns: An dict with information on the gradient processing step. """ return {} @OverrideToImplementCustomLogic_CallToSuperRecommended def extra_compute_grad_fetches(self) -> Dict[str, Any]: """Extra values to fetch and return from compute_gradients(). Returns: Extra fetch dict to be added to the fetch dict of the `compute_gradients` call. """ return {LEARNER_STATS_KEY: {}} # e.g, stats, td error, etc. @OverrideToImplementCustomLogic_CallToSuperRecommended def extra_action_out( self, input_dict: Dict[str, TensorType], state_batches: List[TensorType], model: TorchModelV2, action_dist: TorchDistributionWrapper, ) -> Dict[str, TensorType]: """Returns dict of extra info to include in experience batch. Args: input_dict: Dict of model input tensors. state_batches: List of state tensors. model: Reference to the model object. action_dist: Torch action dist object to get log-probs (e.g. for already sampled actions). Returns: Extra outputs to return in a `compute_actions_from_input_dict()` call (3rd return value). """ return {} @override(Policy) @OverrideToImplementCustomLogic_CallToSuperRecommended def postprocess_trajectory( self, sample_batch: SampleBatch, other_agent_batches: Optional[Dict[Any, SampleBatch]] = None, episode=None, ) -> SampleBatch: """Postprocesses a trajectory and returns the processed trajectory. The trajectory contains only data from one episode and from one agent. - If `config.batch_mode=truncate_episodes` (default), sample_batch may contain a truncated (at-the-end) episode, in case the `config.rollout_fragment_length` was reached by the sampler. - If `config.batch_mode=complete_episodes`, sample_batch will contain exactly one episode (no matter how long). New columns can be added to sample_batch and existing ones may be altered. Args: sample_batch: The SampleBatch to postprocess. other_agent_batches (Optional[Dict[PolicyID, SampleBatch]]): Optional dict of AgentIDs mapping to other agents' trajectory data (from the same episode). NOTE: The other agents use the same policy. episode (Optional[Episode]): Optional multi-agent episode object in which the agents operated. Returns: SampleBatch: The postprocessed, modified SampleBatch (or a new one). """ return sample_batch @OverrideToImplementCustomLogic def optimizer( self, ) -> Union[List["torch.optim.Optimizer"], "torch.optim.Optimizer"]: """Custom the local PyTorch optimizer(s) to use. Returns: The local PyTorch optimizer(s) to use for this Policy. """ if hasattr(self, "config"): optimizers = [ torch.optim.Adam(self.model.parameters(), lr=self.config["lr"]) ] else: optimizers = [torch.optim.Adam(self.model.parameters())] if self.exploration: optimizers = self.exploration.get_exploration_optimizer(optimizers) return optimizers def _init_model_and_dist_class(self): if is_overridden(self.make_model) and is_overridden( self.make_model_and_action_dist ): raise ValueError( "Only one of make_model or make_model_and_action_dist " "can be overridden." ) if is_overridden(self.make_model): model = self.make_model() dist_class, _ = ModelCatalog.get_action_dist( self.action_space, self.config["model"], framework=self.framework ) elif is_overridden(self.make_model_and_action_dist): model, dist_class = self.make_model_and_action_dist() else: dist_class, logit_dim = ModelCatalog.get_action_dist( self.action_space, self.config["model"], framework=self.framework ) model = ModelCatalog.get_model_v2( obs_space=self.observation_space, action_space=self.action_space, num_outputs=logit_dim, model_config=self.config["model"], framework=self.framework, ) # Compile the model, if requested by the user. if self.config.get("torch_compile_learner"): if ( torch is not None and version.parse(torch.__version__) < TORCH_COMPILE_REQUIRED_VERSION ): raise ValueError("`torch.compile` is not supported for torch < 2.0.0!") lw = "learner" if self.config.get("worker_index") else "worker" model = torch.compile( model, backend=self.config.get( f"torch_compile_{lw}_dynamo_backend", "inductor" ), dynamic=False, mode=self.config.get(f"torch_compile_{lw}_dynamo_mode"), ) return model, dist_class @override(Policy) def compute_actions_from_input_dict( self, input_dict: Dict[str, TensorType], explore: bool = None, timestep: Optional[int] = None, **kwargs, ) -> Tuple[TensorType, List[TensorType], Dict[str, TensorType]]: seq_lens = None with torch.no_grad(): # Pass lazy (torch) tensor dict to Model as `input_dict`. input_dict = self._lazy_tensor_dict(input_dict) input_dict.set_training(True) # Pack internal state inputs into (separate) list. state_batches = [ input_dict[k] for k in input_dict.keys() if "state_in" in k[:8] ] # Calculate RNN sequence lengths. if state_batches: seq_lens = torch.tensor( [1] * len(state_batches[0]), dtype=torch.long, device=state_batches[0].device, ) return self._compute_action_helper( input_dict, state_batches, seq_lens, explore, timestep ) @override(Policy) def compute_actions( self, obs_batch: Union[List[TensorStructType], TensorStructType], state_batches: Optional[List[TensorType]] = None, prev_action_batch: Union[List[TensorStructType], TensorStructType] = None, prev_reward_batch: Union[List[TensorStructType], TensorStructType] = None, info_batch: Optional[Dict[str, list]] = None, episodes=None, explore: Optional[bool] = None, timestep: Optional[int] = None, **kwargs, ) -> Tuple[TensorStructType, List[TensorType], Dict[str, TensorType]]: with torch.no_grad(): seq_lens = torch.ones(len(obs_batch), dtype=torch.int32) input_dict = self._lazy_tensor_dict( { SampleBatch.CUR_OBS: obs_batch, "is_training": False, } ) if prev_action_batch is not None: input_dict[SampleBatch.PREV_ACTIONS] = np.asarray(prev_action_batch) if prev_reward_batch is not None: input_dict[SampleBatch.PREV_REWARDS] = np.asarray(prev_reward_batch) state_batches = [ convert_to_torch_tensor(s, self.device) for s in (state_batches or []) ] return self._compute_action_helper( input_dict, state_batches, seq_lens, explore, timestep ) @with_lock @override(Policy) def compute_log_likelihoods( self, actions: Union[List[TensorStructType], TensorStructType], obs_batch: Union[List[TensorStructType], TensorStructType], state_batches: Optional[List[TensorType]] = None, prev_action_batch: Optional[ Union[List[TensorStructType], TensorStructType] ] = None, prev_reward_batch: Optional[ Union[List[TensorStructType], TensorStructType] ] = None, actions_normalized: bool = True, in_training: bool = True, ) -> TensorType: if is_overridden(self.action_sampler_fn) and not is_overridden( self.action_distribution_fn ): raise ValueError( "Cannot compute log-prob/likelihood w/o an " "`action_distribution_fn` and a provided " "`action_sampler_fn`!" ) with torch.no_grad(): input_dict = self._lazy_tensor_dict( {SampleBatch.CUR_OBS: obs_batch, SampleBatch.ACTIONS: actions} ) if prev_action_batch is not None: input_dict[SampleBatch.PREV_ACTIONS] = prev_action_batch if prev_reward_batch is not None: input_dict[SampleBatch.PREV_REWARDS] = prev_reward_batch seq_lens = torch.ones(len(obs_batch), dtype=torch.int32) state_batches = [ convert_to_torch_tensor(s, self.device) for s in (state_batches or []) ] if self.exploration: # Exploration hook before each forward pass. self.exploration.before_compute_actions(explore=False) # Action dist class and inputs are generated via custom function. if is_overridden(self.action_distribution_fn): dist_inputs, dist_class, state_out = self.action_distribution_fn( self.model, obs_batch=input_dict, state_batches=state_batches, seq_lens=seq_lens, explore=False, is_training=False, ) action_dist = dist_class(dist_inputs, self.model) # Default action-dist inputs calculation. else: dist_class = self.dist_class dist_inputs, _ = self.model(input_dict, state_batches, seq_lens) action_dist = dist_class(dist_inputs, self.model) # Normalize actions if necessary. actions = input_dict[SampleBatch.ACTIONS] if not actions_normalized and self.config["normalize_actions"]: actions = normalize_action(actions, self.action_space_struct) log_likelihoods = action_dist.logp(actions) return log_likelihoods @with_lock @override(Policy) def learn_on_batch(self, postprocessed_batch: SampleBatch) -> Dict[str, TensorType]: # Set Model to train mode. if self.model: self.model.train() # Callback handling. learn_stats = {} self.callbacks.on_learn_on_batch( policy=self, train_batch=postprocessed_batch, result=learn_stats ) # Compute gradients (will calculate all losses and `backward()` # them to get the grads). grads, fetches = self.compute_gradients(postprocessed_batch) # Step the optimizers. self.apply_gradients(_directStepOptimizerSingleton) self.num_grad_updates += 1 if self.model and hasattr(self.model, "metrics"): fetches["model"] = self.model.metrics() else: fetches["model"] = {} fetches.update( { "custom_metrics": learn_stats, NUM_AGENT_STEPS_TRAINED: postprocessed_batch.count, NUM_GRAD_UPDATES_LIFETIME: self.num_grad_updates, # -1, b/c we have to measure this diff before we do the update above. DIFF_NUM_GRAD_UPDATES_VS_SAMPLER_POLICY: ( self.num_grad_updates - 1 - (postprocessed_batch.num_grad_updates or 0) ), } ) return fetches @override(Policy) def load_batch_into_buffer( self, batch: SampleBatch, buffer_index: int = 0, ) -> int: # Set the is_training flag of the batch. batch.set_training(True) # Shortcut for 1 CPU only: Store batch in `self._loaded_batches`. if len(self.devices) == 1 and self.devices[0].type == "cpu": assert buffer_index == 0 pad_batch_to_sequences_of_same_size( batch=batch, max_seq_len=self.max_seq_len, shuffle=False, batch_divisibility_req=self.batch_divisibility_req, view_requirements=self.view_requirements, _enable_new_api_stack=False, padding="zero", ) self._lazy_tensor_dict(batch) self._loaded_batches[0] = [batch] return len(batch) # Batch (len=28, seq-lens=[4, 7, 4, 10, 3]): # 0123 0123456 0123 0123456789ABC # 1) split into n per-GPU sub batches (n=2). # [0123 0123456] [012] [3 0123456789 ABC] # (len=14, 14 seq-lens=[4, 7, 3] [1, 10, 3]) slices = batch.timeslices(num_slices=len(self.devices)) # 2) zero-padding (max-seq-len=10). # - [0123000000 0123456000 0120000000] # - [3000000000 0123456789 ABC0000000] for slice in slices: pad_batch_to_sequences_of_same_size( batch=slice, max_seq_len=self.max_seq_len, shuffle=False, batch_divisibility_req=self.batch_divisibility_req, view_requirements=self.view_requirements, _enable_new_api_stack=False, padding="zero", ) # 3) Load splits into the given buffer (consisting of n GPUs). slices = [slice.to_device(self.devices[i]) for i, slice in enumerate(slices)] self._loaded_batches[buffer_index] = slices # Return loaded samples per-device. return len(slices[0]) @override(Policy) def get_num_samples_loaded_into_buffer(self, buffer_index: int = 0) -> int: if len(self.devices) == 1 and self.devices[0] == "/cpu:0": assert buffer_index == 0 return sum(len(b) for b in self._loaded_batches[buffer_index]) @override(Policy) def learn_on_loaded_batch(self, offset: int = 0, buffer_index: int = 0): if not self._loaded_batches[buffer_index]: raise ValueError( "Must call Policy.load_batch_into_buffer() before " "Policy.learn_on_loaded_batch()!" ) # Get the correct slice of the already loaded batch to use, # based on offset and batch size. device_batch_size = self.config.get("minibatch_size") if device_batch_size is None: device_batch_size = self.config.get( "sgd_minibatch_size", self.config["train_batch_size"], ) device_batch_size //= len(self.devices) # Set Model to train mode. if self.model_gpu_towers: for t in self.model_gpu_towers: t.train() # Shortcut for 1 CPU only: Batch should already be stored in # `self._loaded_batches`. if len(self.devices) == 1 and self.devices[0].type == "cpu": assert buffer_index == 0 if device_batch_size >= len(self._loaded_batches[0][0]): batch = self._loaded_batches[0][0] else: batch = self._loaded_batches[0][0][offset : offset + device_batch_size] return self.learn_on_batch(batch) if len(self.devices) > 1: # Copy weights of main model (tower-0) to all other towers. state_dict = self.model.state_dict() # Just making sure tower-0 is really the same as self.model. assert self.model_gpu_towers[0] is self.model for tower in self.model_gpu_towers[1:]: tower.load_state_dict(state_dict) if device_batch_size >= sum(len(s) for s in self._loaded_batches[buffer_index]): device_batches = self._loaded_batches[buffer_index] else: device_batches = [ b[offset : offset + device_batch_size] for b in self._loaded_batches[buffer_index] ] # Callback handling. batch_fetches = {} for i, batch in enumerate(device_batches): custom_metrics = {} self.callbacks.on_learn_on_batch( policy=self, train_batch=batch, result=custom_metrics ) batch_fetches[f"tower_{i}"] = {"custom_metrics": custom_metrics} # Do the (maybe parallelized) gradient calculation step. tower_outputs = self._multi_gpu_parallel_grad_calc(device_batches) # Mean-reduce gradients over GPU-towers (do this on CPU: self.device). all_grads = [] for i in range(len(tower_outputs[0][0])): if tower_outputs[0][0][i] is not None: all_grads.append( torch.mean( torch.stack([t[0][i].to(self.device) for t in tower_outputs]), dim=0, ) ) else: all_grads.append(None) # Set main model's grads to mean-reduced values. for i, p in enumerate(self.model.parameters()): p.grad = all_grads[i] self.apply_gradients(_directStepOptimizerSingleton) self.num_grad_updates += 1 for i, (model, batch) in enumerate(zip(self.model_gpu_towers, device_batches)): batch_fetches[f"tower_{i}"].update( { LEARNER_STATS_KEY: self.stats_fn(batch), "model": model.metrics(), NUM_GRAD_UPDATES_LIFETIME: self.num_grad_updates, # -1, b/c we have to measure this diff before we do the update # above. DIFF_NUM_GRAD_UPDATES_VS_SAMPLER_POLICY: ( self.num_grad_updates - 1 - (batch.num_grad_updates or 0) ), } ) batch_fetches.update(self.extra_compute_grad_fetches()) return batch_fetches @with_lock @override(Policy) def compute_gradients(self, postprocessed_batch: SampleBatch) -> ModelGradients: assert len(self.devices) == 1 # If not done yet, see whether we have to zero-pad this batch. if not postprocessed_batch.zero_padded: pad_batch_to_sequences_of_same_size( batch=postprocessed_batch, max_seq_len=self.max_seq_len, shuffle=False, batch_divisibility_req=self.batch_divisibility_req, view_requirements=self.view_requirements, _enable_new_api_stack=False, padding="zero", ) postprocessed_batch.set_training(True) self._lazy_tensor_dict(postprocessed_batch, device=self.devices[0]) # Do the (maybe parallelized) gradient calculation step. tower_outputs = self._multi_gpu_parallel_grad_calc([postprocessed_batch]) all_grads, grad_info = tower_outputs[0] grad_info["allreduce_latency"] /= len(self._optimizers) grad_info.update(self.stats_fn(postprocessed_batch)) fetches = self.extra_compute_grad_fetches() return all_grads, dict(fetches, **{LEARNER_STATS_KEY: grad_info}) @override(Policy) def apply_gradients(self, gradients: ModelGradients) -> None: if gradients == _directStepOptimizerSingleton: for i, opt in enumerate(self._optimizers): opt.step() else: # TODO(sven): Not supported for multiple optimizers yet. assert len(self._optimizers) == 1 for g, p in zip(gradients, self.model.parameters()): if g is not None: if torch.is_tensor(g): p.grad = g.to(self.device) else: p.grad = torch.from_numpy(g).to(self.device) self._optimizers[0].step() def get_tower_stats(self, stats_name: str) -> List[TensorStructType]: """Returns list of per-tower stats, copied to this Policy's device. Args: stats_name: The name of the stats to average over (this str must exist as a key inside each tower's `tower_stats` dict). Returns: The list of stats tensor (structs) of all towers, copied to this Policy's device. Raises: AssertionError: If the `stats_name` cannot be found in any one of the tower's `tower_stats` dicts. """ data = [] for model in self.model_gpu_towers: if self.tower_stats: tower_stats = self.tower_stats[model] else: tower_stats = model.tower_stats if stats_name in tower_stats: data.append( tree.map_structure( lambda s: s.to(self.device), tower_stats[stats_name] ) ) assert len(data) > 0, ( f"Stats `{stats_name}` not found in any of the towers (you have " f"{len(self.model_gpu_towers)} towers in total)! Make " "sure you call the loss function on at least one of the towers." ) return data @override(Policy) def get_weights(self) -> ModelWeights: return {k: v.cpu().detach().numpy() for k, v in self.model.state_dict().items()} @override(Policy) def set_weights(self, weights: ModelWeights) -> None: weights = convert_to_torch_tensor(weights, device=self.device) self.model.load_state_dict(weights) @override(Policy) def is_recurrent(self) -> bool: return self._is_recurrent @override(Policy) def num_state_tensors(self) -> int: return len(self.model.get_initial_state()) @override(Policy) def get_initial_state(self) -> List[TensorType]: return [s.detach().cpu().numpy() for s in self.model.get_initial_state()] @override(Policy) @OverrideToImplementCustomLogic_CallToSuperRecommended def get_state(self) -> PolicyState: # Legacy Policy state (w/o torch.nn.Module and w/o PolicySpec). state = super().get_state() state["_optimizer_variables"] = [] for i, o in enumerate(self._optimizers): optim_state_dict = convert_to_numpy(o.state_dict()) state["_optimizer_variables"].append(optim_state_dict) # Add exploration state. if self.exploration: # This is not compatible with RLModules, which have a method # `forward_exploration` to specify custom exploration behavior. state["_exploration_state"] = self.exploration.get_state() return state @override(Policy) @OverrideToImplementCustomLogic_CallToSuperRecommended def set_state(self, state: PolicyState) -> None: # Set optimizer vars first. optimizer_vars = state.get("_optimizer_variables", None) if optimizer_vars: assert len(optimizer_vars) == len(self._optimizers) for o, s in zip(self._optimizers, optimizer_vars): # Torch optimizer param_groups include things like beta, etc. These # parameters should be left as scalar and not converted to tensors. # otherwise, torch.optim.step() will start to complain. optim_state_dict = {"param_groups": s["param_groups"]} optim_state_dict["state"] = convert_to_torch_tensor( s["state"], device=self.device ) o.load_state_dict(optim_state_dict) # Set exploration's state. if hasattr(self, "exploration") and "_exploration_state" in state: self.exploration.set_state(state=state["_exploration_state"]) # Restore global timestep. self.global_timestep = state["global_timestep"] # Then the Policy's (NN) weights and connectors. super().set_state(state) @override(Policy) def export_model(self, export_dir: str, onnx: Optional[int] = None) -> None: """Exports the Policy's Model to local directory for serving. Creates a TorchScript model and saves it. Args: export_dir: Local writable directory or filename. onnx: If given, will export model in ONNX format. The value of this parameter set the ONNX OpSet version to use. """ os.makedirs(export_dir, exist_ok=True) if onnx: self._lazy_tensor_dict(self._dummy_batch) # Provide dummy state inputs if not an RNN (torch cannot jit with # returned empty internal states list). if "state_in_0" not in self._dummy_batch: self._dummy_batch["state_in_0"] = self._dummy_batch[ SampleBatch.SEQ_LENS ] = np.array([1.0]) seq_lens = self._dummy_batch[SampleBatch.SEQ_LENS] state_ins = [] i = 0 while "state_in_{}".format(i) in self._dummy_batch: state_ins.append(self._dummy_batch["state_in_{}".format(i)]) i += 1 dummy_inputs = { k: self._dummy_batch[k] for k in self._dummy_batch.keys() if k != "is_training" } file_name = os.path.join(export_dir, "model.onnx") torch.onnx.export( self.model, (dummy_inputs, state_ins, seq_lens), file_name, export_params=True, opset_version=onnx, do_constant_folding=True, input_names=list(dummy_inputs.keys()) + ["state_ins", SampleBatch.SEQ_LENS], output_names=["output", "state_outs"], dynamic_axes={ k: {0: "batch_size"} for k in list(dummy_inputs.keys()) + ["state_ins", SampleBatch.SEQ_LENS] }, ) # Save the torch.Model (architecture and weights, so it can be retrieved # w/o access to the original (custom) Model or Policy code). else: filename = os.path.join(export_dir, "model.pt") try: torch.save(self.model, f=filename) except Exception: if os.path.exists(filename): os.remove(filename) logger.warning(ERR_MSG_TORCH_POLICY_CANNOT_SAVE_MODEL) @override(Policy) def import_model_from_h5(self, import_file: str) -> None: """Imports weights into torch model.""" return self.model.import_from_h5(import_file) @with_lock def _compute_action_helper( self, input_dict, state_batches, seq_lens, explore, timestep ): """Shared forward pass logic (w/ and w/o trajectory view API). Returns: A tuple consisting of a) actions, b) state_out, c) extra_fetches. The input_dict is modified in-place to include a numpy copy of the computed actions under `SampleBatch.ACTIONS`. """ explore = explore if explore is not None else self.config["explore"] timestep = timestep if timestep is not None else self.global_timestep # Switch to eval mode. if self.model: self.model.eval() extra_fetches = dist_inputs = logp = None if is_overridden(self.action_sampler_fn): action_dist = None actions, logp, dist_inputs, state_out = self.action_sampler_fn( self.model, obs_batch=input_dict, state_batches=state_batches, explore=explore, timestep=timestep, ) else: # Call the exploration before_compute_actions hook. self.exploration.before_compute_actions(explore=explore, timestep=timestep) if is_overridden(self.action_distribution_fn): dist_inputs, dist_class, state_out = self.action_distribution_fn( self.model, obs_batch=input_dict, state_batches=state_batches, seq_lens=seq_lens, explore=explore, timestep=timestep, is_training=False, ) else: dist_class = self.dist_class dist_inputs, state_out = self.model(input_dict, state_batches, seq_lens) if not ( isinstance(dist_class, functools.partial) or issubclass(dist_class, TorchDistributionWrapper) ): raise ValueError( "`dist_class` ({}) not a TorchDistributionWrapper " "subclass! Make sure your `action_distribution_fn` or " "`make_model_and_action_dist` return a correct " "distribution class.".format(dist_class.__name__) ) action_dist = dist_class(dist_inputs, self.model) # Get the exploration action from the forward results. actions, logp = self.exploration.get_exploration_action( action_distribution=action_dist, timestep=timestep, explore=explore ) # Add default and custom fetches. if extra_fetches is None: extra_fetches = self.extra_action_out( input_dict, state_batches, self.model, action_dist ) # Action-dist inputs. if dist_inputs is not None: extra_fetches[SampleBatch.ACTION_DIST_INPUTS] = dist_inputs # Action-logp and action-prob. if logp is not None: extra_fetches[SampleBatch.ACTION_PROB] = torch.exp(logp.float()) extra_fetches[SampleBatch.ACTION_LOGP] = logp # Update our global timestep by the batch size. self.global_timestep += len(input_dict[SampleBatch.CUR_OBS]) return convert_to_numpy((actions, state_out, extra_fetches)) def _lazy_tensor_dict(self, postprocessed_batch: SampleBatch, device=None): if not isinstance(postprocessed_batch, SampleBatch): postprocessed_batch = SampleBatch(postprocessed_batch) postprocessed_batch.set_get_interceptor( functools.partial(convert_to_torch_tensor, device=device or self.device) ) return postprocessed_batch def _multi_gpu_parallel_grad_calc( self, sample_batches: List[SampleBatch] ) -> List[Tuple[List[TensorType], GradInfoDict]]: """Performs a parallelized loss and gradient calculation over the batch. Splits up the given train batch into n shards (n=number of this Policy's devices) and passes each data shard (in parallel) through the loss function using the individual devices' models (self.model_gpu_towers). Then returns each tower's outputs. Args: sample_batches: A list of SampleBatch shards to calculate loss and gradients for. Returns: A list (one item per device) of 2-tuples, each with 1) gradient list and 2) grad info dict. """ assert len(self.model_gpu_towers) == len(sample_batches) lock = threading.Lock() results = {} grad_enabled = torch.is_grad_enabled() def _worker(shard_idx, model, sample_batch, device): torch.set_grad_enabled(grad_enabled) try: with NullContextManager() if device.type == "cpu" else torch.cuda.device( # noqa: E501 device ): loss_out = force_list( self.loss(model, self.dist_class, sample_batch) ) # Call Model's custom-loss with Policy loss outputs and # train_batch. if hasattr(model, "custom_loss"): loss_out = model.custom_loss(loss_out, sample_batch) assert len(loss_out) == len(self._optimizers) # Loop through all optimizers. grad_info = {"allreduce_latency": 0.0} parameters = list(model.parameters()) all_grads = [None for _ in range(len(parameters))] for opt_idx, opt in enumerate(self._optimizers): # Erase gradients in all vars of the tower that this # optimizer would affect. param_indices = self.multi_gpu_param_groups[opt_idx] for param_idx, param in enumerate(parameters): if param_idx in param_indices and param.grad is not None: param.grad.data.zero_() # Recompute gradients of loss over all variables. loss_out[opt_idx].backward(retain_graph=True) grad_info.update( self.extra_grad_process(opt, loss_out[opt_idx]) ) grads = [] # Note that return values are just references; # Calling zero_grad would modify the values. for param_idx, param in enumerate(parameters): if param_idx in param_indices: if param.grad is not None: grads.append(param.grad) all_grads[param_idx] = param.grad if self.distributed_world_size: start = time.time() if torch.cuda.is_available(): # Sadly, allreduce_coalesced does not work with # CUDA yet. for g in grads: torch.distributed.all_reduce( g, op=torch.distributed.ReduceOp.SUM ) else: torch.distributed.all_reduce_coalesced( grads, op=torch.distributed.ReduceOp.SUM ) for param_group in opt.param_groups: for p in param_group["params"]: if p.grad is not None: p.grad /= self.distributed_world_size grad_info["allreduce_latency"] += time.time() - start with lock: results[shard_idx] = (all_grads, grad_info) except Exception as e: import traceback with lock: results[shard_idx] = ( ValueError( e.args[0] + "\n traceback" + traceback.format_exc() + "\n" + "In tower {} on device {}".format(shard_idx, device) ), e, ) # Single device (GPU) or fake-GPU case (serialize for better # debugging). if len(self.devices) == 1 or self.config["_fake_gpus"]: for shard_idx, (model, sample_batch, device) in enumerate( zip(self.model_gpu_towers, sample_batches, self.devices) ): _worker(shard_idx, model, sample_batch, device) # Raise errors right away for better debugging. last_result = results[len(results) - 1] if isinstance(last_result[0], ValueError): raise last_result[0] from last_result[1] # Multi device (GPU) case: Parallelize via threads. else: threads = [ threading.Thread( target=_worker, args=(shard_idx, model, sample_batch, device) ) for shard_idx, (model, sample_batch, device) in enumerate( zip(self.model_gpu_towers, sample_batches, self.devices) ) ] for thread in threads: thread.start() for thread in threads: thread.join() # Gather all threads' outputs and return. outputs = [] for shard_idx in range(len(sample_batches)): output = results[shard_idx] if isinstance(output[0], Exception): raise output[0] from output[1] outputs.append(results[shard_idx]) return outputs
TorchPolicyV2
python
django-compressor__django-compressor
compressor/tests/test_parsers.py
{ "start": 840, "end": 3703 }
class ____(ParserTestCase, CompressorTestCase): parser_cls = "compressor.parser.Html5LibParser" # Special test variants required since xml.etree holds attributes # as a plain dictionary, e.g. key order is unpredictable. def test_css_split(self): split = self.css_node.split_contents() out0 = ( SOURCE_FILE, os.path.join(settings.COMPRESS_ROOT, "css", "one.css"), "css/one.css", "{http://www.w3.org/1999/xhtml}link", {"rel": "stylesheet", "href": "/static/css/one.css", "type": "text/css"}, ) self.assertEqual(out0, split[0][:3] + (split[0][3].tag, split[0][3].attrib)) out1 = ( SOURCE_HUNK, "p { border:5px solid green;}", None, '<style type="text/css">p { border:5px solid green;}</style>', ) self.assertEqual( out1, split[1][:3] + (self.css_node.parser.elem_str(split[1][3]),) ) out2 = ( SOURCE_FILE, os.path.join(settings.COMPRESS_ROOT, "css", "two.css"), "css/two.css", "{http://www.w3.org/1999/xhtml}link", {"rel": "stylesheet", "href": "/static/css/two.css", "type": "text/css"}, ) self.assertEqual(out2, split[2][:3] + (split[2][3].tag, split[2][3].attrib)) def test_js_split(self): split = self.js_node.split_contents() out0 = ( SOURCE_FILE, os.path.join(settings.COMPRESS_ROOT, "js", "one.js"), "js/one.js", "{http://www.w3.org/1999/xhtml}script", {"src": "/static/js/one.js", "type": "text/javascript"}, None, ) self.assertEqual( out0, split[0][:3] + (split[0][3].tag, split[0][3].attrib, split[0][3].text) ) out1 = ( SOURCE_HUNK, 'obj.value = "value";', None, "{http://www.w3.org/1999/xhtml}script", {"type": "text/javascript"}, 'obj.value = "value";', ) self.assertEqual( out1, split[1][:3] + (split[1][3].tag, split[1][3].attrib, split[1][3].text) ) @override_settings(COMPRESS_ENABLED=False) def test_css_return_if_off(self): # Yes, they are semantically equal but attributes might be # scrambled in unpredictable order. A more elaborate check # would require parsing both arguments with a different parser # and then evaluating the result, which no longer is # a meaningful unit test. self.assertEqual(len(self.css), len(self.css_node.output())) @override_settings(COMPRESS_PRECOMPILERS=(), COMPRESS_ENABLED=False) def test_js_return_if_off(self): # As above. self.assertEqual(len(self.js), len(self.js_node.output()))
Html5LibParserTests
python
pexpect__pexpect
examples/chess2.py
{ "start": 1251, "end": 5021 }
class ____: def __init__(self, engine = "/usr/local/bin/gnuchess -a -h 1"): self.child = pexpect.spawn (engine) self.term = ANSI.ANSI () #self.child.expect ('Chess') #if self.child.after != 'Chess': # raise IOError, 'incompatible chess program' #self.term.process_list (self.child.before) #self.term.process_list (self.child.after) self.last_computer_move = '' def read_until_cursor (self, r,c, e=0): '''Eventually something like this should move into the screen class or a subclass. Maybe a combination of pexpect and screen... ''' fout = open ('log','a') while self.term.cur_r != r or self.term.cur_c != c: try: k = self.child.read(1, 10) except Exception as e: print('EXCEPTION, (r,c):(%d,%d)\n' %(self.term.cur_r, self.term.cur_c)) sys.stdout.flush() self.term.process (k) fout.write ('(r,c):(%d,%d)\n' %(self.term.cur_r, self.term.cur_c)) fout.flush() if e: sys.stdout.write (k) sys.stdout.flush() if self.term.cur_r == r and self.term.cur_c == c: fout.close() return 1 print('DIDNT EVEN HIT.') fout.close() return 1 def expect_region (self): '''This is another method that would be moved into the screen class. ''' pass def do_scan (self): fout = open ('log','a') while 1: c = self.child.read(1,10) self.term.process (c) fout.write ('(r,c):(%d,%d)\n' %(self.term.cur_r, self.term.cur_c)) fout.flush() sys.stdout.write (c) sys.stdout.flush() def do_move (self, move, e = 0): time.sleep(1) self.read_until_cursor (19,60, e) self.child.sendline (move) def wait (self, color): while 1: r = self.term.get_region (14,50,14,60)[0] r = r.strip() if r == color: return time.sleep (1) def parse_computer_move (self, s): i = s.find ('is: ') cm = s[i+3:i+9] return cm def get_computer_move (self, e = 0): time.sleep(1) self.read_until_cursor (19,60, e) time.sleep(1) r = self.term.get_region (17,50,17,62)[0] cm = self.parse_computer_move (r) return cm def switch (self): print('switching') self.child.sendline ('switch') def set_depth (self, depth): self.child.sendline ('depth') self.child.expect ('depth=') self.child.sendline ('%d' % depth) def quit(self): self.child.sendline ('quit') def LOG (s): print(s) sys.stdout.flush () fout = open ('moves.log', 'a') fout.write (s + '\n') fout.close() print('Starting...') black = Chess() white = Chess() white.read_until_cursor (19,60,1) white.switch() done = 0 while not done: white.wait ('Black') move_white = white.get_computer_move(1) LOG ( 'move white:'+ move_white ) black.do_move (move_white) black.wait ('White') move_black = black.get_computer_move() LOG ( 'move black:'+ move_black ) white.do_move (move_black, 1) g.quit()
Chess
python
facebookresearch__faiss
tests/test_build_blocks.py
{ "start": 12095, "end": 13082 }
class ____(unittest.TestCase): def test_keep_min(self): self.run_test(False) def test_keep_max(self): self.run_test(True) def run_test(self, keep_max): nq = 100 nb = 1000 restab = faiss.rand((nq, nb), 123) ids = faiss.randint((nq, nb), 1324, 10000) all_rh = {} for nstep in 1, 3: rh = faiss.ResultHeap(nq, 10, keep_max=keep_max) for i in range(nstep): i0, i1 = i * nb // nstep, (i + 1) * nb // nstep D = restab[:, i0:i1].copy() I = ids[:, i0:i1].copy() rh.add_result(D, I) rh.finalize() if keep_max: assert np.all(rh.D[:, :-1] >= rh.D[:, 1:]) else: assert np.all(rh.D[:, :-1] <= rh.D[:, 1:]) all_rh[nstep] = rh np.testing.assert_equal(all_rh[1].D, all_rh[3].D) np.testing.assert_equal(all_rh[1].I, all_rh[3].I)
TestResultHeap
python
weaviate__weaviate-python-client
weaviate/collections/classes/generative.py
{ "start": 890, "end": 1057 }
class ____: return_metadata: bool = False images: Optional[Iterable[str]] = None image_properties: Optional[List[str]] = None
_GenerativeConfigRuntimeOptions
python
pytorch__pytorch
test/distributed/checkpoint/test_hf_safetensor_e2e.py
{ "start": 9584, "end": 11927 }
class ____(DTensorTestBase): @with_comms @with_temp_dir @skip_if_lt_x_gpu(2) def test_consolidate_to_one_file(self) -> None: if importlib.util.find_spec("safetensors") is None: print("safetensors not installed") return import safetensors global_tensor = torch.arange(16, dtype=torch.float).view(4, 4) mesh_shape = (self.world_size,) mesh_1d = init_device_mesh(self.device_type, mesh_shape) # Create local tensor with row-wise sharding rows_per_rank = global_tensor.shape[0] // self.world_size start_row = self.rank * rows_per_rank end_row = start_row + rows_per_rank local_tensor = global_tensor[start_row:end_row].clone() # Create DTensor with row-wise sharding dtensor = DTensor.from_local( local_tensor, device_mesh=mesh_1d, placements=[Shard(0)], shape=global_tensor.shape, stride=(4, 1), ) global_tensor = torch.arange(16, dtype=torch.float).view(4, 4) checkpoint_dir = self.temp_dir state_dict_to_save = {"dtensor": dtensor} dist_cp.save( state_dict=state_dict_to_save, storage_writer=dist_cp.HuggingFaceStorageWriter( path=checkpoint_dir, save_distributed=True, enable_consolidation=True, ), ) dist.barrier() if self.rank == 0: file_path = os.path.join(checkpoint_dir, "model-00001-of-00001.safetensors") loaded_dict = safetensors.torch.load_file(file_path) self.assertEqual(loaded_dict.keys(), {"dtensor"}) self.assertTrue(torch.equal(loaded_dict["dtensor"], global_tensor)) dist.barrier() ONE_D_PLACEMENTS = [ [Shard(0)], [Replicate()], ] ONE_D_TO_ONE_D_PLACEMENTS = [ ([Replicate()], [Shard(0)]), ([Shard(0)], [Replicate()]), ] TWO_D_PLACEMENTS = [ [Replicate(), Replicate()], [Replicate(), Shard(0)], [Shard(0), Replicate()], [Shard(0), Shard(0)], ] TWO_D_TO_TWO_D_PLACEMENTS = [] for p1 in TWO_D_PLACEMENTS: for p2 in TWO_D_PLACEMENTS: if p1 != p2: TWO_D_TO_TWO_D_PLACEMENTS.append((p1, p2)) @instantiate_parametrized_tests
TestDistributedHFSafetensorsConsolidation
python
plotly__plotly.py
plotly/graph_objs/scatter/marker/colorbar/_tickformatstop.py
{ "start": 233, "end": 8549 }
class ____(_BaseTraceHierarchyType): _parent_path_str = "scatter.marker.colorbar" _path_str = "scatter.marker.colorbar.tickformatstop" _valid_props = {"dtickrange", "enabled", "name", "templateitemname", "value"} @property def dtickrange(self): """ range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" The 'dtickrange' property is an info array that may be specified as: * a list or tuple of 2 elements where: (0) The 'dtickrange[0]' property accepts values of any type (1) The 'dtickrange[1]' property accepts values of any type Returns ------- list """ return self["dtickrange"] @dtickrange.setter def dtickrange(self, val): self["dtickrange"] = val @property def enabled(self): """ Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. The 'enabled' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["enabled"] @enabled.setter def enabled(self, val): self["enabled"] = val @property def name(self): """ When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. The 'name' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["name"] @name.setter def name(self, val): self["name"] = val @property def templateitemname(self): """ Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. The 'templateitemname' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["templateitemname"] @templateitemname.setter def templateitemname(self, val): self["templateitemname"] = val @property def value(self): """ string - dtickformat for described zoom level, the same as "tickformat" The 'value' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["value"] @value.setter def value(self, val): self["value"] = val @property def _prop_descriptions(self): return """\ dtickrange range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" enabled Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. value string - dtickformat for described zoom level, the same as "tickformat" """ def __init__( self, arg=None, dtickrange=None, enabled=None, name=None, templateitemname=None, value=None, **kwargs, ): """ Construct a new Tickformatstop object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.scatter.marker .colorbar.Tickformatstop` dtickrange range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" enabled Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. value string - dtickformat for described zoom level, the same as "tickformat" Returns ------- Tickformatstop """ super().__init__("tickformatstops") if "_parent" in kwargs: self._parent = kwargs["_parent"] return if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError("""\ The first argument to the plotly.graph_objs.scatter.marker.colorbar.Tickformatstop constructor must be a dict or an instance of :class:`plotly.graph_objs.scatter.marker.colorbar.Tickformatstop`""") self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) self._set_property("dtickrange", arg, dtickrange) self._set_property("enabled", arg, enabled) self._set_property("name", arg, name) self._set_property("templateitemname", arg, templateitemname) self._set_property("value", arg, value) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
Tickformatstop
python
huggingface__transformers
src/transformers/models/video_llama_3/video_processing_video_llama_3.py
{ "start": 3105, "end": 17379 }
class ____(BaseVideoProcessor): resample = PILImageResampling.BICUBIC size = {"shortest_edge": 128 * 28 * 28, "longest_edge": 28 * 28 * 768} image_mean = IMAGENET_STANDARD_MEAN image_std = IMAGENET_STANDARD_STD do_resize = True do_rescale = True do_normalize = True do_convert_rgb = True min_pixels = 128 * 28 * 28 max_pixels = 28 * 28 * 768 patch_size = 14 temporal_patch_size = 1 merge_size = 2 min_frames = 4 max_frames = 180 do_sample_frames = False # Set to False for BC, recommended to set `True` in new models valid_kwargs = VideoLlama3VideoProcessorInitKwargs model_input_names = ["pixel_values_videos", "video_grid_thw", "video_merge_sizes", "video_compression_mask"] use_token_compression = True return_metadata = True def __init__(self, **kwargs: Unpack[VideoLlama3VideoProcessorInitKwargs]): size = kwargs.pop("size", None) min_pixels = kwargs.pop("min_pixels", None) max_pixels = kwargs.pop("max_pixels", None) # backward compatibility: override size with min_pixels and max_pixels if they are provided size = self.size if size is None else size if min_pixels is not None: size["shortest_edge"] = min_pixels size.pop("min_pixels", None) if max_pixels is not None: size["longest_edge"] = max_pixels size.pop("max_pixels", None) if "shortest_edge" not in size or "longest_edge" not in size: raise ValueError("size must contain 'shortest_edge' and 'longest_edge' keys.") super().__init__(size=size, min_pixels=min_pixels, max_pixels=max_pixels, **kwargs) def sample_frames( self, metadata: VideoMetadata, temporal_patch_size: Optional[int] = None, min_frames: Optional[int] = None, max_frames: Optional[int] = None, num_frames: Optional[int] = None, fps: Optional[Union[int, float]] = None, **kwargs, ): """ Default sampling function which uniformly samples the desired number of frames between 0 and total number of frames. If `fps` is passed along with metadata, `fps` frames per second are sampled uniformty. Arguments `num_frames` and `fps` are mutually exclusive. Args: metadata (`VideoMetadata`): Metadata of the video containing information about total duration, fps and total number of frames. temporal_patch_size (`int`, *optional*): The temporal patch size of the vision encoder. Number of sampled frames will be rounded to be divisible by frame factor. min_frames (`int`, *optional*): The minimum number of frames that can be sampled. max_frames (`int`, *optional*): The maximum number of frames that can be sampled. num_frames (`int`, *optional*): Maximum number of frames to sample. Defaults to `self.num_frames`. fps (`int` or `float`, *optional*): Target frames to sample per second. Defaults to `self.fps`. Returns: np.ndarray: Indices to sample video frames. """ if fps is not None and num_frames is not None: raise ValueError("`num_frames` and `fps` are mutually exclusive arguments, please use only one!") num_frames = num_frames if num_frames is not None else self.num_frames fps = fps if fps is not None else self.fps temporal_patch_size = temporal_patch_size if temporal_patch_size is not None else self.temporal_patch_size min_frames = min_frames if min_frames is not None else self.min_frames max_frames = max_frames if max_frames is not None else self.max_frames total_num_frames = metadata.total_num_frames # If num_frames is not given but fps is, calculate num_frames from fps if num_frames is not None: num_frames = round(num_frames / temporal_patch_size) * temporal_patch_size elif fps is not None: if metadata is None or metadata.fps is None: raise ValueError( "Asked to sample `fps` frames per second but no video metadata was provided which is required when sampling with `fps`. " "Please pass in `VideoMetadata` object or use a fixed `num_frames` per input video" ) max_frames = math.floor(min(max_frames, total_num_frames) / temporal_patch_size) * temporal_patch_size num_frames = total_num_frames / metadata.fps * fps num_frames = min(max(num_frames, min_frames), max_frames, total_num_frames) num_frames = math.floor(num_frames / temporal_patch_size) * temporal_patch_size if num_frames > total_num_frames: raise ValueError( f"Video can't be sampled. The inferred `num_frames={num_frames}` exceeds `total_num_frames={total_num_frames}`. " "Decrease `num_frames` or `fps` for sampling." ) if num_frames is not None: indices = torch.arange(0, total_num_frames, total_num_frames / num_frames).int() else: indices = torch.arange(0, total_num_frames).int() return indices def _preprocess( self, videos: list["torch.Tensor"], do_convert_rgb: bool, do_resize: bool, size: SizeDict, interpolation: Optional["F.InterpolationMode"], do_rescale: bool, rescale_factor: float, do_normalize: bool, image_mean: Optional[Union[float, list[float]]], image_std: Optional[Union[float, list[float]]], min_pixels: Optional[int] = None, max_pixels: Optional[int] = None, patch_size: Optional[int] = None, temporal_patch_size: Optional[int] = None, merge_size: Optional[int] = None, use_token_compression: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, device: Optional["torch.Tensor"] = None, **kwargs, ): # Group videos by size for batched resizing grouped_videos, grouped_videos_index = group_videos_by_shape(videos) resized_videos_grouped = {} for shape, stacked_videos in grouped_videos.items(): height, width = get_image_size(stacked_videos[0], channel_dim=ChannelDimension.FIRST) resized_height, resized_width = height, width if do_resize: resized_height, resized_width = smart_resize( height, width, factor=patch_size * merge_size, min_pixels=min_pixels, max_pixels=max_pixels // shape[0], ) stacked_videos = self.resize( image=stacked_videos, size=SizeDict(height=resized_height, width=resized_width), interpolation=interpolation, ) resized_videos_grouped[shape] = stacked_videos resized_videos = reorder_videos(resized_videos_grouped, grouped_videos_index) # Group videos by size for further processing # Needed in case do_resize is False, or resize returns videos with different sizes grouped_videos, grouped_videos_index = group_videos_by_shape(resized_videos) processed_videos_grouped = {} processed_grids = {} for shape, stacked_videos in grouped_videos.items(): resized_height, resized_width = get_image_size(stacked_videos[0], channel_dim=ChannelDimension.FIRST) # Fused rescale and normalize stacked_videos = self.rescale_and_normalize( stacked_videos, do_rescale, rescale_factor, do_normalize, image_mean, image_std ) patches = stacked_videos # Check that videos have `num_frames` divisible by `temporal_patch_size` if patches.shape[1] % temporal_patch_size != 0: repeats = patches[:, -1:].repeat(1, self.temporal_patch_size - 1, 1, 1, 1) patches = torch.cat([patches, repeats], dim=1) batch_size, grid_t, channel = patches.shape[:3] grid_t = grid_t // temporal_patch_size grid_h, grid_w = resized_height // patch_size, resized_width // patch_size patches = patches.view( batch_size, grid_t, temporal_patch_size, channel, grid_h // merge_size, merge_size, patch_size, grid_w // merge_size, merge_size, patch_size, ) patches = patches.permute(0, 1, 4, 7, 5, 8, 3, 2, 6, 9) flatten_patches = patches.reshape( batch_size, grid_t * grid_h * grid_w, channel * temporal_patch_size * patch_size * patch_size, ) processed_videos_grouped[shape] = flatten_patches processed_grids[shape] = [[grid_t, grid_h, grid_w]] * batch_size processed_videos = reorder_videos(processed_videos_grouped, grouped_videos_index) processed_grids = reorder_videos(processed_grids, grouped_videos_index) pixel_values_videos = torch.cat(processed_videos, dim=0) video_grid_thw = torch.tensor(processed_grids) video_merge_sizes = torch.tensor([merge_size] * video_grid_thw.size(0)).to(video_grid_thw) if use_token_compression: video_compression_mask = self._get_compression_mask( pixel_values_videos=pixel_values_videos, video_grid_thw=video_grid_thw, video_merge_sizes=video_merge_sizes, ) else: num_video_tokens = video_grid_thw.prod(-1).sum() // (merge_size**2) video_compression_mask = torch.ones( (num_video_tokens,), dtype=torch.bool, device=pixel_values_videos.device ) return BatchFeature( data={ "pixel_values_videos": pixel_values_videos, "video_grid_thw": video_grid_thw, "video_merge_sizes": video_merge_sizes, "video_compression_mask": video_compression_mask, }, tensor_type=return_tensors, ) def get_num_of_video_patches(self, num_frames: int, height: int, width: int, videos_kwargs=None): """ A utility that returns number of video patches a given video size. Args: num_frames (`int`): Number of frames in the input video. height (`int`): Height of the input video. width (`int`): Width of the input video. videos_kwargs (`dict`, *optional*) Any kwargs to override defaults of the video processor. Returns: `Tuple(int, int)`: Number of placeholder tokens required and number of patches per image. """ min_pixels = videos_kwargs.get("min_pixels", None) or self.size["shortest_edge"] max_pixels = videos_kwargs.get("max_pixels", None) or self.size["longest_edge"] patch_size = videos_kwargs.get("patch_size", None) or self.patch_size merge_size = videos_kwargs.get("merge_size", None) or self.merge_size temporal_patch_size = videos_kwargs.get("temporal_patch_size", None) or self.temporal_patch_size factor = patch_size * merge_size resized_height, resized_width = smart_resize( height, width, factor, min_pixels=min_pixels, max_pixels=max_pixels ) grid_h, grid_w = resized_height // patch_size, resized_width // patch_size grid_t = num_frames // temporal_patch_size return grid_t * grid_h * grid_w def _get_compression_mask( self, pixel_values_videos: torch.FloatTensor, video_grid_thw: torch.LongTensor, video_merge_sizes: torch.LongTensor, threshold: Optional[float] = 0.1, min_tokens: Optional[int] = 1, ) -> torch.BoolTensor: """ Get the compression mask for video tokens based on pixel differences. Args: pixel_values_videos (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`): The tensors corresponding to the input videos. video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*): The temporal, height and width of feature shape of each video in LLM. video_merge_sizes (`torch.Tensor` of shape `(num_videos,)`): The spatial downsampling ratio of each video feature. threshold (`float`, *optional*, defaults to 0.1): The threshold to determine whether a token should be kept based on pixel differences. min_tokens (`int`, *optional*, defaults to 1): The minimum number of tokens to keep for each frame. """ videos = pixel_values_videos.split(video_grid_thw.prod(dim=1).tolist(), dim=0) compression_masks = [] for images, grid_size, merge_size in zip(videos, video_grid_thw, video_merge_sizes): t, h, w = grid_size if t == 1: num_tokens = images.size(0) // (merge_size**2) compression_masks.append(torch.ones((num_tokens,), dtype=torch.bool, device=images.device)) else: # NOTE: video token compressor images = images.view(t, (h // merge_size) * (w // merge_size), -1) pixel_diff = images[1:] - images[:-1] pixel_diff = torch.abs(pixel_diff).mean(dim=-1) * 255 pixel_diff = torch.cat([torch.full_like(pixel_diff[0:1], threshold + 1), pixel_diff], dim=0) mask = pixel_diff > threshold padding_ids = torch.nonzero(mask.sum(dim=1) < min_tokens)[:, 0] mask[padding_ids, :min_tokens] = 1 compression_masks.append(mask.flatten()) return torch.cat(compression_masks) __all__ = ["VideoLlama3VideoProcessor"]
VideoLlama3VideoProcessor
python
dask__distributed
distributed/spill.py
{ "start": 802, "end": 1268 }
class ____(NamedTuple): """Size of a key/value pair when spilled to disk, in bytes""" # output of sizeof() memory: int # pickled size disk: int def __add__(self, other: SpilledSize) -> SpilledSize: # type: ignore return SpilledSize(self.memory + other.memory, self.disk + other.disk) def __sub__(self, other: SpilledSize) -> SpilledSize: return SpilledSize(self.memory - other.memory, self.disk - other.disk)
SpilledSize
python
apache__airflow
providers/google/tests/unit/google/cloud/operators/vertex_ai/test_experiment_service.py
{ "start": 3726, "end": 4839 }
class ____: @mock.patch(VERTEX_AI_PATH.format("ExperimentRunHook")) def test_execute(self, mock_hook): op = CreateExperimentRunOperator( task_id=TASK_ID, project_id=GCP_PROJECT, location=GCP_LOCATION, experiment_name=TEST_EXPERIMENT_NAME, experiment_run_name=TEST_EXPERIMENT_RUN_NAME, experiment_run_tensorboard=TEST_TENSORBOARD, gcp_conn_id=GCP_CONN_ID, impersonation_chain=IMPERSONATION_CHAIN, ) op.execute(context={"ti": mock.MagicMock()}) mock_hook.assert_called_once_with( gcp_conn_id=GCP_CONN_ID, impersonation_chain=IMPERSONATION_CHAIN, ) mock_hook.return_value.create_experiment_run.assert_called_once_with( project_id=GCP_PROJECT, location=GCP_LOCATION, experiment_name=TEST_EXPERIMENT_NAME, experiment_run_name=TEST_EXPERIMENT_RUN_NAME, experiment_run_tensorboard=TEST_TENSORBOARD, run_after_creation=False, )
TestVertexAICreateExperimentRunOperator
python
django__django
django/db/backends/postgresql/introspection.py
{ "start": 582, "end": 12739 }
class ____(BaseDatabaseIntrospection): # Maps type codes to Django Field types. data_types_reverse = { 16: "BooleanField", 17: "BinaryField", 20: "BigIntegerField", 21: "SmallIntegerField", 23: "IntegerField", 25: "TextField", 700: "FloatField", 701: "FloatField", 869: "GenericIPAddressField", 1042: "CharField", # blank-padded 1043: "CharField", 1082: "DateField", 1083: "TimeField", 1114: "DateTimeField", 1184: "DateTimeField", 1186: "DurationField", 1266: "TimeField", 1700: "DecimalField", 2950: "UUIDField", 3802: "JSONField", } # A hook for subclasses. index_default_access_method = "btree" ignored_tables = [] on_delete_types = { "a": DO_NOTHING, "c": DB_CASCADE, "d": DB_SET_DEFAULT, "n": DB_SET_NULL, # DB_RESTRICT - "r" is not supported. } def get_field_type(self, data_type, description): field_type = super().get_field_type(data_type, description) if description.is_autofield or ( # Required for pre-Django 4.1 serial columns. description.default and "nextval" in description.default ): if field_type == "IntegerField": return "AutoField" elif field_type == "BigIntegerField": return "BigAutoField" elif field_type == "SmallIntegerField": return "SmallAutoField" return field_type def get_table_list(self, cursor): """Return a list of table and view names in the current database.""" cursor.execute( """ SELECT c.relname, CASE WHEN c.relispartition THEN 'p' WHEN c.relkind IN ('m', 'v') THEN 'v' ELSE 't' END, obj_description(c.oid, 'pg_class') FROM pg_catalog.pg_class c LEFT JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace WHERE c.relkind IN ('f', 'm', 'p', 'r', 'v') AND n.nspname NOT IN ('pg_catalog', 'pg_toast') AND pg_catalog.pg_table_is_visible(c.oid) """ ) return [ TableInfo(*row) for row in cursor.fetchall() if row[0] not in self.ignored_tables ] def get_table_description(self, cursor, table_name): """ Return a description of the table with the DB-API cursor.description interface. """ # Query the pg_catalog tables as cursor.description does not reliably # return the nullable property and information_schema.columns does not # contain details of materialized views. cursor.execute( """ SELECT a.attname AS column_name, NOT (a.attnotnull OR (t.typtype = 'd' AND t.typnotnull)) AS is_nullable, pg_get_expr(ad.adbin, ad.adrelid) AS column_default, CASE WHEN collname = 'default' THEN NULL ELSE collname END AS collation, a.attidentity != '' AS is_autofield, col_description(a.attrelid, a.attnum) AS column_comment FROM pg_attribute a LEFT JOIN pg_attrdef ad ON a.attrelid = ad.adrelid AND a.attnum = ad.adnum LEFT JOIN pg_collation co ON a.attcollation = co.oid JOIN pg_type t ON a.atttypid = t.oid JOIN pg_class c ON a.attrelid = c.oid JOIN pg_namespace n ON c.relnamespace = n.oid WHERE c.relkind IN ('f', 'm', 'p', 'r', 'v') AND c.relname = %s AND n.nspname NOT IN ('pg_catalog', 'pg_toast') AND pg_catalog.pg_table_is_visible(c.oid) """, [table_name], ) field_map = {line[0]: line[1:] for line in cursor.fetchall()} cursor.execute( "SELECT * FROM %s LIMIT 1" % self.connection.ops.quote_name(table_name) ) # PostgreSQL OIDs may vary depending on the installation, especially # for datatypes from extensions, e.g. "hstore". In such cases, the # type_display attribute (psycopg 3.2+) should be used. type_display_available = psycopg_version() >= (3, 2) return [ FieldInfo( line.name, ( line.type_display if type_display_available and line.type_display == "hstore" else line.type_code ), # display_size is always None on psycopg2. line.internal_size if line.display_size is None else line.display_size, line.internal_size, # precision and scale are always 2^16 - 1 on psycopg2 for # DecimalFields with no precision. None if line.precision == 2**16 - 1 else line.precision, None if line.scale == 2**16 - 1 else line.scale, *field_map[line.name], ) for line in cursor.description ] def get_sequences(self, cursor, table_name, table_fields=()): cursor.execute( """ SELECT s.relname AS sequence_name, a.attname AS colname FROM pg_class s JOIN pg_depend d ON d.objid = s.oid AND d.classid = 'pg_class'::regclass AND d.refclassid = 'pg_class'::regclass JOIN pg_attribute a ON d.refobjid = a.attrelid AND d.refobjsubid = a.attnum JOIN pg_class tbl ON tbl.oid = d.refobjid AND tbl.relname = %s AND pg_catalog.pg_table_is_visible(tbl.oid) WHERE s.relkind = 'S'; """, [table_name], ) return [ {"name": row[0], "table": table_name, "column": row[1]} for row in cursor.fetchall() ] def get_relations(self, cursor, table_name): """ Return a dictionary of { field_name: (field_name_other_table, other_table, db_on_delete) } representing all foreign keys in the given table. """ cursor.execute( """ SELECT a1.attname, c2.relname, a2.attname, con.confdeltype FROM pg_constraint con LEFT JOIN pg_class c1 ON con.conrelid = c1.oid LEFT JOIN pg_class c2 ON con.confrelid = c2.oid LEFT JOIN pg_attribute a1 ON c1.oid = a1.attrelid AND a1.attnum = con.conkey[1] LEFT JOIN pg_attribute a2 ON c2.oid = a2.attrelid AND a2.attnum = con.confkey[1] WHERE c1.relname = %s AND con.contype = 'f' AND c1.relnamespace = c2.relnamespace AND pg_catalog.pg_table_is_visible(c1.oid) """, [table_name], ) return { row[0]: (row[2], row[1], self.on_delete_types.get(row[3])) for row in cursor.fetchall() } def get_constraints(self, cursor, table_name): """ Retrieve any constraints or keys (unique, pk, fk, check, index) across one or more columns. Also retrieve the definition of expression-based indexes. """ constraints = {} # Loop over the key table, collecting things as constraints. The column # array must return column names in the same order in which they were # created. cursor.execute( """ SELECT c.conname, array( SELECT attname FROM unnest(c.conkey) WITH ORDINALITY cols(colid, arridx) JOIN pg_attribute AS ca ON cols.colid = ca.attnum WHERE ca.attrelid = c.conrelid ORDER BY cols.arridx ), c.contype, (SELECT fkc.relname || '.' || fka.attname FROM pg_attribute AS fka JOIN pg_class AS fkc ON fka.attrelid = fkc.oid WHERE fka.attrelid = c.confrelid AND fka.attnum = c.confkey[1]), cl.reloptions FROM pg_constraint AS c JOIN pg_class AS cl ON c.conrelid = cl.oid WHERE cl.relname = %s AND pg_catalog.pg_table_is_visible(cl.oid) AND c.contype != 'n' """, [table_name], ) for constraint, columns, kind, used_cols, options in cursor.fetchall(): constraints[constraint] = { "columns": columns, "primary_key": kind == "p", "unique": kind in ["p", "u"], "foreign_key": tuple(used_cols.split(".", 1)) if kind == "f" else None, "check": kind == "c", "index": False, "definition": None, "options": options, } # Now get indexes cursor.execute( """ SELECT indexname, array_agg(attname ORDER BY arridx), indisunique, indisprimary, array_agg(ordering ORDER BY arridx), amname, exprdef, s2.attoptions FROM ( SELECT c2.relname as indexname, idx.*, attr.attname, am.amname, CASE WHEN idx.indexprs IS NOT NULL THEN pg_get_indexdef(idx.indexrelid) END AS exprdef, CASE am.amname WHEN %s THEN CASE (option & 1) WHEN 1 THEN 'DESC' ELSE 'ASC' END END as ordering, c2.reloptions as attoptions FROM ( SELECT * FROM pg_index i, unnest(i.indkey, i.indoption) WITH ORDINALITY koi(key, option, arridx) ) idx LEFT JOIN pg_class c ON idx.indrelid = c.oid LEFT JOIN pg_class c2 ON idx.indexrelid = c2.oid LEFT JOIN pg_am am ON c2.relam = am.oid LEFT JOIN pg_attribute attr ON attr.attrelid = c.oid AND attr.attnum = idx.key WHERE c.relname = %s AND pg_catalog.pg_table_is_visible(c.oid) ) s2 GROUP BY indexname, indisunique, indisprimary, amname, exprdef, attoptions; """, [self.index_default_access_method, table_name], ) for ( index, columns, unique, primary, orders, type_, definition, options, ) in cursor.fetchall(): if index not in constraints: basic_index = ( type_ == self.index_default_access_method and # '_btree' references # django.contrib.postgres.indexes.BTreeIndex.suffix. not index.endswith("_btree") and options is None ) constraints[index] = { "columns": columns if columns != [None] else [], "orders": orders if orders != [None] else [], "primary_key": primary, "unique": unique, "foreign_key": None, "check": False, "index": True, "type": Index.suffix if basic_index else type_, "definition": definition, "options": options, } return constraints
DatabaseIntrospection
python
huggingface__transformers
src/transformers/models/colpali/modeling_colpali.py
{ "start": 2249, "end": 4474 }
class ____(ModelOutput): r""" loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): The embeddings of the model. past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. image_hidden_states (`torch.FloatTensor`, *optional*): A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder after projecting last hidden state. """ loss: Optional[torch.FloatTensor] = None embeddings: Optional[torch.Tensor] = None past_key_values: Optional[Cache] = None hidden_states: Optional[tuple[torch.FloatTensor]] = None attentions: Optional[tuple[torch.FloatTensor]] = None image_hidden_states: Optional[torch.FloatTensor] = None @auto_docstring( custom_intro=""" The ColPali architecture leverages VLMs to construct efficient multi-vector embeddings directly from document images (“screenshots”) for document retrieval. The model is trained to maximize the similarity between these document embeddings and the corresponding query embeddings, using the late interaction method introduced in ColBERT. Using ColPali removes the need for potentially complex and brittle layout recognition and OCR pipelines with a single model that can take into account both the textual and visual content (layout, charts, etc.) of a document. ColPali is part of the ColVision model family, which was first introduced in the following paper: [*ColPali: Efficient Document Retrieval with Vision Language Models*](https://huggingface.co/papers/2407.01449). """ )
ColPaliForRetrievalOutput
python
getsentry__sentry
src/sentry/analytics/events/comment_webhooks.py
{ "start": 458, "end": 630 }
class ____(CommentEvent): pass analytics.register(CommentCreatedEvent) analytics.register(CommentUpdatedEvent) analytics.register(CommentDeletedEvent)
CommentDeletedEvent
python
pytest-dev__pytest-asyncio
tests/async_fixtures/test_async_fixtures.py
{ "start": 531, "end": 814 }
class ____: is_same_instance = False @pytest.fixture(autouse=True) async def async_fixture_method(self): self.is_same_instance = True @pytest.mark.asyncio async def test_async_fixture_method(self): assert self.is_same_instance
TestAsyncFixtureMethod
python
pypa__warehouse
tests/unit/packaging/test_views.py
{ "start": 12256, "end": 17114 }
class ____: @pytest.fixture def gitlab_attestation(self, gitlab_provenance): return gitlab_provenance.attestation_bundles[0].attestations[0] @pytest.fixture def github_attestation(self, github_provenance): return github_provenance.attestation_bundles[0].attestations[0] def test_github_pep740(self, github_attestation): github_publisher = pretend.stub( kind="GitHub", workflow=".github/workflows/release.yml", ) viewer = views.PEP740AttestationViewer( publisher=github_publisher, attestation=github_attestation, ) assert viewer.statement_type == "https://in-toto.io/Statement/v1" assert viewer.predicate_type == "https://docs.pypi.org/attestations/publish/v1" assert viewer.subject_name == "sampleproject-4.0.0.tar.gz" assert ( viewer.subject_digest == "0ace7980f82c5815ede4cd7bf9f6693684cec2ae47b9b7ade9add533b8627c6b" ) assert viewer.transparency_entry["integratedTime"] == "1730932627" assert viewer.repository_url == "https://github.com/pypa/sampleproject" assert viewer.workflow_filename == ".github/workflows/release.yml" assert viewer.workflow_url == ( "https://github.com/pypa/sampleproject/blob/" "621e4974ca25ce531773def586ba3ed8e736b3fc/" ".github/workflows/release.yml" ) assert viewer.build_digest == "621e4974ca25ce531773def586ba3ed8e736b3fc" assert viewer.issuer == "https://token.actions.githubusercontent.com" assert viewer.environment == "github-hosted" assert viewer.source == "https://github.com/pypa/sampleproject" assert viewer.source_digest == "621e4974ca25ce531773def586ba3ed8e736b3fc" assert viewer.source_reference == "refs/heads/main" assert viewer.owner == "https://github.com/pypa" assert viewer.trigger == "push" assert viewer.access == "public" assert viewer.permalink_with_digest == ( "https://github.com/pypa/sampleproject/tree/" "621e4974ca25ce531773def586ba3ed8e736b3fc" ) assert ( viewer.permalink_with_reference == "https://github.com/pypa/sampleproject/tree/refs/heads/main" ) def test_gitlab_pep740(self, gitlab_attestation): gitlab_publisher = pretend.stub( kind="GitLab", workflow_filepath=".gitlab-ci.yml", ) viewer = views.PEP740AttestationViewer( publisher=gitlab_publisher, attestation=gitlab_attestation, ) assert viewer.statement_type == "https://in-toto.io/Statement/v1" assert viewer.predicate_type == "https://docs.pypi.org/attestations/publish/v1" assert viewer.subject_name == "pep740_sampleproject-1.0.0.tar.gz" assert ( viewer.subject_digest == "6cdd4a1a0a49aeef47265e7bf8ec1667257b397d34d731dc7b7af349deca1cd8" ) assert viewer.transparency_entry["integratedTime"] == "1732724143" assert ( viewer.repository_url == "https://gitlab.com/pep740-example/sampleproject" ) assert viewer.workflow_filename == ".gitlab-ci.yml" assert viewer.workflow_url == ( "https://gitlab.com/pep740-example/sampleproject/blob/" "0b706bbf1b50e7266b33762568566d6ec0f76d69//.gitlab-ci.yml" ) assert viewer.build_digest == "0b706bbf1b50e7266b33762568566d6ec0f76d69" assert viewer.issuer == "https://gitlab.com" assert viewer.environment == "gitlab-hosted" assert viewer.source == "https://gitlab.com/pep740-example/sampleproject" assert viewer.source_digest == "0b706bbf1b50e7266b33762568566d6ec0f76d69" assert viewer.source_reference == "refs/heads/main" assert viewer.owner == "https://gitlab.com/pep740-example" assert viewer.trigger == "push" assert viewer.access == "private" assert viewer.permalink_with_digest == ( "https://gitlab.com/pep740-example/sampleproject/-/tree/" "0b706bbf1b50e7266b33762568566d6ec0f76d69" ) assert ( viewer.permalink_with_reference == "https://gitlab.com/pep740-example/sampleproject/-/tree/main" ) def test_unknown_publisher(self, github_attestation): viewer = views.PEP740AttestationViewer( publisher=pretend.stub( kind="Unknown", ), attestation=pretend.stub(certificate_claims={}), ) assert viewer.workflow_filename == "" assert ( viewer._format_url("https://example.com", "refs/heads/main") == "https://example.com/refs/heads/main" )
TestPEP740AttestationViewer
python
pytorch__pytorch
torchgen/api/ufunc.py
{ "start": 3993, "end": 6693 }
class ____: ctor: list[Binding] apply: list[Binding] # ufunctors are a CUDA-only concept representing functors that take some of # their arguments on a host-side constructor, and the rest in the device-side # apply. E.g., # # template <typename scalar_t> # struct CUDAFunctorOnSelf_add { # using opmath_t = at::opmath_type<scalar_t>; # opmath_t other_; # opmath_t alpha_; # CUDAFunctorOnSelf_add(opmath_t other, opmath_t alpha) : other_(other), alpha_(alpha) {} # __device__ scalar_t operator()(scalar_t self) { # return ufunc::add(static_cast<opmath_t>(self), other_, alpha_); # } # }; # # The ctor refers to the constructor CUDAFunctorOnSelf_add, while apply refers # to the operator() definition def ufunctor_arguments( g: NativeFunctionsGroup, *, scalar_tensor_idx: int | None, scalar_t: BaseCppType ) -> UfunctorBindings: ctor = [] apply = [] for a in g.functional.func.arguments.flat_non_out: if a.type.is_tensor_like(): if scalar_tensor_idx == 0: # put it in the ctor anyway ctor.append(ufunctor_ctor_argument(a, scalar_t=scalar_t)) scalar_tensor_idx = None else: if scalar_tensor_idx is not None: scalar_tensor_idx -= 1 apply.append(ufunctor_apply_argument(a, scalar_t=scalar_t)) else: ctor.append(ufunctor_ctor_argument(a, scalar_t=scalar_t)) assert scalar_tensor_idx is None return UfunctorBindings(ctor=ctor, apply=apply) # ufuncs are the inner loop template functions that you wrote in ufunc/add.h # which do the actual computation in question. E.g., # # template <typename T> # C10_HOST_DEVICE T add(T self, T other, T alpha) __ubsan_ignore_undefined__ { # return self + alpha * other; # } # # In this file, we refer to T as compute_t which is bound by caller def ufunc_arguments(g: NativeFunctionsGroup, *, compute_t: CType) -> list[Binding]: return [ ufunc_argument(a, compute_t=compute_t) for a in g.functional.func.arguments.flat_non_out ] # Stubs are the DispatchStub trampolines that CPU kernels use to get to their # vectorized versions. E.g., # # using structured_binary_fn_alpha = void(*)(TensorIteratorBase&, const Scalar& alpha); # DECLARE_DISPATCH(structured_binary_fn_alpha, add_stub); def stub_arguments(g: NativeFunctionsGroup) -> list[Binding]: # stubs drop all tensor arguments (they are implicit in the TensorIterator # argument and keep everything else) return [ r for a in g.out.func.arguments.flat_non_out if not a.type.is_tensor_like() for r in structured.argument(a) ]
UfunctorBindings
python
pennersr__django-allauth
tests/apps/socialaccount/providers/instagram/tests.py
{ "start": 246, "end": 967 }
class ____(OAuth2TestsMixin, TestCase): provider_id = InstagramProvider.id def get_mocked_response(self): return MockedResponse( HTTPStatus.OK, """ { "username": "georgewhewell", "bio": "", "website": "", "profile_picture": "http://images.ak.instagram.com/profiles/profile_11428116_75sq_1339547159.jpg", "full_name": "georgewhewell", "counts": { "media": 74, "followed_by": 91, "follows": 104 }, "id": "11428116" }""", ) # noqa def get_expected_to_str(self): return "georgewhewell"
InstagramTests
python
apache__airflow
providers/amazon/src/airflow/providers/amazon/aws/links/glue.py
{ "start": 914, "end": 1229 }
class ____(BaseAwsLink): """Helper class for constructing AWS Glue Job Run Details Link.""" name = "AWS Glue Job Run Details" key = "glue_job_run_details" format_str = ( BASE_AWS_CONSOLE_LINK + "/gluestudio/home?region={region_name}#/job/{job_name}/run/{job_run_id}" )
GlueJobRunDetailsLink
python
python-attrs__attrs
typing-examples/mypy.py
{ "start": 8131, "end": 8241 }
class ____: pass def test(cls: type) -> None: if attr.has(cls): attr.resolve_types(cls)
Hashable
python
great-expectations__great_expectations
great_expectations/datasource/fluent/spark_s3_datasource.py
{ "start": 1119, "end": 5845 }
class ____(_SparkFilePathDatasource): """ SparkS3Datasource is a subclass of SparkDatasource which connects to Amazon S3. """ # class attributes data_connector_type: ClassVar[Type[S3DataConnector]] = S3DataConnector # these fields should not be passed to the execution engine _EXTRA_EXCLUDED_EXEC_ENG_ARGS: ClassVar[set] = { "bucket", "boto3_options", } # instance attributes type: Literal["spark_s3"] = "spark_s3" # S3 specific attributes bucket: str boto3_options: Dict[str, Union[ConfigStr, Any]] = {} _s3_client: Union[BaseClient, None] = pydantic.PrivateAttr(default=None) def _get_s3_client(self) -> BaseClient: s3_client: Union[BaseClient, None] = self._s3_client if not s3_client: # Validate that "boto3" libarary was successfully imported and attempt to create "s3_client" handle. # noqa: E501 # FIXME CoP if aws.boto3: _check_config_substitutions_needed( self, self.boto3_options, raise_warning_if_provider_not_present=True ) # pull in needed config substitutions using the `_config_provider` # The `FluentBaseModel.dict()` call will do the config substitution on the serialized dict if a `config_provider` is passed. # noqa: E501 # FIXME CoP boto3_options: dict = self.dict(config_provider=self._config_provider).get( "boto3_options", {} ) try: s3_client = aws.boto3.client("s3", **boto3_options) except Exception as e: # Failure to create "s3_client" is most likely due invalid "boto3_options" dictionary. # noqa: E501 # FIXME CoP raise SparkS3DatasourceError( # noqa: TRY003 # FIXME CoP f'Due to exception: "{e!s}", "s3_client" could not be created.' ) from e else: raise SparkS3DatasourceError( # noqa: TRY003 # FIXME CoP 'Unable to create "SparkS3Datasource" due to missing boto3 dependency.' ) self._s3_client = s3_client return s3_client @override def test_connection(self, test_assets: bool = True) -> None: """Test the connection for the SparkS3Datasource. Args: test_assets: If assets have been passed to the SparkS3Datasource, whether to test them as well. Raises: TestConnectionError: If the connection test fails. """ # noqa: E501 # FIXME CoP try: # tests S3 connection _ = self._get_s3_client() except Exception as e: raise TestConnectionError( # noqa: TRY003 # FIXME CoP f"Attempt to connect to datasource failed with the following error message: {e!s}" ) from e # tests Spark connection, raising TestConnectionError super().test_connection() if self.assets and test_assets: for asset in self.assets: asset.test_connection() @override def _build_data_connector( self, data_asset: SPARK_PATH_ASSET_UNION, s3_prefix: str = "", s3_delimiter: str = "/", s3_max_keys: int = 1000, s3_recursive_file_discovery: bool = False, **kwargs, ) -> None: """Builds and attaches the `S3DataConnector` to the asset.""" if kwargs: raise TypeError( # noqa: TRY003 # FIXME CoP f"_build_data_connector() got unexpected keyword arguments {list(kwargs.keys())}" ) data_asset._data_connector = self.data_connector_type.build_data_connector( datasource_name=self.name, data_asset_name=data_asset.name, s3_client=self._get_s3_client(), bucket=self.bucket, prefix=s3_prefix, delimiter=s3_delimiter, max_keys=s3_max_keys, recursive_file_discovery=s3_recursive_file_discovery, file_path_template_map_fn=S3Url.OBJECT_URL_TEMPLATE.format, whole_directory_path_override=data_asset.get_whole_directory_path_override(), ) # build a more specific `_test_connection_error_message` data_asset._test_connection_error_message = ( self.data_connector_type.build_test_connection_error_message( data_asset_name=data_asset.name, bucket=self.bucket, prefix=s3_prefix, delimiter=s3_delimiter, recursive_file_discovery=s3_recursive_file_discovery, ) )
SparkS3Datasource
python
numpy__numpy
numpy/_core/tests/test_array_coercion.py
{ "start": 18600, "end": 22852 }
class ____: def test_nested_simple(self): initial = [1.2] nested = initial for i in range(ncu.MAXDIMS - 1): nested = [nested] arr = np.array(nested, dtype="float64") assert arr.shape == (1,) * ncu.MAXDIMS with pytest.raises(ValueError): np.array([nested], dtype="float64") with pytest.raises(ValueError, match=".*would exceed the maximum"): np.array([nested]) # user must ask for `object` explicitly arr = np.array([nested], dtype=object) assert arr.dtype == np.dtype("O") assert arr.shape == (1,) * ncu.MAXDIMS assert arr.item() is initial def test_pathological_self_containing(self): # Test that this also works for two nested sequences l = [] l.append(l) arr = np.array([l, l, l], dtype=object) assert arr.shape == (3,) + (1,) * (ncu.MAXDIMS - 1) # Also check a ragged case: arr = np.array([l, [None], l], dtype=object) assert arr.shape == (3, 1) @pytest.mark.parametrize("arraylike", arraylikes()) def test_nested_arraylikes(self, arraylike): # We try storing an array like into an array, but the array-like # will have too many dimensions. This means the shape discovery # decides that the array-like must be treated as an object (a special # case of ragged discovery). The result will be an array with one # dimension less than the maximum dimensions, and the array being # assigned to it (which does work for object or if `float(arraylike)` # works). initial = arraylike(np.ones((1, 1))) nested = initial for i in range(ncu.MAXDIMS - 1): nested = [nested] with pytest.raises(ValueError, match=".*would exceed the maximum"): # It will refuse to assign the array into np.array(nested, dtype="float64") # If this is object, we end up assigning a (1, 1) array into (1,) # (due to running out of dimensions), this is currently supported but # a special case which is not ideal. arr = np.array(nested, dtype=object) assert arr.shape == (1,) * ncu.MAXDIMS assert arr.item() == np.array(initial).item() @pytest.mark.parametrize("arraylike", arraylikes()) def test_uneven_depth_ragged(self, arraylike): arr = np.arange(4).reshape((2, 2)) arr = arraylike(arr) # Array is ragged in the second dimension already: out = np.array([arr, [arr]], dtype=object) assert out.shape == (2,) assert out[0] is arr assert type(out[1]) is list # Array is ragged in the third dimension: with pytest.raises(ValueError): # This is a broadcast error during assignment, because # the array shape would be (2, 2, 2) but `arr[0, 0] = arr` fails. np.array([arr, [arr, arr]], dtype=object) def test_empty_sequence(self): arr = np.array([[], [1], [[1]]], dtype=object) assert arr.shape == (3,) # The empty sequence stops further dimension discovery, so the # result shape will be (0,) which leads to an error during: with pytest.raises(ValueError): np.array([[], np.empty((0, 1))], dtype=object) def test_array_of_different_depths(self): # When multiple arrays (or array-likes) are included in a # sequences and have different depth, we currently discover # as many dimensions as they share. (see also gh-17224) arr = np.zeros((3, 2)) mismatch_first_dim = np.zeros((1, 2)) mismatch_second_dim = np.zeros((3, 3)) dtype, shape = ncu._discover_array_parameters( [arr, mismatch_second_dim], dtype=np.dtype("O")) assert shape == (2, 3) dtype, shape = ncu._discover_array_parameters( [arr, mismatch_first_dim], dtype=np.dtype("O")) assert shape == (2,) # The second case is currently supported because the arrays # can be stored as objects: res = np.asarray([arr, mismatch_first_dim], dtype=np.dtype("O")) assert res[0] is arr assert res[1] is mismatch_first_dim
TestNested
python
pytorch__pytorch
test/inductor/test_padding.py
{ "start": 8581, "end": 13226 }
class ____(TestCaseBase): @maybe_cprofile def run_acc_and_perf_test(self, model, inputs, perf_inputs=None, tol=1e-3): """ Run accuracy test. Also compare the perf with and without the comprehensive padding if DO_PERF_TEST is true. """ if perf_inputs is None: perf_inputs = inputs def _process_inputs(x): """ return args and kwargs """ if isinstance(x, dict): return [], x if not isinstance(inputs, (tuple, list)): x = [x] return x, {} args, kwargs = _process_inputs(inputs) perf_args, perf_kwargs = _process_inputs(perf_inputs) if DO_ACC_TEST: model.eval() self.common_numeric_check(model, *args, **kwargs, tol=tol) else: print("Accuracy test skipped") model.train() if DO_PERF_TEST: print("Do performance test") def get_f(m, optim): def f(*args, **kwargs): optim.zero_grad(True) with torch.autocast(GPU_TYPE): pred = m(*args, **kwargs) loss = reduce_to_scalar_loss(pred) loss.backward() optim.step() return f latency_with_padding = None print("Benchmark with padding") with config.patch(comprehensive_padding=True): m_copy_with_padding = copy.deepcopy(model) optim_with_padding = get_optim(m_copy_with_padding) opt_f_with_padding = torch.compile( get_f(m_copy_with_padding, optim_with_padding) ) latency_with_padding = benchmarker.benchmark_gpu( lambda: opt_f_with_padding(*perf_args, **perf_kwargs) ) latency_without_padding = None print("bencmark without padding") with config.patch(comprehensive_padding=False): m_copy_without_padding = copy.deepcopy(model) optim_without_padding = get_optim(m_copy_without_padding) opt_f_without_padding = torch.compile( get_f(m_copy_without_padding, optim_without_padding) ) latency_without_padding = benchmarker.benchmark_gpu( lambda: opt_f_without_padding(*perf_args, **perf_kwargs) ) print( f"Latency with and without padding: {latency_with_padding:.3f} v.s. {latency_without_padding:.3f}" ) # profiling self.do_profiling( opt_f_with_padding, opt_f_without_padding, args=perf_args, kwargs=perf_kwargs, ) def test_nvidia_deeprecommender(self): """ Compared the perf with and without comprehensive padding. """ layer_sizes = [197951, 512, 512, 1024, 512, 512, 197951] x = torch.randn(4, layer_sizes[0]) class Model(nn.Module): def __init__(self) -> None: super().__init__() mod_list = [] for i in range(len(layer_sizes) - 1): mod_list.append(nn.Linear(layer_sizes[i], layer_sizes[i + 1])) mod_list.append(nn.SELU()) if i == 2: mod_list.append(nn.Dropout(0.8)) self.seq = nn.Sequential(*mod_list) def forward(self, x): return self.seq(x) m = Model() perf_inputs = torch.randn(256, layer_sizes[0]) self.run_acc_and_perf_test(m, x, perf_inputs) @unittest.skipIf(not DO_PERF_TEST or not HAS_TRANSFORMER, "Perf test not enabled") def test_longformer(self, bs=4): from transformers import AutoConfig, AutoModelForMaskedLM config = AutoConfig.from_pretrained("allenai/longformer-base-4096") model = AutoModelForMaskedLM.from_config(config) vocab_size = model.config.vocab_size seq_length = 1024 input_dict = gen_transformer_inputs(vocab_size, bs, seq_length) self.run_acc_and_perf_test(model, input_dict) @unittest.skipIf(not DO_PERF_TEST or not HAS_TRANSFORMER, "Perf test not enabled") def test_longformer_small_bs(self): """ The model exists in both HF and TB. In TB it uses a smaller batch size. """ self.test_longformer(bs=2) @instantiate_parametrized_tests
PerfTestWithAndWithoutPadding
python
kamyu104__LeetCode-Solutions
Python/longest-substring-with-at-most-two-distinct-characters.py
{ "start": 724, "end": 1264 }
class ____(object): def lengthOfLongestSubstringTwoDistinct(self, s): """ :type s: str :rtype: int """ counter = Counter() left, max_length = 0, 0 for right, char in enumerate(s): counter[char] += 1 while len(counter) > 2: counter[s[left]] -= 1 if counter[s[left]] == 0: del counter[s[left]] left += 1 max_length = max(max_length, right-left+1) return max_length
Solution2
python
MongoEngine__mongoengine
tests/fields/test_string_field.py
{ "start": 99, "end": 1382 }
class ____(MongoDBTestCase): def test_storage(self): class Person(Document): name = StringField() Person.drop_collection() person = Person(name="test123") person.save() assert get_as_pymongo(person) == {"_id": person.id, "name": "test123"} def test_validation(self): class Person(Document): name = StringField(max_length=20, min_length=2) userid = StringField(r"[0-9a-z_]+$") with pytest.raises(ValidationError, match="only accepts string values"): Person(name=34).validate() with pytest.raises(ValidationError, match="value is too short"): Person(name="s").validate() # Test regex validation on userid person = Person(userid="test.User") with pytest.raises(ValidationError): person.validate() person.userid = "test_user" assert person.userid == "test_user" person.validate() # Test max length validation on name person = Person(name="Name that is more than twenty characters") with pytest.raises(ValidationError): person.validate() person = Person(name="a friendl name", userid="7a757668sqjdkqlsdkq") person.validate()
TestStringField
python
pydantic__pydantic
pydantic/v1/types.py
{ "start": 19299, "end": 24335 }
class ____(Decimal, metaclass=ConstrainedNumberMeta): gt: OptionalIntFloatDecimal = None ge: OptionalIntFloatDecimal = None lt: OptionalIntFloatDecimal = None le: OptionalIntFloatDecimal = None max_digits: OptionalInt = None decimal_places: OptionalInt = None multiple_of: OptionalIntFloatDecimal = None @classmethod def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: update_not_none( field_schema, exclusiveMinimum=cls.gt, exclusiveMaximum=cls.lt, minimum=cls.ge, maximum=cls.le, multipleOf=cls.multiple_of, ) @classmethod def __get_validators__(cls) -> 'CallableGenerator': yield decimal_validator yield number_size_validator yield number_multiple_validator yield cls.validate @classmethod def validate(cls, value: Decimal) -> Decimal: try: normalized_value = value.normalize() except InvalidOperation: normalized_value = value digit_tuple, exponent = normalized_value.as_tuple()[1:] if exponent in {'F', 'n', 'N'}: raise errors.DecimalIsNotFiniteError() if exponent >= 0: # A positive exponent adds that many trailing zeros. digits = len(digit_tuple) + exponent decimals = 0 else: # If the absolute value of the negative exponent is larger than the # number of digits, then it's the same as the number of digits, # because it'll consume all of the digits in digit_tuple and then # add abs(exponent) - len(digit_tuple) leading zeros after the # decimal point. if abs(exponent) > len(digit_tuple): digits = decimals = abs(exponent) else: digits = len(digit_tuple) decimals = abs(exponent) whole_digits = digits - decimals if cls.max_digits is not None and digits > cls.max_digits: raise errors.DecimalMaxDigitsError(max_digits=cls.max_digits) if cls.decimal_places is not None and decimals > cls.decimal_places: raise errors.DecimalMaxPlacesError(decimal_places=cls.decimal_places) if cls.max_digits is not None and cls.decimal_places is not None: expected = cls.max_digits - cls.decimal_places if whole_digits > expected: raise errors.DecimalWholeDigitsError(whole_digits=expected) return value def condecimal( *, gt: Decimal = None, ge: Decimal = None, lt: Decimal = None, le: Decimal = None, max_digits: Optional[int] = None, decimal_places: Optional[int] = None, multiple_of: Decimal = None, ) -> Type[Decimal]: # use kwargs then define conf in a dict to aid with IDE type hinting namespace = dict( gt=gt, ge=ge, lt=lt, le=le, max_digits=max_digits, decimal_places=decimal_places, multiple_of=multiple_of ) return type('ConstrainedDecimalValue', (ConstrainedDecimal,), namespace) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ UUID TYPES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if TYPE_CHECKING: UUID1 = UUID UUID3 = UUID UUID4 = UUID UUID5 = UUID else: class UUID1(UUID): _required_version = 1 @classmethod def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: field_schema.update(type='string', format=f'uuid{cls._required_version}') class UUID3(UUID1): _required_version = 3 class UUID4(UUID1): _required_version = 4 class UUID5(UUID1): _required_version = 5 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PATH TYPES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if TYPE_CHECKING: FilePath = Path DirectoryPath = Path else: class FilePath(Path): @classmethod def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: field_schema.update(format='file-path') @classmethod def __get_validators__(cls) -> 'CallableGenerator': yield path_validator yield path_exists_validator yield cls.validate @classmethod def validate(cls, value: Path) -> Path: if not value.is_file(): raise errors.PathNotAFileError(path=value) return value class DirectoryPath(Path): @classmethod def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: field_schema.update(format='directory-path') @classmethod def __get_validators__(cls) -> 'CallableGenerator': yield path_validator yield path_exists_validator yield cls.validate @classmethod def validate(cls, value: Path) -> Path: if not value.is_dir(): raise errors.PathNotADirectoryError(path=value) return value # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ JSON TYPE ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ConstrainedDecimal
python
apache__airflow
providers/amazon/tests/unit/amazon/aws/hooks/test_sagemaker.py
{ "start": 8110, "end": 37656 }
class ____: @mock.patch.object(AwsLogsHook, "get_log_events") def test_multi_stream_iter(self, mock_log_stream): event = {"timestamp": 1} mock_log_stream.side_effect = [iter([event]), iter([]), None] hook = SageMakerHook() event_iter = hook.multi_stream_iter("log", [None, None, None]) assert next(event_iter) == (0, event) @mock.patch.object(S3Hook, "create_bucket") @mock.patch.object(S3Hook, "load_file") def test_configure_s3_resources(self, mock_load_file, mock_create_bucket): hook = SageMakerHook() evaluation_result = {"Image": image, "Role": role} hook.configure_s3_resources(test_evaluation_config) assert test_evaluation_config == evaluation_result mock_create_bucket.assert_called_once_with(bucket_name=bucket) mock_load_file.assert_called_once_with(path, key, bucket) @mock.patch.object(SageMakerHook, "get_conn") @mock.patch.object(S3Hook, "check_for_key") @mock.patch.object(S3Hook, "check_for_bucket") @mock.patch.object(S3Hook, "check_for_prefix") def test_check_s3_url(self, mock_check_prefix, mock_check_bucket, mock_check_key, mock_client): mock_client.return_value = None hook = SageMakerHook() mock_check_bucket.side_effect = [False, True, True, True] mock_check_key.side_effect = [False, True, False] mock_check_prefix.side_effect = [False, True, True] with pytest.raises(AirflowException): hook.check_s3_url(data_url) with pytest.raises(AirflowException): hook.check_s3_url(data_url) assert hook.check_s3_url(data_url) is True assert hook.check_s3_url(data_url) is True @mock.patch.object(SageMakerHook, "get_conn") @mock.patch.object(SageMakerHook, "check_s3_url") def test_check_valid_training(self, mock_check_url, mock_client): mock_client.return_value = None hook = SageMakerHook() hook.check_training_config(create_training_params) mock_check_url.assert_called_once_with(data_url) # InputDataConfig is optional, verify if check succeeds without InputDataConfig create_training_params_no_inputdataconfig = create_training_params.copy() create_training_params_no_inputdataconfig.pop("InputDataConfig") hook.check_training_config(create_training_params_no_inputdataconfig) @mock.patch.object(SageMakerHook, "get_conn") @mock.patch.object(SageMakerHook, "check_s3_url") def test_check_valid_tuning(self, mock_check_url, mock_client): mock_client.return_value = None hook = SageMakerHook() hook.check_tuning_config(create_tuning_params) mock_check_url.assert_called_once_with(data_url) def test_conn(self): hook = SageMakerHook(aws_conn_id="sagemaker_test_conn_id") assert hook.aws_conn_id == "sagemaker_test_conn_id" @mock.patch.object(SageMakerHook, "check_training_config") @mock.patch.object(SageMakerHook, "get_conn") def test_create_training_job(self, mock_client, mock_check_training): mock_check_training.return_value = True mock_session = mock.Mock() attrs = {"create_training_job.return_value": test_arn_return} mock_session.configure_mock(**attrs) mock_client.return_value = mock_session hook = SageMakerHook(aws_conn_id="sagemaker_test_conn_id") response = hook.create_training_job( create_training_params, wait_for_completion=False, print_log=False ) mock_session.create_training_job.assert_called_once_with(**create_training_params) assert response == test_arn_return @mock.patch.object(SageMakerHook, "check_training_config") @mock.patch.object(SageMakerHook, "get_conn") @mock.patch("time.sleep", return_value=None) def test_training_ends_with_wait(self, _, mock_client, mock_check_training): mock_check_training.return_value = True mock_session = mock.Mock() attrs = { "create_training_job.return_value": test_arn_return, "describe_training_job.side_effect": [ DESCRIBE_TRAINING_INPROGRESS_RETURN, DESCRIBE_TRAINING_STOPPING_RETURN, DESCRIBE_TRAINING_COMPLETED_RETURN, ], } mock_session.configure_mock(**attrs) mock_client.return_value = mock_session hook = SageMakerHook(aws_conn_id="sagemaker_test_conn_id_1") hook.create_training_job( create_training_params, wait_for_completion=True, print_log=False, check_interval=0 ) assert mock_session.describe_training_job.call_count == 3 @mock.patch.object(SageMakerHook, "check_training_config") @mock.patch.object(SageMakerHook, "get_conn") @mock.patch("time.sleep", return_value=None) def test_training_throws_error_when_failed_with_wait(self, _, mock_client, mock_check_training): mock_check_training.return_value = True mock_session = mock.Mock() attrs = { "create_training_job.return_value": test_arn_return, "describe_training_job.side_effect": [ DESCRIBE_TRAINING_INPROGRESS_RETURN, DESCRIBE_TRAINING_STOPPING_RETURN, DESCRIBE_TRAINING_FAILED_RETURN, DESCRIBE_TRAINING_COMPLETED_RETURN, ], } mock_session.configure_mock(**attrs) mock_client.return_value = mock_session hook = SageMakerHook(aws_conn_id="sagemaker_test_conn_id_1") with pytest.raises(AirflowException): hook.create_training_job( create_training_params, wait_for_completion=True, print_log=False, check_interval=0, ) assert mock_session.describe_training_job.call_count == 3 @mock.patch.object(SageMakerHook, "check_tuning_config") @mock.patch.object(SageMakerHook, "get_conn") def test_create_tuning_job(self, mock_client, mock_check_tuning_config): mock_session = mock.Mock() attrs = {"create_hyper_parameter_tuning_job.return_value": test_arn_return} mock_session.configure_mock(**attrs) mock_client.return_value = mock_session hook = SageMakerHook(aws_conn_id="sagemaker_test_conn_id") response = hook.create_tuning_job(create_tuning_params, wait_for_completion=False) mock_session.create_hyper_parameter_tuning_job.assert_called_once_with(**create_tuning_params) assert response == test_arn_return @mock.patch.object(SageMakerHook, "check_s3_url") @mock.patch.object(SageMakerHook, "get_conn") def test_create_transform_job(self, mock_client, mock_check_url): mock_check_url.return_value = True mock_session = mock.Mock() attrs = {"create_transform_job.return_value": test_arn_return} mock_session.configure_mock(**attrs) mock_client.return_value = mock_session hook = SageMakerHook(aws_conn_id="sagemaker_test_conn_id") response = hook.create_transform_job(create_transform_params, wait_for_completion=False) mock_session.create_transform_job.assert_called_once_with(**create_transform_params) assert response == test_arn_return @mock.patch.object(SageMakerHook, "get_conn") def test_create_transform_job_fs(self, mock_client): mock_session = mock.Mock() attrs = {"create_transform_job.return_value": test_arn_return} mock_session.configure_mock(**attrs) mock_client.return_value = mock_session hook = SageMakerHook(aws_conn_id="sagemaker_test_conn_id") response = hook.create_transform_job(create_transform_params_fs, wait_for_completion=False) mock_session.create_transform_job.assert_called_once_with(**create_transform_params_fs) assert response == test_arn_return @mock.patch.object(SageMakerHook, "get_conn") def test_create_model(self, mock_client): mock_session = mock.Mock() attrs = {"create_model.return_value": test_arn_return} mock_session.configure_mock(**attrs) mock_client.return_value = mock_session hook = SageMakerHook(aws_conn_id="sagemaker_test_conn_id") response = hook.create_model(create_model_params) mock_session.create_model.assert_called_once_with(**create_model_params) assert response == test_arn_return @mock.patch.object(SageMakerHook, "get_conn") def test_create_endpoint_config(self, mock_client): mock_session = mock.Mock() attrs = {"create_endpoint_config.return_value": test_arn_return} mock_session.configure_mock(**attrs) mock_client.return_value = mock_session hook = SageMakerHook(aws_conn_id="sagemaker_test_conn_id") response = hook.create_endpoint_config(create_endpoint_config_params) mock_session.create_endpoint_config.assert_called_once_with(**create_endpoint_config_params) assert response == test_arn_return @mock.patch.object(SageMakerHook, "get_conn") def test_create_endpoint(self, mock_client): mock_session = mock.Mock() attrs = {"create_endpoint.return_value": test_arn_return} mock_session.configure_mock(**attrs) mock_client.return_value = mock_session hook = SageMakerHook(aws_conn_id="sagemaker_test_conn_id") response = hook.create_endpoint(create_endpoint_params, wait_for_completion=False) mock_session.create_endpoint.assert_called_once_with(**create_endpoint_params) assert response == test_arn_return @mock.patch.object(SageMakerHook, "get_conn") def test_update_endpoint(self, mock_client): mock_session = mock.Mock() attrs = {"update_endpoint.return_value": test_arn_return} mock_session.configure_mock(**attrs) mock_client.return_value = mock_session hook = SageMakerHook(aws_conn_id="sagemaker_test_conn_id") response = hook.update_endpoint(update_endpoint_params, wait_for_completion=False) mock_session.update_endpoint.assert_called_once_with(**update_endpoint_params) assert response == test_arn_return @mock.patch.object(SageMakerHook, "get_conn") def test_describe_training_job(self, mock_client): mock_session = mock.Mock() attrs = {"describe_training_job.return_value": "InProgress"} mock_session.configure_mock(**attrs) mock_client.return_value = mock_session hook = SageMakerHook(aws_conn_id="sagemaker_test_conn_id") response = hook.describe_training_job(job_name) mock_session.describe_training_job.assert_called_once_with(TrainingJobName=job_name) assert response == "InProgress" @mock.patch.object(SageMakerHook, "get_conn") def test_describe_tuning_job(self, mock_client): mock_session = mock.Mock() attrs = {"describe_hyper_parameter_tuning_job.return_value": "InProgress"} mock_session.configure_mock(**attrs) mock_client.return_value = mock_session hook = SageMakerHook(aws_conn_id="sagemaker_test_conn_id") response = hook.describe_tuning_job(job_name) mock_session.describe_hyper_parameter_tuning_job.assert_called_once_with( HyperParameterTuningJobName=job_name ) assert response == "InProgress" @mock.patch.object(SageMakerHook, "get_conn") def test_describe_transform_job(self, mock_client): mock_session = mock.Mock() attrs = {"describe_transform_job.return_value": "InProgress"} mock_session.configure_mock(**attrs) mock_client.return_value = mock_session hook = SageMakerHook(aws_conn_id="sagemaker_test_conn_id") response = hook.describe_transform_job(job_name) mock_session.describe_transform_job.assert_called_once_with(TransformJobName=job_name) assert response == "InProgress" @mock.patch.object(SageMakerHook, "get_conn") def test_describe_model(self, mock_client): mock_session = mock.Mock() attrs = {"describe_model.return_value": model_name} mock_session.configure_mock(**attrs) mock_client.return_value = mock_session hook = SageMakerHook(aws_conn_id="sagemaker_test_conn_id") response = hook.describe_model(model_name) mock_session.describe_model.assert_called_once_with(ModelName=model_name) assert response == model_name @mock.patch.object(SageMakerHook, "get_conn") def test_describe_endpoint_config(self, mock_client): mock_session = mock.Mock() attrs = {"describe_endpoint_config.return_value": config_name} mock_session.configure_mock(**attrs) mock_client.return_value = mock_session hook = SageMakerHook(aws_conn_id="sagemaker_test_conn_id") response = hook.describe_endpoint_config(config_name) mock_session.describe_endpoint_config.assert_called_once_with(EndpointConfigName=config_name) assert response == config_name @mock.patch.object(SageMakerHook, "get_conn") def test_describe_endpoint(self, mock_client): mock_session = mock.Mock() attrs = {"describe_endpoint.return_value": "InProgress"} mock_session.configure_mock(**attrs) mock_client.return_value = mock_session hook = SageMakerHook(aws_conn_id="sagemaker_test_conn_id") response = hook.describe_endpoint(endpoint_name) mock_session.describe_endpoint.assert_called_once_with(EndpointName=endpoint_name) assert response == "InProgress" def test_secondary_training_status_changed_true(self): changed = secondary_training_status_changed( SECONDARY_STATUS_DESCRIPTION_1, SECONDARY_STATUS_DESCRIPTION_2 ) assert changed def test_secondary_training_status_changed_false(self): changed = secondary_training_status_changed( SECONDARY_STATUS_DESCRIPTION_1, SECONDARY_STATUS_DESCRIPTION_1 ) assert not changed def test_secondary_training_status_message_status_changed(self): now = datetime.now(tzlocal()) SECONDARY_STATUS_DESCRIPTION_1["LastModifiedTime"] = now expected_time = now.astimezone(tz=timezone.utc).strftime("%Y-%m-%d %H:%M:%S") expected = f"{expected_time} {status} - {message}" assert ( secondary_training_status_message(SECONDARY_STATUS_DESCRIPTION_1, SECONDARY_STATUS_DESCRIPTION_2) == expected ) @mock.patch.object(AwsLogsHook, "conn") @mock.patch.object(SageMakerHook, "get_conn") @mock.patch.object(time, "monotonic") def test_describe_training_job_with_logs_in_progress(self, mock_time, mock_client, mock_log_client): mock_session = mock.Mock() mock_log_session = mock.Mock() attrs = {"describe_training_job.return_value": DESCRIBE_TRAINING_COMPLETED_RETURN} log_attrs = { "describe_log_streams.side_effect": LIFECYCLE_LOG_STREAMS, "get_log_events.side_effect": STREAM_LOG_EVENTS, } mock_time.return_value = 50 mock_session.configure_mock(**attrs) mock_client.return_value = mock_session mock_log_session.configure_mock(**log_attrs) mock_log_client.return_value = mock_log_session hook = SageMakerHook(aws_conn_id="sagemaker_test_conn_id") response = hook.describe_training_job_with_log( job_name=job_name, positions={}, stream_names=[], instance_count=1, state=LogState.WAIT_IN_PROGRESS, last_description={}, last_describe_job_call=0, ) assert response == (LogState.JOB_COMPLETE, {}, 50) @pytest.mark.parametrize("log_state", [LogState.JOB_COMPLETE, LogState.COMPLETE]) @mock.patch.object(AwsLogsHook, "conn") @mock.patch.object(SageMakerHook, "get_conn") def test_describe_training_job_with_complete_states(self, mock_client, mock_log_client, log_state): mock_session = mock.Mock() mock_log_session = mock.Mock() attrs = {"describe_training_job.return_value": DESCRIBE_TRAINING_COMPLETED_RETURN} log_attrs = { "describe_log_streams.side_effect": LIFECYCLE_LOG_STREAMS, "get_log_events.side_effect": STREAM_LOG_EVENTS, } mock_session.configure_mock(**attrs) mock_client.return_value = mock_session mock_log_session.configure_mock(**log_attrs) mock_log_client.return_value = mock_log_session hook = SageMakerHook(aws_conn_id="sagemaker_test_conn_id") response = hook.describe_training_job_with_log( job_name=job_name, positions={}, stream_names=[], instance_count=1, state=log_state, last_description={}, last_describe_job_call=0, ) assert response == (LogState.COMPLETE, {}, 0) @mock.patch.object(SageMakerHook, "check_training_config") @mock.patch.object(AwsLogsHook, "conn") @mock.patch.object(SageMakerHook, "get_conn") @mock.patch.object(SageMakerHook, "describe_training_job_with_log") @mock.patch("time.sleep", return_value=None) def test_training_with_logs(self, _, mock_describe, mock_client, mock_log_client, mock_check_training): mock_check_training.return_value = True mock_describe.side_effect = [ (LogState.WAIT_IN_PROGRESS, DESCRIBE_TRAINING_INPROGRESS_RETURN, 0), (LogState.JOB_COMPLETE, DESCRIBE_TRAINING_STOPPING_RETURN, 0), (LogState.COMPLETE, DESCRIBE_TRAINING_COMPLETED_RETURN, 0), ] mock_session = mock.Mock() mock_log_session = mock.Mock() attrs = { "create_training_job.return_value": test_arn_return, "describe_training_job.return_value": DESCRIBE_TRAINING_COMPLETED_RETURN, } log_attrs = { "describe_log_streams.side_effect": LIFECYCLE_LOG_STREAMS, "get_log_events.side_effect": STREAM_LOG_EVENTS, } mock_session.configure_mock(**attrs) mock_log_session.configure_mock(**log_attrs) mock_client.return_value = mock_session mock_log_client.return_value = mock_log_session hook = SageMakerHook(aws_conn_id="sagemaker_test_conn_id_1") hook.create_training_job( create_training_params, wait_for_completion=True, print_log=True, check_interval=0 ) assert mock_describe.call_count == 3 assert mock_session.describe_training_job.call_count == 1 @mock.patch.object(SageMakerHook, "get_conn") def test_count_processing_jobs_by_name(self, mock_conn): hook = SageMakerHook(aws_conn_id="sagemaker_test_conn_id") existing_job_name = "existing_job" mock_conn().list_processing_jobs.return_value = { "ProcessingJobSummaries": [{"ProcessingJobName": existing_job_name}] } ret = hook.count_processing_jobs_by_name(existing_job_name) assert ret == 1 @mock.patch.object(SageMakerHook, "get_conn") def test_count_processing_jobs_by_name_only_counts_actual_hits(self, mock_conn): hook = SageMakerHook(aws_conn_id="sagemaker_test_conn_id") existing_job_name = "existing_job" mock_conn().list_processing_jobs.return_value = { "ProcessingJobSummaries": [ {"ProcessingJobName": existing_job_name}, {"ProcessingJobName": f"contains_but_does_not_start_with_{existing_job_name}"}, {"ProcessingJobName": f"{existing_job_name}_with_different_suffix-123"}, ] } ret = hook.count_processing_jobs_by_name(existing_job_name) assert ret == 1 @mock.patch.object(SageMakerHook, "get_conn") @mock.patch("time.sleep", return_value=None) def test_count_processing_jobs_by_name_retries_on_throttle_exception(self, _, mock_conn): throttle_exception = ClientError( error_response={"Error": {"Code": "ThrottlingException"}}, operation_name="empty" ) successful_result = {"ProcessingJobSummaries": [{"ProcessingJobName": "existing_job"}]} # Return a ThrottleException on the first call, then a mocked successful value the second. mock_conn().list_processing_jobs.side_effect = [throttle_exception, successful_result] hook = SageMakerHook(aws_conn_id="sagemaker_test_conn_id") ret = hook.count_processing_jobs_by_name("existing_job") assert mock_conn().list_processing_jobs.call_count == 2 assert ret == 1 @mock.patch.object(SageMakerHook, "get_conn") @mock.patch("time.sleep", return_value=None) def test_count_processing_jobs_by_name_fails_after_max_retries(self, _, mock_conn): mock_conn().list_processing_jobs.side_effect = ClientError( error_response={"Error": {"Code": "ThrottlingException"}}, operation_name="empty" ) hook = SageMakerHook(aws_conn_id="sagemaker_test_conn_id") retries = 3 with pytest.raises(ClientError) as raised_exception: hook.count_processing_jobs_by_name("existing_job", retries=retries) assert mock_conn().list_processing_jobs.call_count == retries + 1 assert raised_exception.value.response["Error"]["Code"] == "ThrottlingException" @mock.patch.object(SageMakerHook, "get_conn") def test_count_processing_jobs_by_name_job_not_exists_should_return_falsy(self, mock_conn): error_resp = {"Error": {"Code": "ResourceNotFound"}} mock_conn().list_processing_jobs.side_effect = ClientError( error_response=error_resp, operation_name="empty" ) hook = SageMakerHook(aws_conn_id="sagemaker_test_conn_id") ret = hook.count_processing_jobs_by_name("existing_job") assert ret == 0 @mock_aws def test_delete_model(self): hook = SageMakerHook() with patch.object(hook.conn, "delete_model") as mock_delete: hook.delete_model(model_name="test") mock_delete.assert_called_once_with(ModelName="test") @mock_aws def test_delete_model_when_not_exist(self): hook = SageMakerHook() with pytest.raises(ClientError) as raised_exception: hook.delete_model(model_name="test") ex = raised_exception.value assert ex.operation_name == "DeleteModel" assert ex.response["ResponseMetadata"]["HTTPStatusCode"] == 404 @patch("airflow.providers.amazon.aws.hooks.sagemaker.SageMakerHook.conn", new_callable=mock.PropertyMock) def test_start_pipeline_returns_arn(self, mock_conn): mock_conn().start_pipeline_execution.return_value = {"PipelineExecutionArn": "hellotest"} hook = SageMakerHook(aws_conn_id="aws_default") params_dict = {"one": "1", "two": "2"} arn = hook.start_pipeline(pipeline_name="test_name", pipeline_params=params_dict) assert arn == "hellotest" args_passed = mock_conn().start_pipeline_execution.call_args.kwargs assert args_passed["PipelineName"] == "test_name" # check conversion to the weird format for passing parameters (list of tuples) assert len(args_passed["PipelineParameters"]) == 2 for transformed_param in args_passed["PipelineParameters"]: assert "Name" in transformed_param.keys() assert "Value" in transformed_param.keys() # Name contains the key assert transformed_param["Name"] in params_dict.keys() # Value contains the value associated with the key in Name assert transformed_param["Value"] == params_dict[transformed_param["Name"]] @patch("airflow.providers.amazon.aws.hooks.sagemaker.SageMakerHook.conn", new_callable=mock.PropertyMock) def test_stop_pipeline_returns_status(self, mock_conn): mock_conn().describe_pipeline_execution.return_value = {"PipelineExecutionStatus": "Stopping"} hook = SageMakerHook(aws_conn_id="aws_default") pipeline_status = hook.stop_pipeline(pipeline_exec_arn="test") assert pipeline_status == "Stopping" mock_conn().stop_pipeline_execution.assert_called_once_with(PipelineExecutionArn="test") @patch("airflow.providers.amazon.aws.hooks.sagemaker.SageMakerHook.conn", new_callable=mock.PropertyMock) def test_stop_pipeline_raises_when_already_stopped_if_specified(self, mock_conn): error = ClientError( error_response={ "Error": {"Message": "Only pipelines with 'Executing' status can be stopped", "Code": "0"} }, operation_name="empty", ) mock_conn().stop_pipeline_execution.side_effect = error mock_conn().describe_pipeline_execution.return_value = {"PipelineExecutionStatus": "Stopping"} hook = SageMakerHook(aws_conn_id="aws_default") with pytest.raises(ClientError) as raised_exception: hook.stop_pipeline(pipeline_exec_arn="test", fail_if_not_running=True) assert raised_exception.value == error @patch("airflow.providers.amazon.aws.hooks.sagemaker.SageMakerHook.conn", new_callable=mock.PropertyMock) def test_stop_pipeline_retries_on_conflict(self, mock_conn): conflict_error = ClientError( error_response={"Error": {"Code": "ConflictException"}}, operation_name="empty", ) mock_conn().stop_pipeline_execution.side_effect = [ conflict_error, conflict_error, conflict_error, conflict_error, None, ] hook = SageMakerHook(aws_conn_id="aws_default") hook.stop_pipeline(pipeline_exec_arn="test") assert mock_conn().stop_pipeline_execution.call_count == 5 @patch("airflow.providers.amazon.aws.hooks.sagemaker.SageMakerHook.conn", new_callable=mock.PropertyMock) def test_stop_pipeline_fails_if_all_retries_error(self, mock_conn): conflict_error = ClientError( error_response={"Error": {"Message": "blah", "Code": "ConflictException"}}, operation_name="empty", ) mock_conn().stop_pipeline_execution.side_effect = conflict_error hook = SageMakerHook(aws_conn_id="aws_default") with pytest.raises(ClientError) as raised_exception: hook.stop_pipeline(pipeline_exec_arn="test") assert mock_conn().stop_pipeline_execution.call_count == 5 assert raised_exception.value == conflict_error @patch("airflow.providers.amazon.aws.hooks.sagemaker.SageMakerHook.conn", new_callable=mock.PropertyMock) def test_create_model_package_group(self, mock_conn): created = SageMakerHook().create_model_package_group("group-name") mock_conn().create_model_package_group.assert_called_once_with( ModelPackageGroupName="group-name", ModelPackageGroupDescription="", ) assert created @patch("airflow.providers.amazon.aws.hooks.sagemaker.SageMakerHook.conn", new_callable=mock.PropertyMock) def test_create_model_package_group_returns_false_if_exists(self, mock_conn): mock_conn().create_model_package_group.side_effect = ClientError( error_response={ "Error": { "Code": "ValidationException", "Message": "Model Package Group already exists: arn:aws:sagemaker:foo:bar", } }, operation_name="empty", ) hook = SageMakerHook() created = hook.create_model_package_group("group-name") assert created is False @patch("airflow.providers.amazon.aws.hooks.sagemaker.SageMakerHook.conn", new_callable=mock.PropertyMock) def test_create_auto_ml_parameter_structure(self, conn_mock): hook = SageMakerHook() hook.create_auto_ml_job( job_name="a", s3_input="b", target_attribute="c", s3_output="d", role_arn="e", compressed_input=True, time_limit=30, wait_for_completion=False, ) assert conn_mock().create_auto_ml_job.call_args.kwargs == { "AutoMLJobConfig": {"CompletionCriteria": {"MaxAutoMLJobRuntimeInSeconds": 30}}, "AutoMLJobName": "a", "InputDataConfig": [ { "CompressionType": "Gzip", "DataSource": {"S3DataSource": {"S3DataType": "S3Prefix", "S3Uri": "b"}}, "TargetAttributeName": "c", } ], "OutputDataConfig": {"S3OutputPath": "d"}, "RoleArn": "e", } @patch("airflow.providers.amazon.aws.hooks.sagemaker.SageMakerHook.conn", new_callable=mock.PropertyMock) def test_create_auto_ml_waits_for_completion(self, conn_mock): hook = SageMakerHook() conn_mock().describe_auto_ml_job.side_effect = [ {"AutoMLJobStatus": "InProgress", "AutoMLJobSecondaryStatus": "a"}, {"AutoMLJobStatus": "InProgress", "AutoMLJobSecondaryStatus": "b"}, { "AutoMLJobStatus": "Completed", "AutoMLJobSecondaryStatus": "c", "BestCandidate": {"name": "me"}, }, ] ret = hook.create_auto_ml_job("a", "b", "c", "d", "e", check_interval=0) assert conn_mock().describe_auto_ml_job.call_count == 3 assert ret == {"name": "me"}
TestSageMakerHook
python
pallets__jinja
src/jinja2/nodes.py
{ "start": 13722, "end": 13861 }
class ____(Stmt): """A statement that evaluates an expression and discards the result.""" fields = ("node",) node: Node
ExprStmt
python
doocs__leetcode
solution/2800-2899/2860.Happy Students/Solution.py
{ "start": 0, "end": 322 }
class ____: def countWays(self, nums: List[int]) -> int: nums.sort() n = len(nums) ans = 0 for i in range(n + 1): if i and nums[i - 1] >= i: continue if i < n and nums[i] <= i: continue ans += 1 return ans
Solution
python
dateutil__dateutil
tests/test_tz.py
{ "start": 22890, "end": 24553 }
class ____(unittest.TestCase): def testSingleton(self): UTC_0 = tz.tzutc() UTC_1 = tz.tzutc() self.assertIs(UTC_0, UTC_1) def testOffset(self): ct = datetime(2009, 4, 1, 12, 11, 13, tzinfo=tz.tzutc()) self.assertEqual(ct.utcoffset(), timedelta(seconds=0)) def testDst(self): ct = datetime(2009, 4, 1, 12, 11, 13, tzinfo=tz.tzutc()) self.assertEqual(ct.dst(), timedelta(seconds=0)) def testTzName(self): ct = datetime(2009, 4, 1, 12, 11, 13, tzinfo=tz.tzutc()) self.assertEqual(ct.tzname(), 'UTC') def testEquality(self): UTC0 = tz.tzutc() UTC1 = tz.tzutc() self.assertEqual(UTC0, UTC1) def testInequality(self): UTC = tz.tzutc() UTCp4 = tz.tzoffset('UTC+4', 14400) self.assertNotEqual(UTC, UTCp4) def testInequalityInteger(self): self.assertFalse(tz.tzutc() == 7) self.assertNotEqual(tz.tzutc(), 7) def testInequalityUnsupported(self): self.assertEqual(tz.tzutc(), ComparesEqual) def testRepr(self): UTC = tz.tzutc() self.assertEqual(repr(UTC), 'tzutc()') def testTimeOnlyUTC(self): # https://github.com/dateutil/dateutil/issues/132 # tzutc doesn't care tz_utc = tz.tzutc() self.assertEqual(dt_time(13, 20, tzinfo=tz_utc).utcoffset(), timedelta(0)) def testAmbiguity(self): # Pick an arbitrary datetime, this should always return False. dt = datetime(2011, 9, 1, 2, 30, tzinfo=tz.tzutc()) self.assertFalse(tz.datetime_ambiguous(dt)) @pytest.mark.tzoffset
TzUTCTest
python
airbytehq__airbyte
airbyte-integrations/connectors/source-github/source_github/github_schema.py
{ "start": 969130, "end": 969608 }
class ____(sgqlc.types.Type): """Autogenerated return type of SetUserInteractionLimit""" __schema__ = github_schema __field_names__ = ("client_mutation_id", "user") client_mutation_id = sgqlc.types.Field(String, graphql_name="clientMutationId") """A unique identifier for the client performing the mutation.""" user = sgqlc.types.Field("User", graphql_name="user") """The user that the interaction limit was set for."""
SetUserInteractionLimitPayload
python
run-llama__llama_index
llama-index-core/tests/evaluation/test_base.py
{ "start": 339, "end": 1965 }
class ____(BaseEvaluator): def __init__( self, mock_score: float = 1.0, mock_passing: bool = True, mock_feedback: str = "test feedback", ) -> None: self._mock_score = mock_score self._mock_passing = mock_passing self._mock_feedback = mock_feedback def _get_prompts(self) -> PromptDictType: """Get prompts.""" return {} def _update_prompts(self, prompts: PromptDictType) -> None: """Update prompts.""" async def aevaluate( self, query: Optional[str] = None, response: Optional[str] = None, contexts: Optional[Sequence[str]] = None, **kwargs: Any, ) -> EvaluationResult: return EvaluationResult( query=query, contexts=contexts, response=response, passing=self._mock_passing, score=self._mock_score, feedback=self._mock_feedback, ) def test_evaluator_basic() -> None: test_evaluator = MockEvaluator() eval_result_0 = test_evaluator.evaluate( query="test query", response="test response", contexts=["test context 1", "test context 2"], ) eval_result_1 = test_evaluator.evaluate_response( query="test query", response=Response( response="test response", source_nodes=[ NodeWithScore(node=TextNode(text="test context 1"), score=1.0), NodeWithScore(node=TextNode(text="test context 2"), score=1.0), ], ), ) assert eval_result_0 == eval_result_1
MockEvaluator
python
huggingface__transformers
src/transformers/models/glm4v_moe/modeling_glm4v_moe.py
{ "start": 41509, "end": 46306 }
class ____(Glm4vMoePreTrainedModel): config: Glm4vMoeVisionConfig input_modalities = ("image", "video") _no_split_modules = ["Glm4vMoeVisionBlock"] def __init__(self, config) -> None: super().__init__(config) self.spatial_merge_size = config.spatial_merge_size self.patch_size = config.patch_size self.embeddings = Glm4vMoeVisionEmbeddings(config) self.patch_embed = Glm4vMoeVisionPatchEmbed(config) head_dim = config.hidden_size // config.num_heads self.rotary_pos_emb = Glm4vMoeVisionRotaryEmbedding(head_dim // 2) self.blocks = nn.ModuleList([Glm4vMoeVisionBlock(config) for _ in range(config.depth)]) self.merger = Glm4vMoeVisionPatchMerger( dim=config.out_hidden_size, context_dim=config.intermediate_size, hidden_act=config.hidden_act ) self.post_conv_layernorm = Glm4vMoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.downsample = nn.Conv2d( in_channels=config.hidden_size, out_channels=config.out_hidden_size, kernel_size=config.spatial_merge_size, stride=config.spatial_merge_size, ) self.post_layernorm = Glm4vMoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False self.post_init() def rot_pos_emb(self, grid_thw): pos_ids = [] for t, h, w in grid_thw: hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w) hpos_ids = hpos_ids.reshape( h // self.spatial_merge_size, self.spatial_merge_size, w // self.spatial_merge_size, self.spatial_merge_size, ) hpos_ids = hpos_ids.permute(0, 2, 1, 3) hpos_ids = hpos_ids.flatten() wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1) wpos_ids = wpos_ids.reshape( h // self.spatial_merge_size, self.spatial_merge_size, w // self.spatial_merge_size, self.spatial_merge_size, ) wpos_ids = wpos_ids.permute(0, 2, 1, 3) wpos_ids = wpos_ids.flatten() pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1)) pos_ids = torch.cat(pos_ids, dim=0) max_grid_size = grid_thw[:, 1:].max() rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size) rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1) return rotary_pos_emb, pos_ids def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor) -> torch.Tensor: """ Args: hidden_states (`torch.Tensor` of shape `(seq_len, hidden_size)`): The final hidden states of the model. grid_thw (`torch.Tensor` of shape `(num_images_or_videos, 3)`): The temporal, height and width of feature shape of each image in LLM. Returns: `torch.Tensor`: hidden_states. """ hidden_states = self.patch_embed(hidden_states) hidden_states = self.post_conv_layernorm(hidden_states) rotary_pos_emb, image_type_ids = self.rot_pos_emb(grid_thw) emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1) position_embeddings = (emb.cos(), emb.sin()) cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum( dim=0, # Select dtype based on the following factors: # - FA2 requires that cu_seqlens_q must have dtype int32 # - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw # See https://github.com/huggingface/transformers/pull/34852 for more information dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32, ) cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0) seqlens = (cu_seqlens[1:] - cu_seqlens[:-1]).tolist() hidden_states = self.embeddings(hidden_states, seqlens, grid_thw, image_type_ids[:, 0], image_type_ids[:, 1]) for blk in self.blocks: hidden_states = blk( hidden_states, cu_seqlens=cu_seqlens, position_embeddings=position_embeddings, ) hidden_states = self.post_layernorm(hidden_states) hidden_states = hidden_states.view( -1, self.spatial_merge_size, self.spatial_merge_size, hidden_states.shape[-1] ) hidden_states = hidden_states.permute(0, 3, 1, 2) hidden_states = self.downsample(hidden_states).view(-1, self.config.out_hidden_size) hidden_states = self.merger(hidden_states) return hidden_states @auto_docstring
Glm4vMoeVisionModel
python
sqlalchemy__sqlalchemy
test/ext/test_baked.py
{ "start": 3225, "end": 9868 }
class ____(BakedTest): @classmethod def setup_mappers(cls): User = cls.classes.User cls.mapper_registry.map_imperatively(User, cls.tables.users) def test_first_no_result(self): User = self.classes.User bq = self.bakery(lambda s: s.query(User)) bq += lambda q: q.filter(User.name == "asdf") eq_(bq(fixture_session()).first(), None) def test_first_multiple_result(self): User = self.classes.User bq = self.bakery(lambda s: s.query(User.id)) bq += lambda q: q.filter(User.name.like("%ed%")).order_by(User.id) eq_(bq(fixture_session()).first(), (8,)) def test_one_or_none_no_result(self): User = self.classes.User bq = self.bakery(lambda s: s.query(User)) bq += lambda q: q.filter(User.name == "asdf") eq_(bq(fixture_session()).one_or_none(), None) def test_one_or_none_result(self): User = self.classes.User bq = self.bakery(lambda s: s.query(User)) bq += lambda q: q.filter(User.name == "ed") u1 = bq(fixture_session()).one_or_none() eq_(u1.name, "ed") def test_one_or_none_multiple_result(self): User = self.classes.User bq = self.bakery(lambda s: s.query(User)) bq += lambda q: q.filter(User.name.like("%ed%")) assert_raises_message( orm_exc.MultipleResultsFound, "Multiple rows were found when one or none was required", bq(fixture_session()).one_or_none, ) def test_one_no_result(self): User = self.classes.User bq = self.bakery(lambda s: s.query(User)) bq += lambda q: q.filter(User.name == "asdf") assert_raises_message( orm_exc.NoResultFound, "No row was found when one was required", bq(fixture_session()).one, ) def test_one_result(self): User = self.classes.User bq = self.bakery(lambda s: s.query(User)) bq += lambda q: q.filter(User.name == "ed") u1 = bq(fixture_session()).one() eq_(u1.name, "ed") def test_one_multiple_result(self): User = self.classes.User bq = self.bakery(lambda s: s.query(User)) bq += lambda q: q.filter(User.name.like("%ed%")) assert_raises_message( orm_exc.MultipleResultsFound, "Multiple rows were found when exactly one was required", bq(fixture_session()).one, ) def test_get(self): User = self.classes.User bq = self.bakery(lambda s: s.query(User)) sess = fixture_session() def go(): u1 = bq(sess).get(7) eq_(u1.name, "jack") self.assert_sql_count(testing.db, go, 1) u1 = sess.get(User, 7) # noqa def go(): u2 = bq(sess).get(7) eq_(u2.name, "jack") self.assert_sql_count(testing.db, go, 0) def go(): u2 = bq(sess).get(8) eq_(u2.name, "ed") self.assert_sql_count(testing.db, go, 1) def test_scalar(self): User = self.classes.User bq = self.bakery(lambda s: s.query(User.id)) sess = fixture_session() bq += lambda q: q.filter(User.id == 7) eq_(bq(sess).scalar(), 7) def test_count(self): User = self.classes.User bq = self.bakery(lambda s: s.query(User)) sess = fixture_session() eq_(bq(sess).count(), 4) bq += lambda q: q.filter(User.id.in_([8, 9])) eq_(bq(sess).count(), 2) # original query still works eq_( {(u.id, u.name) for u in bq(sess).all()}, {(8, "ed"), (9, "fred")}, ) def test_count_with_bindparams(self): User = self.classes.User bq = self.bakery(lambda s: s.query(User)) sess = fixture_session() eq_(bq(sess).count(), 4) bq += lambda q: q.filter(User.name == bindparam("uname")) # calling with *args eq_(bq(sess).params(uname="fred").count(), 1) # with multiple params, the **kwargs will be used bq += lambda q: q.filter(User.id == bindparam("an_id")) eq_(bq(sess).params(uname="fred", an_id=9).count(), 1) eq_( # wrong id, so 0 results: bq(sess).params(uname="fred", an_id=8).count(), 0, ) def test_get_pk_w_null(self): """test the re-implementation of logic to do get with IS NULL.""" class AddressUser: pass self.mapper_registry.map_imperatively( AddressUser, self.tables.users.outerjoin(self.tables.addresses), properties={ "id": self.tables.users.c.id, "address_id": self.tables.addresses.c.id, }, ) bq = self.bakery(lambda s: s.query(AddressUser)) sess = fixture_session() def go(): u1 = bq(sess).get((10, None)) eq_(u1.name, "chuck") self.assert_sql_count(testing.db, go, 1) u1 = sess.get(AddressUser, (10, None)) # noqa def go(): u2 = bq(sess).get((10, None)) eq_(u2.name, "chuck") self.assert_sql_count(testing.db, go, 0) def test_get_includes_getclause(self): # test issue #3597 User = self.classes.User bq = self.bakery(lambda s: s.query(User)) for i in range(5): sess = fixture_session() u1 = bq(sess).get(7) eq_(u1.name, "jack") sess.close() eq_(len(bq._bakery), 2) # simulate race where mapper._get_clause # may be generated more than once from sqlalchemy import inspect del inspect(User).__dict__["_get_clause"] for i in range(5): sess = fixture_session() u1 = bq(sess).get(7) eq_(u1.name, "jack") sess.close() # this went from 4 to 3 as a result of #6055. by giving a name # to the bind param in mapper._get_clause, while the baked cache # here grows by one element, the SQL compiled_cache no longer # changes because the keys of the bindparam() objects are passed # explicitly as params to the execute() call as a result of # _load_on_pk_identity() (either the one in baked or the one in # loading.py), which then puts them # in column_keys which makes them part of the cache key. These # were previously anon names, now they are explicit so they # stay across resets eq_(len(bq._bakery), 3)
LikeQueryTest
python
pypa__warehouse
tests/unit/email/test_init.py
{ "start": 187645, "end": 198119 }
class ____: def test_send_removed_project_release_file_email_to_owner( self, pyramid_request, pyramid_config, monkeypatch ): stub_user = pretend.stub( id="id_1", username="username", name="", email="email@example.com", primary_email=pretend.stub(email="email@example.com", verified=True), ) stub_submitter_user = pretend.stub( id="id_2", username="submitterusername", name="", email="submiteremail@example.com", primary_email=pretend.stub( email="submiteremail@example.com", verified=True ), ) subject_renderer = pyramid_config.testing_add_renderer( "email/removed-project-release-file/subject.txt" ) subject_renderer.string_response = "Email Subject" body_renderer = pyramid_config.testing_add_renderer( "email/removed-project-release-file/body.txt" ) body_renderer.string_response = "Email Body" html_renderer = pyramid_config.testing_add_renderer( "email/removed-project-release-file/body.html" ) html_renderer.string_response = "Email HTML Body" send_email = pretend.stub( delay=pretend.call_recorder(lambda *args, **kwargs: None) ) pyramid_request.task = pretend.call_recorder(lambda *args, **kwargs: send_email) monkeypatch.setattr(email, "send_email", send_email) ids = [stub_submitter_user.id, stub_user.id] pyramid_request.db = pretend.stub( query=lambda a: pretend.stub( filter=lambda *a: pretend.stub( one=lambda: pretend.stub(user_id=ids.pop()) ) ), ) pyramid_request.user = stub_submitter_user pyramid_request.registry.settings = {"mail.sender": "noreply@example.com"} release = pretend.stub( version="0.0.0", project=pretend.stub(name="test_project"), created=datetime.datetime(2017, 2, 5, 0, 0, 0, 0), yanked_reason="", ) result = email.send_removed_project_release_file_email( pyramid_request, [stub_user, stub_submitter_user], file="test-file-0.0.0.tar.gz", release=release, submitter_name=stub_submitter_user.username, submitter_role="Owner", recipient_role="Owner", ) assert result == { "file": "test-file-0.0.0.tar.gz", "project_name": release.project.name, "release_version": release.version, "submitter_name": stub_submitter_user.username, "submitter_role": "owner", "recipient_role_descr": "an owner", } subject_renderer.assert_(project_name="test_project") subject_renderer.assert_(release_version="0.0.0") body_renderer.assert_(file="test-file-0.0.0.tar.gz") body_renderer.assert_(release_version="0.0.0") body_renderer.assert_(project_name="test_project") body_renderer.assert_(submitter_name=stub_submitter_user.username) body_renderer.assert_(submitter_role="owner") body_renderer.assert_(recipient_role_descr="an owner") assert pyramid_request.task.calls == [ pretend.call(send_email), pretend.call(send_email), ] assert send_email.delay.calls == [ pretend.call( "username <email@example.com>", { "sender": None, "subject": "Email Subject", "body_text": "Email Body", "body_html": ( "<html>\n<head></head>\n" "<body><p>Email HTML Body</p></body>\n</html>\n" ), }, { "tag": "account:email:sent", "user_id": stub_user.id, "additional": { "from_": "noreply@example.com", "to": "email@example.com", "subject": "Email Subject", "redact_ip": True, }, }, ), pretend.call( "submitterusername <submiteremail@example.com>", { "sender": None, "subject": "Email Subject", "body_text": "Email Body", "body_html": ( "<html>\n<head></head>\n" "<body><p>Email HTML Body</p></body>\n</html>\n" ), }, { "tag": "account:email:sent", "user_id": stub_submitter_user.id, "additional": { "from_": "noreply@example.com", "to": "submiteremail@example.com", "subject": "Email Subject", "redact_ip": False, }, }, ), ] def test_send_removed_project_release_file_email_to_maintainer( self, pyramid_request, pyramid_config, monkeypatch ): stub_user = pretend.stub( id="id_1", username="username", name="", email="email@example.com", primary_email=pretend.stub(email="email@example.com", verified=True), ) stub_submitter_user = pretend.stub( id="id_2", username="submitterusername", name="", email="submiteremail@example.com", primary_email=pretend.stub( email="submiteremail@example.com", verified=True ), ) subject_renderer = pyramid_config.testing_add_renderer( "email/removed-project-release-file/subject.txt" ) subject_renderer.string_response = "Email Subject" body_renderer = pyramid_config.testing_add_renderer( "email/removed-project-release-file/body.txt" ) body_renderer.string_response = "Email Body" html_renderer = pyramid_config.testing_add_renderer( "email/removed-project-release-file/body.html" ) html_renderer.string_response = "Email HTML Body" send_email = pretend.stub( delay=pretend.call_recorder(lambda *args, **kwargs: None) ) pyramid_request.task = pretend.call_recorder(lambda *args, **kwargs: send_email) monkeypatch.setattr(email, "send_email", send_email) ids = [stub_submitter_user.id, stub_user.id] pyramid_request.db = pretend.stub( query=lambda a: pretend.stub( filter=lambda *a: pretend.stub( one=lambda: pretend.stub(user_id=ids.pop()) ) ), ) pyramid_request.user = stub_submitter_user pyramid_request.registry.settings = {"mail.sender": "noreply@example.com"} release = pretend.stub( version="0.0.0", project=pretend.stub(name="test_project"), created=datetime.datetime(2017, 2, 5, 0, 0, 0, 0), yanked_reason="", ) result = email.send_removed_project_release_file_email( pyramid_request, [stub_user, stub_submitter_user], file="test-file-0.0.0.tar.gz", release=release, submitter_name=stub_submitter_user.username, submitter_role="Owner", recipient_role="Maintainer", ) assert result == { "file": "test-file-0.0.0.tar.gz", "project_name": release.project.name, "release_version": release.version, "submitter_name": stub_submitter_user.username, "submitter_role": "owner", "recipient_role_descr": "a maintainer", } subject_renderer.assert_(project_name="test_project") subject_renderer.assert_(release_version="0.0.0") body_renderer.assert_(file="test-file-0.0.0.tar.gz") body_renderer.assert_(release_version="0.0.0") body_renderer.assert_(project_name="test_project") body_renderer.assert_(submitter_name=stub_submitter_user.username) body_renderer.assert_(submitter_role="owner") body_renderer.assert_(recipient_role_descr="a maintainer") assert pyramid_request.task.calls == [ pretend.call(send_email), pretend.call(send_email), ] assert send_email.delay.calls == [ pretend.call( "username <email@example.com>", { "sender": None, "subject": "Email Subject", "body_text": "Email Body", "body_html": ( "<html>\n<head></head>\n" "<body><p>Email HTML Body</p></body>\n</html>\n" ), }, { "tag": "account:email:sent", "user_id": stub_user.id, "additional": { "from_": "noreply@example.com", "to": "email@example.com", "subject": "Email Subject", "redact_ip": True, }, }, ), pretend.call( "submitterusername <submiteremail@example.com>", { "sender": None, "subject": "Email Subject", "body_text": "Email Body", "body_html": ( "<html>\n<head></head>\n" "<body><p>Email HTML Body</p></body>\n</html>\n" ), }, { "tag": "account:email:sent", "user_id": stub_submitter_user.id, "additional": { "from_": "noreply@example.com", "to": "submiteremail@example.com", "subject": "Email Subject", "redact_ip": False, }, }, ), ]
TestRemovedReleaseFileEmail
python
fastai__fastai
fastai/layers.py
{ "start": 22171, "end": 24086 }
class ____(Module): "Applies `module` over `tdim` identically for each step, use `low_mem` to compute one at a time." def __init__(self, module, low_mem=False, tdim=1): store_attr() def forward(self, *tensors, **kwargs): "input x with shape:(bs,seq_len,channels,width,height)" if self.low_mem or self.tdim!=1: return self.low_mem_forward(*tensors, **kwargs) else: #only support tdim=1 inp_shape = tensors[0].shape bs, seq_len = inp_shape[0], inp_shape[1] out = self.module(*[x.view(bs*seq_len, *x.shape[2:]) for x in tensors], **kwargs) return self.format_output(out, bs, seq_len) def low_mem_forward(self, *tensors, **kwargs): "input x with shape:(bs,seq_len,channels,width,height)" seq_len = tensors[0].shape[self.tdim] args_split = [torch.unbind(x, dim=self.tdim) for x in tensors] out = [] for i in range(seq_len): out.append(self.module(*[args[i] for args in args_split]), **kwargs) if isinstance(out[0], tuple): return _stack_tups(out, stack_dim=self.tdim) return torch.stack(out, dim=self.tdim) def format_output(self, out, bs, seq_len): "unstack from batchsize outputs" if isinstance(out, tuple): return tuple(out_i.view(bs, seq_len, *out_i.shape[1:]) for out_i in out) return out.view(bs, seq_len,*out.shape[1:]) def __repr__(self): return f'TimeDistributed({self.module})' # %% ../nbs/01_layers.ipynb 158 from torch.jit import script # %% ../nbs/01_layers.ipynb 159 @script def _swish_jit_fwd(x): return x.mul(torch.sigmoid(x)) @script def _swish_jit_bwd(x, grad_output): x_sigmoid = torch.sigmoid(x) return grad_output * (x_sigmoid * (1 + x * (1 - x_sigmoid)))
TimeDistributed
python
apache__airflow
providers/amazon/tests/unit/amazon/aws/triggers/test_batch.py
{ "start": 896, "end": 1571 }
class ____: def test_serialization(self): job_id = "test_job_id" aws_conn_id = "aws_default" region_name = "us-west-2" trigger = BatchJobTrigger( job_id=job_id, aws_conn_id=aws_conn_id, region_name=region_name, ) classpath, kwargs = trigger.serialize() assert classpath == "airflow.providers.amazon.aws.triggers.batch.BatchJobTrigger" assert kwargs == { "job_id": "test_job_id", "waiter_delay": 5, "waiter_max_attempts": 720, "aws_conn_id": "aws_default", "region_name": "us-west-2", }
TestBatchJobTrigger
python
doocs__leetcode
solution/2800-2899/2846.Minimum Edge Weight Equilibrium Queries in a Tree/Solution.py
{ "start": 0, "end": 1445 }
class ____: def minOperationsQueries( self, n: int, edges: List[List[int]], queries: List[List[int]] ) -> List[int]: m = n.bit_length() g = [[] for _ in range(n)] f = [[0] * m for _ in range(n)] p = [0] * n cnt = [None] * n depth = [0] * n for u, v, w in edges: g[u].append((v, w - 1)) g[v].append((u, w - 1)) cnt[0] = [0] * 26 q = deque([0]) while q: i = q.popleft() f[i][0] = p[i] for j in range(1, m): f[i][j] = f[f[i][j - 1]][j - 1] for j, w in g[i]: if j != p[i]: p[j] = i cnt[j] = cnt[i][:] cnt[j][w] += 1 depth[j] = depth[i] + 1 q.append(j) ans = [] for u, v in queries: x, y = u, v if depth[x] < depth[y]: x, y = y, x for j in reversed(range(m)): if depth[x] - depth[y] >= (1 << j): x = f[x][j] for j in reversed(range(m)): if f[x][j] != f[y][j]: x, y = f[x][j], f[y][j] if x != y: x = p[x] mx = max(cnt[u][j] + cnt[v][j] - 2 * cnt[x][j] for j in range(26)) ans.append(depth[u] + depth[v] - 2 * depth[x] - mx) return ans
Solution
python
huggingface__transformers
src/transformers/models/jamba/modular_jamba.py
{ "start": 27906, "end": 29098 }
class ____(PreTrainedModel): config: JambaConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["JambaAttentionDecoderLayer", "JambaMambaDecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn = True _supports_sdpa = True _is_stateful = True _can_record_outputs = { "hidden_states": [JambaAttentionDecoderLayer, JambaMambaDecoderLayer], "attentions": JambaAttention, "router_logits": OutputRecorder(nn.Linear, layer_name="router"), } @torch.no_grad() def _init_weights(self, module): super()._init_weights(module) if isinstance(module, JambaMambaMixer): A = torch.arange(1, module.ssm_state_size + 1)[None, :] A = A.expand(module.intermediate_size, -1).contiguous() init.copy_(module.A_log, torch.log(A)) init.ones_(module.D) elif isinstance(module, JambaExperts): init.normal_(module.gate_up_proj, mean=0.0, std=self.config.initializer_range) init.normal_(module.down_proj, mean=0.0, std=self.config.initializer_range) @auto_docstring
JambaPreTrainedModel
python
psf__requests
src/requests/sessions.py
{ "start": 13254, "end": 30503 }
class ____(SessionRedirectMixin): """A Requests session. Provides cookie persistence, connection-pooling, and configuration. Basic Usage:: >>> import requests >>> s = requests.Session() >>> s.get('https://httpbin.org/get') <Response [200]> Or as a context manager:: >>> with requests.Session() as s: ... s.get('https://httpbin.org/get') <Response [200]> """ __attrs__ = [ "headers", "cookies", "auth", "proxies", "hooks", "params", "verify", "cert", "adapters", "stream", "trust_env", "max_redirects", ] def __init__(self): #: A case-insensitive dictionary of headers to be sent on each #: :class:`Request <Request>` sent from this #: :class:`Session <Session>`. self.headers = default_headers() #: Default Authentication tuple or object to attach to #: :class:`Request <Request>`. self.auth = None #: Dictionary mapping protocol or protocol and host to the URL of the proxy #: (e.g. {'http': 'foo.bar:3128', 'http://host.name': 'foo.bar:4012'}) to #: be used on each :class:`Request <Request>`. self.proxies = {} #: Event-handling hooks. self.hooks = default_hooks() #: Dictionary of querystring data to attach to each #: :class:`Request <Request>`. The dictionary values may be lists for #: representing multivalued query parameters. self.params = {} #: Stream response content default. self.stream = False #: SSL Verification default. #: Defaults to `True`, requiring requests to verify the TLS certificate at the #: remote end. #: If verify is set to `False`, requests will accept any TLS certificate #: presented by the server, and will ignore hostname mismatches and/or #: expired certificates, which will make your application vulnerable to #: man-in-the-middle (MitM) attacks. #: Only set this to `False` for testing. self.verify = True #: SSL client certificate default, if String, path to ssl client #: cert file (.pem). If Tuple, ('cert', 'key') pair. self.cert = None #: Maximum number of redirects allowed. If the request exceeds this #: limit, a :class:`TooManyRedirects` exception is raised. #: This defaults to requests.models.DEFAULT_REDIRECT_LIMIT, which is #: 30. self.max_redirects = DEFAULT_REDIRECT_LIMIT #: Trust environment settings for proxy configuration, default #: authentication and similar. self.trust_env = True #: A CookieJar containing all currently outstanding cookies set on this #: session. By default it is a #: :class:`RequestsCookieJar <requests.cookies.RequestsCookieJar>`, but #: may be any other ``cookielib.CookieJar`` compatible object. self.cookies = cookiejar_from_dict({}) # Default connection adapters. self.adapters = OrderedDict() self.mount("https://", HTTPAdapter()) self.mount("http://", HTTPAdapter()) def __enter__(self): return self def __exit__(self, *args): self.close() def prepare_request(self, request): """Constructs a :class:`PreparedRequest <PreparedRequest>` for transmission and returns it. The :class:`PreparedRequest` has settings merged from the :class:`Request <Request>` instance and those of the :class:`Session`. :param request: :class:`Request` instance to prepare with this session's settings. :rtype: requests.PreparedRequest """ cookies = request.cookies or {} # Bootstrap CookieJar. if not isinstance(cookies, cookielib.CookieJar): cookies = cookiejar_from_dict(cookies) # Merge with session cookies merged_cookies = merge_cookies( merge_cookies(RequestsCookieJar(), self.cookies), cookies ) # Set environment's basic authentication if not explicitly set. auth = request.auth if self.trust_env and not auth and not self.auth: auth = get_netrc_auth(request.url) p = PreparedRequest() p.prepare( method=request.method.upper(), url=request.url, files=request.files, data=request.data, json=request.json, headers=merge_setting( request.headers, self.headers, dict_class=CaseInsensitiveDict ), params=merge_setting(request.params, self.params), auth=merge_setting(auth, self.auth), cookies=merged_cookies, hooks=merge_hooks(request.hooks, self.hooks), ) return p def request( self, method, url, params=None, data=None, headers=None, cookies=None, files=None, auth=None, timeout=None, allow_redirects=True, proxies=None, hooks=None, stream=None, verify=None, cert=None, json=None, ): """Constructs a :class:`Request <Request>`, prepares it and sends it. Returns :class:`Response <Response>` object. :param method: method for the new :class:`Request` object. :param url: URL for the new :class:`Request` object. :param params: (optional) Dictionary or bytes to be sent in the query string for the :class:`Request`. :param data: (optional) Dictionary, list of tuples, bytes, or file-like object to send in the body of the :class:`Request`. :param json: (optional) json to send in the body of the :class:`Request`. :param headers: (optional) Dictionary of HTTP Headers to send with the :class:`Request`. :param cookies: (optional) Dict or CookieJar object to send with the :class:`Request`. :param files: (optional) Dictionary of ``'filename': file-like-objects`` for multipart encoding upload. :param auth: (optional) Auth tuple or callable to enable Basic/Digest/Custom HTTP Auth. :param timeout: (optional) How many seconds to wait for the server to send data before giving up, as a float, or a :ref:`(connect timeout, read timeout) <timeouts>` tuple. :type timeout: float or tuple :param allow_redirects: (optional) Set to True by default. :type allow_redirects: bool :param proxies: (optional) Dictionary mapping protocol or protocol and hostname to the URL of the proxy. :param hooks: (optional) Dictionary mapping hook name to one event or list of events, event must be callable. :param stream: (optional) whether to immediately download the response content. Defaults to ``False``. :param verify: (optional) Either a boolean, in which case it controls whether we verify the server's TLS certificate, or a string, in which case it must be a path to a CA bundle to use. Defaults to ``True``. When set to ``False``, requests will accept any TLS certificate presented by the server, and will ignore hostname mismatches and/or expired certificates, which will make your application vulnerable to man-in-the-middle (MitM) attacks. Setting verify to ``False`` may be useful during local development or testing. :param cert: (optional) if String, path to ssl client cert file (.pem). If Tuple, ('cert', 'key') pair. :rtype: requests.Response """ # Create the Request. req = Request( method=method.upper(), url=url, headers=headers, files=files, data=data or {}, json=json, params=params or {}, auth=auth, cookies=cookies, hooks=hooks, ) prep = self.prepare_request(req) proxies = proxies or {} settings = self.merge_environment_settings( prep.url, proxies, stream, verify, cert ) # Send the request. send_kwargs = { "timeout": timeout, "allow_redirects": allow_redirects, } send_kwargs.update(settings) resp = self.send(prep, **send_kwargs) return resp def get(self, url, **kwargs): r"""Sends a GET request. Returns :class:`Response` object. :param url: URL for the new :class:`Request` object. :param \*\*kwargs: Optional arguments that ``request`` takes. :rtype: requests.Response """ kwargs.setdefault("allow_redirects", True) return self.request("GET", url, **kwargs) def options(self, url, **kwargs): r"""Sends a OPTIONS request. Returns :class:`Response` object. :param url: URL for the new :class:`Request` object. :param \*\*kwargs: Optional arguments that ``request`` takes. :rtype: requests.Response """ kwargs.setdefault("allow_redirects", True) return self.request("OPTIONS", url, **kwargs) def head(self, url, **kwargs): r"""Sends a HEAD request. Returns :class:`Response` object. :param url: URL for the new :class:`Request` object. :param \*\*kwargs: Optional arguments that ``request`` takes. :rtype: requests.Response """ kwargs.setdefault("allow_redirects", False) return self.request("HEAD", url, **kwargs) def post(self, url, data=None, json=None, **kwargs): r"""Sends a POST request. Returns :class:`Response` object. :param url: URL for the new :class:`Request` object. :param data: (optional) Dictionary, list of tuples, bytes, or file-like object to send in the body of the :class:`Request`. :param json: (optional) json to send in the body of the :class:`Request`. :param \*\*kwargs: Optional arguments that ``request`` takes. :rtype: requests.Response """ return self.request("POST", url, data=data, json=json, **kwargs) def put(self, url, data=None, **kwargs): r"""Sends a PUT request. Returns :class:`Response` object. :param url: URL for the new :class:`Request` object. :param data: (optional) Dictionary, list of tuples, bytes, or file-like object to send in the body of the :class:`Request`. :param \*\*kwargs: Optional arguments that ``request`` takes. :rtype: requests.Response """ return self.request("PUT", url, data=data, **kwargs) def patch(self, url, data=None, **kwargs): r"""Sends a PATCH request. Returns :class:`Response` object. :param url: URL for the new :class:`Request` object. :param data: (optional) Dictionary, list of tuples, bytes, or file-like object to send in the body of the :class:`Request`. :param \*\*kwargs: Optional arguments that ``request`` takes. :rtype: requests.Response """ return self.request("PATCH", url, data=data, **kwargs) def delete(self, url, **kwargs): r"""Sends a DELETE request. Returns :class:`Response` object. :param url: URL for the new :class:`Request` object. :param \*\*kwargs: Optional arguments that ``request`` takes. :rtype: requests.Response """ return self.request("DELETE", url, **kwargs) def send(self, request, **kwargs): """Send a given PreparedRequest. :rtype: requests.Response """ # Set defaults that the hooks can utilize to ensure they always have # the correct parameters to reproduce the previous request. kwargs.setdefault("stream", self.stream) kwargs.setdefault("verify", self.verify) kwargs.setdefault("cert", self.cert) if "proxies" not in kwargs: kwargs["proxies"] = resolve_proxies(request, self.proxies, self.trust_env) # It's possible that users might accidentally send a Request object. # Guard against that specific failure case. if isinstance(request, Request): raise ValueError("You can only send PreparedRequests.") # Set up variables needed for resolve_redirects and dispatching of hooks allow_redirects = kwargs.pop("allow_redirects", True) stream = kwargs.get("stream") hooks = request.hooks # Get the appropriate adapter to use adapter = self.get_adapter(url=request.url) # Start time (approximately) of the request start = preferred_clock() # Send the request r = adapter.send(request, **kwargs) # Total elapsed time of the request (approximately) elapsed = preferred_clock() - start r.elapsed = timedelta(seconds=elapsed) # Response manipulation hooks r = dispatch_hook("response", hooks, r, **kwargs) # Persist cookies if r.history: # If the hooks create history then we want those cookies too for resp in r.history: extract_cookies_to_jar(self.cookies, resp.request, resp.raw) extract_cookies_to_jar(self.cookies, request, r.raw) # Resolve redirects if allowed. if allow_redirects: # Redirect resolving generator. gen = self.resolve_redirects(r, request, **kwargs) history = [resp for resp in gen] else: history = [] # Shuffle things around if there's history. if history: # Insert the first (original) request at the start history.insert(0, r) # Get the last request made r = history.pop() r.history = history # If redirects aren't being followed, store the response on the Request for Response.next(). if not allow_redirects: try: r._next = next( self.resolve_redirects(r, request, yield_requests=True, **kwargs) ) except StopIteration: pass if not stream: r.content return r def merge_environment_settings(self, url, proxies, stream, verify, cert): """ Check the environment and merge it with some settings. :rtype: dict """ # Gather clues from the surrounding environment. if self.trust_env: # Set environment's proxies. no_proxy = proxies.get("no_proxy") if proxies is not None else None env_proxies = get_environ_proxies(url, no_proxy=no_proxy) for k, v in env_proxies.items(): proxies.setdefault(k, v) # Look for requests environment configuration # and be compatible with cURL. if verify is True or verify is None: verify = ( os.environ.get("REQUESTS_CA_BUNDLE") or os.environ.get("CURL_CA_BUNDLE") or verify ) # Merge all the kwargs. proxies = merge_setting(proxies, self.proxies) stream = merge_setting(stream, self.stream) verify = merge_setting(verify, self.verify) cert = merge_setting(cert, self.cert) return {"proxies": proxies, "stream": stream, "verify": verify, "cert": cert} def get_adapter(self, url): """ Returns the appropriate connection adapter for the given URL. :rtype: requests.adapters.BaseAdapter """ for prefix, adapter in self.adapters.items(): if url.lower().startswith(prefix.lower()): return adapter # Nothing matches :-/ raise InvalidSchema(f"No connection adapters were found for {url!r}") def close(self): """Closes all adapters and as such the session""" for v in self.adapters.values(): v.close() def mount(self, prefix, adapter): """Registers a connection adapter to a prefix. Adapters are sorted in descending order by prefix length. """ self.adapters[prefix] = adapter keys_to_move = [k for k in self.adapters if len(k) < len(prefix)] for key in keys_to_move: self.adapters[key] = self.adapters.pop(key) def __getstate__(self): state = {attr: getattr(self, attr, None) for attr in self.__attrs__} return state def __setstate__(self, state): for attr, value in state.items(): setattr(self, attr, value) def session(): """ Returns a :class:`Session` for context-management. .. deprecated:: 1.0.0 This method has been deprecated since version 1.0.0 and is only kept for backwards compatibility. New code should use :class:`~requests.sessions.Session` to create a session. This may be removed at a future date. :rtype: Session """ return Session()
Session
python
tensorflow__tensorflow
tensorflow/python/ops/nn_test.py
{ "start": 63070, "end": 66828 }
class ____(test_lib.TestCase): def test1DTensor(self): x = array_ops.ones([3, 6, 5]) ksize = 2 strides = 2 y1 = nn_ops.max_pool_v2(x, ksize, strides, "SAME") y2 = nn_ops.max_pool1d(x, ksize, strides, "SAME") self.assertAllEqual(self.evaluate(y1), self.evaluate(y2)) def test1DNumpy(self): # explicitly use float32 for ROCm, as MIOpen does not yet support float64 # np.ones defaults to using float64 when dtype is not explicitly specified dtype = np.float32 if test_lib.is_built_with_rocm() else np.float64 x = np.ones([3, 6, 5], dtype=dtype) ksize = 2 strides = 2 y1 = nn_ops.max_pool_v2(x, ksize, strides, "SAME") y2 = nn_ops.max_pool1d(x, ksize, strides, "SAME") self.assertAllEqual(self.evaluate(y1), self.evaluate(y2)) def test1DNumpyWithGolden(self): dtype = np.float32 if test_lib.is_built_with_rocm() else np.float64 x = np.array([[[3], [6], [5]], [[1], [0], [1]]], dtype=dtype) ksize = 2 strides = 1 y = nn_ops.max_pool1d(x, ksize, strides, "SAME") expected_y = np.array([[[6], [6], [5]], [[1], [1], [1]]], dtype=dtype) self.assertAllEqual(self.evaluate(y), expected_y) def test2DTensor(self): x = array_ops.ones([3, 6, 6, 5]) ksize = 2 strides = 2 y1 = nn_ops.max_pool_v2(x, ksize, strides, "SAME") y2 = nn_ops.max_pool(x, ksize, strides, "SAME") self.assertAllEqual(self.evaluate(y1), self.evaluate(y2)) def test2DNumpy(self): # explicitly use float32 for ROCm, as MIOpen does not yet support float64 # np.ones defaults to using float64 when dtype is not explicitly specified dtype = np.float32 if test_lib.is_built_with_rocm() else np.float64 x = np.ones([3, 6, 6, 5], dtype=dtype) ksize = 2 strides = 2 y1 = nn_ops.max_pool_v2(x, ksize, strides, "SAME") y2 = nn_ops.max_pool(x, ksize, strides, "SAME") self.assertAllEqual(self.evaluate(y1), self.evaluate(y2)) def test3DTensor(self): x = array_ops.ones([3, 7, 6, 6, 5]) ksize = 2 strides = 2 y1 = nn_ops.max_pool_v2(x, ksize, strides, "SAME") y2 = nn_ops.max_pool3d(x, ksize, strides, "SAME") self.assertAllEqual(self.evaluate(y1), self.evaluate(y2)) def test3DNumpy(self): x = np.ones([3, 7, 6, 6, 5], dtype=np.float32) ksize = 2 strides = 2 y1 = nn_ops.max_pool_v2(x, ksize, strides, "SAME") y2 = nn_ops.max_pool3d(x, ksize, strides, "SAME") self.assertAllEqual(self.evaluate(y1), self.evaluate(y2)) def testIncorrectSizeInputSmall(self): x = array_ops.ones([3, 4]) with self.assertRaisesRegex( ValueError, "`input.shape.rank` must be 3, 4 or 5.*of rank 2."): nn_ops.max_pool_v2(x, 2, 2, "SAME") def testIncorrectSizeInput(self): x = array_ops.ones([3, 4, 1, 2, 1, 2]) with self.assertRaisesRegex( ValueError, "`input.shape.rank` must be 3, 4 or 5.*of rank 6."): nn_ops.max_pool_v2(x, 2, 2, "SAME") @test_util.disable_xla("XLA catches the error and rethrows as different one") def testIncoorectKSize(self): with self.assertRaisesRegex( errors.InvalidArgumentError, "Sliding window ksize must be positive." ): op = nn_ops.max_pool_v2( array_ops.ones([3, 4, 4, 5]), [1, -1, -1, 1], 2, "SAME" ) with test_util.use_gpu(): self.evaluate(op) ksize = sys.maxsize + 100 # Set to a value larger than sys.maxsize with self.assertRaises( OverflowError if context.executing_eagerly() else ValueError ): op = nn_ops.max_pool_v2( array_ops.ones([3, 4, 4, 5]), ksize=ksize, strides=2, padding="SAME" ) with test_util.use_gpu(): self.evaluate(op) @test_util.run_all_in_graph_and_eager_modes
MaxPoolTest
python
ApeWorX__ape
src/ape/plugins/compiler.py
{ "start": 147, "end": 966 }
class ____(PluginType): """ A plugin that implements the :class:`ape.api.CompilerAPI`, such as the `ape-solidity plugin <https://github.com/ApeWorX/ape-solidity>`__ or the `ape-vyper plugin <https://github.com/ApeWorX/ape-vyper>`__. """ @hookspec def register_compiler( # type: ignore[empty-body] self, ) -> tuple[tuple[str], type["CompilerAPI"]]: """ A hook for returning the set of file extensions the plugin handles and the compiler class that can be used to compile them. Usage example:: @plugins.register(plugins.CompilerPlugin) def register_compiler(): return (".json",), InterfaceCompiler Returns: tuple[tuple[str], type[:class:`~ape.api.CompilerAPI`]] """
CompilerPlugin
python
getsentry__sentry
fixtures/page_objects/base.py
{ "start": 409, "end": 494 }
class ____: def __init__(self, element): self.element = element
BaseElement
python
chroma-core__chroma
chromadb/db/impl/sqlite.py
{ "start": 1885, "end": 9426 }
class ____(MigratableDB, SqlEmbeddingsQueue, SqlSysDB): _conn_pool: Pool _settings: Settings _migration_imports: Sequence[Traversable] _db_file: str _tx_stack: local _is_persistent: bool def __init__(self, system: System): self._settings = system.settings self._migration_imports = [ files("chromadb.migrations.embeddings_queue"), files("chromadb.migrations.sysdb"), files("chromadb.migrations.metadb"), ] self._is_persistent = self._settings.require("is_persistent") self._opentelemetry_client = system.require(OpenTelemetryClient) if not self._is_persistent: # In order to allow sqlite to be shared between multiple threads, we need to use a # URI connection string with shared cache. # See https://www.sqlite.org/sharedcache.html # https://stackoverflow.com/questions/3315046/sharing-a-memory-database-between-different-threads-in-python-using-sqlite3-pa self._db_file = "file::memory:?cache=shared" self._conn_pool = LockPool(self._db_file, is_uri=True) else: self._db_file = ( self._settings.require("persist_directory") + "/chroma.sqlite3" ) if not os.path.exists(self._db_file): os.makedirs(os.path.dirname(self._db_file), exist_ok=True) self._conn_pool = PerThreadPool(self._db_file) self._tx_stack = local() super().__init__(system) @trace_method("SqliteDB.start", OpenTelemetryGranularity.ALL) @override def start(self) -> None: super().start() with self.tx() as cur: cur.execute("PRAGMA foreign_keys = ON") cur.execute("PRAGMA case_sensitive_like = ON") self.initialize_migrations() if ( # (don't attempt to access .config if migrations haven't been run) self._settings.require("migrations") == "apply" and self.config.get_parameter("automatically_purge").value is False ): logger.warning( "⚠️ It looks like you upgraded from a version below 0.5.6 and could benefit from vacuuming your database. Run chromadb utils vacuum --help for more information." ) @trace_method("SqliteDB.stop", OpenTelemetryGranularity.ALL) @override def stop(self) -> None: super().stop() self._conn_pool.close() @staticmethod @override def querybuilder() -> Type[pypika.Query]: return pypika.Query # type: ignore @staticmethod @override def parameter_format() -> str: return "?" @staticmethod @override def migration_scope() -> str: return "sqlite" @override def migration_dirs(self) -> Sequence[Traversable]: return self._migration_imports @override def tx(self) -> TxWrapper: if not hasattr(self._tx_stack, "stack"): self._tx_stack.stack = [] return TxWrapper(self._conn_pool, stack=self._tx_stack) @trace_method("SqliteDB.reset_state", OpenTelemetryGranularity.ALL) @override def reset_state(self) -> None: if not self._settings.require("allow_reset"): raise ValueError( "Resetting the database is not allowed. Set `allow_reset` to true in the config in tests or other non-production environments where reset should be permitted." ) with self.tx() as cur: # Drop all tables cur.execute( """ SELECT name FROM sqlite_master WHERE type='table' """ ) for row in cur.fetchall(): cur.execute(f"DROP TABLE IF EXISTS {row[0]}") self._conn_pool.close() self.start() super().reset_state() @trace_method("SqliteDB.setup_migrations", OpenTelemetryGranularity.ALL) @override def setup_migrations(self) -> None: with self.tx() as cur: cur.execute( """ CREATE TABLE IF NOT EXISTS migrations ( dir TEXT NOT NULL, version INTEGER NOT NULL, filename TEXT NOT NULL, sql TEXT NOT NULL, hash TEXT NOT NULL, PRIMARY KEY (dir, version) ) """ ) @trace_method("SqliteDB.migrations_initialized", OpenTelemetryGranularity.ALL) @override def migrations_initialized(self) -> bool: with self.tx() as cur: cur.execute( """SELECT count(*) FROM sqlite_master WHERE type='table' AND name='migrations'""" ) if cur.fetchone()[0] == 0: return False else: return True @trace_method("SqliteDB.db_migrations", OpenTelemetryGranularity.ALL) @override def db_migrations(self, dir: Traversable) -> Sequence[Migration]: with self.tx() as cur: cur.execute( """ SELECT dir, version, filename, sql, hash FROM migrations WHERE dir = ? ORDER BY version ASC """, (dir.name,), ) migrations = [] for row in cur.fetchall(): found_dir = cast(str, row[0]) found_version = cast(int, row[1]) found_filename = cast(str, row[2]) found_sql = cast(str, row[3]) found_hash = cast(str, row[4]) migrations.append( Migration( dir=found_dir, version=found_version, filename=found_filename, sql=found_sql, hash=found_hash, scope=self.migration_scope(), ) ) return migrations @override def apply_migration(self, cur: base.Cursor, migration: Migration) -> None: cur.executescript(migration["sql"]) cur.execute( """ INSERT INTO migrations (dir, version, filename, sql, hash) VALUES (?, ?, ?, ?, ?) """, ( migration["dir"], migration["version"], migration["filename"], migration["sql"], migration["hash"], ), ) @staticmethod @override def uuid_from_db(value: Optional[Any]) -> Optional[UUID]: return UUID(value) if value is not None else None @staticmethod @override def uuid_to_db(uuid: Optional[UUID]) -> Optional[Any]: return str(uuid) if uuid is not None else None @staticmethod @override def unique_constraint_error() -> Type[BaseException]: return sqlite3.IntegrityError def vacuum(self, timeout: int = 5) -> None: """Runs VACUUM on the database. `timeout` is the maximum time to wait for an exclusive lock in seconds.""" conn = self._conn_pool.connect() conn.execute(f"PRAGMA busy_timeout = {int(timeout) * 1000}") conn.execute("VACUUM") conn.execute( """ INSERT INTO maintenance_log (operation, timestamp) VALUES ('vacuum', CURRENT_TIMESTAMP) """ )
SqliteDB
python
huggingface__transformers
tests/models/idefics/test_image_processing_idefics.py
{ "start": 4405, "end": 7734 }
class ____(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = IdeficsImageProcessor if is_vision_available() else None def setUp(self): super().setUp() self.image_processor_tester = IdeficsImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "image_size")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertNotEqual(image_processor.image_size, 30) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, image_size=42) self.assertEqual(image_processor.image_size, 42) @require_torchvision def test_torchvision_numpy_transforms_equivalency(self): # as we had to reimplement the torchvision transforms using transformers utils we must check # they both do the same image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) image_processor = self.image_processing_class(**self.image_processor_dict, return_tensors="pt") print(image_inputs) def convert_to_rgb(image): # `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background # for transparent images. The call to `alpha_composite` handles this case if image.mode == "RGB": return image image_rgba = image.convert("RGBA") background = Image.new("RGBA", image_rgba.size, (255, 255, 255)) alpha_composite = Image.alpha_composite(background, image_rgba) alpha_composite = alpha_composite.convert("RGB") return alpha_composite image_size = image_processor.image_size image_mean = image_processor.image_mean image_std = image_processor.image_std transform = transforms.Compose( [ convert_to_rgb, transforms.Resize((image_size, image_size), interpolation=transforms.InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize(mean=image_mean, std=image_std), ] ) pixel_values_transform_implied = image_processor(image_inputs, transform=None, return_tensors="pt") pixel_values_transform_supplied = image_processor(image_inputs, transform=transform, return_tensors="pt") torch.testing.assert_close(pixel_values_transform_implied, pixel_values_transform_supplied, rtol=0.0, atol=0.0) @unittest.skip(reason="not supported") def test_call_numpy(self): pass @unittest.skip(reason="not supported") def test_call_numpy_4_channels(self): pass @unittest.skip(reason="not supported") def test_call_pil(self): pass @unittest.skip(reason="not supported") def test_call_pytorch(self): pass
IdeficsImageProcessingTest
python
vyperlang__vyper
vyper/venom/analysis/mem_ssa.py
{ "start": 2590, "end": 2997 }
class ____(MemoryAccess): """Represents a phi node for memory states""" def __init__(self, id: int, block: IRBasicBlock): super().__init__(id) self.block = block self.operands: list[tuple[MemoryPhiOperand, IRBasicBlock]] = [] # Type aliases for signatures in this module MemoryDefOrUse = MemoryDef | MemoryUse MemoryPhiOperand = MemoryDef | MemoryPhi | LiveOnEntry
MemoryPhi
python
doocs__leetcode
solution/0700-0799/0764.Largest Plus Sign/Solution.py
{ "start": 0, "end": 741 }
class ____: def orderOfLargestPlusSign(self, n: int, mines: List[List[int]]) -> int: dp = [[n] * n for _ in range(n)] for x, y in mines: dp[x][y] = 0 for i in range(n): left = right = up = down = 0 for j, k in zip(range(n), reversed(range(n))): left = left + 1 if dp[i][j] else 0 right = right + 1 if dp[i][k] else 0 up = up + 1 if dp[j][i] else 0 down = down + 1 if dp[k][i] else 0 dp[i][j] = min(dp[i][j], left) dp[i][k] = min(dp[i][k], right) dp[j][i] = min(dp[j][i], up) dp[k][i] = min(dp[k][i], down) return max(max(v) for v in dp)
Solution
python
rapidsai__cudf
python/cudf_polars/cudf_polars/experimental/benchmarks/pdsds.py
{ "start": 1716, "end": 1847 }
class ____(metaclass=PDSDSQueriesMeta): """Base class for query loading.""" q_impl: str name: str = "pdsds"
PDSDSQueries
python
pytorch__pytorch
torch/_inductor/codegen/halide.py
{ "start": 61617, "end": 63426 }
class ____(SIMDScheduling): kernel_type = HalideKernel # type: ignore[arg-type,assignment] @classmethod def get_backend_features(cls, device: torch.device) -> OrderedSet[BackendFeature]: result = OrderedSet( [ BackendFeature.TUPLE_REDUCTION, BackendFeature.PREFER_STORE_LOOP_ORDER, BackendFeature.REDUCE_TO_SINGLE_ELEMENT, ] ) if config.halide.scan_kernels: result.add(BackendFeature.SCAN) return result def define_kernel(self, src_code, node_schedule, kernel): """Codegen kernel definition to go in output wrapper code""" wrapper = V.graph.wrapper_code if src_code in wrapper.src_to_kernel: kernel_name = wrapper.src_to_kernel[src_code] else: kernel_name = f"halide_kernel_{wrapper.next_kernel_suffix()}" wrapper.src_to_kernel[src_code] = kernel_name wrapper.add_import_once( "from torch._inductor.runtime.hints import HalideMeta, HalideInputSpec" ) compile_wrapper = IndentedBuffer() compile_wrapper.writeline( f"async_compile.halide({kernel.halide_kernel_meta()!r}, '''" ) compile_wrapper.splice(src_code, strip=True) compile_wrapper.writeline("''')") origins, detailed_origins = get_kernel_metadata(node_schedule, wrapper) metadata_comment = f"{origins}\n{detailed_origins}" wrapper.define_kernel( kernel_name, compile_wrapper.getvalue(), metadata_comment ) if is_metric_table_enabled("kernel_metadata"): log_kernel_metadata(kernel_name, "", src_code) return kernel_name
HalideScheduling
python
pydata__xarray
xarray/core/indexes.py
{ "start": 996, "end": 22711 }
class ____: """ Base class inherited by all xarray-compatible indexes. Do not use this class directly for creating index objects. Xarray indexes are created exclusively from subclasses of ``Index``, mostly via Xarray's public API like ``Dataset.set_xindex``. Every subclass must at least implement :py:meth:`Index.from_variables`. The (re)implementation of the other methods of this base class is optional but mostly required in order to support operations relying on indexes such as label-based selection or alignment. The ``Index`` API closely follows the :py:meth:`Dataset` and :py:meth:`DataArray` API, e.g., for an index to support ``.sel()`` it needs to implement :py:meth:`Index.sel`, to support ``.stack()`` and ``.unstack()`` it needs to implement :py:meth:`Index.stack` and :py:meth:`Index.unstack`, etc. When a method is not (re)implemented, depending on the case the corresponding operation on a :py:meth:`Dataset` or :py:meth:`DataArray` either will raise a ``NotImplementedError`` or will simply drop/pass/copy the index from/to the result. Do not use this class directly for creating index objects. """ @classmethod def from_variables( cls, variables: Mapping[Any, Variable], *, options: Mapping[str, Any], ) -> Self: """Create a new index object from one or more coordinate variables. This factory method must be implemented in all subclasses of Index. The coordinate variables may be passed here in an arbitrary number and order and each with arbitrary dimensions. It is the responsibility of the index to check the consistency and validity of these coordinates. Parameters ---------- variables : dict-like Mapping of :py:class:`Variable` objects holding the coordinate labels to index. Returns ------- index : Index A new Index object. """ raise NotImplementedError() @classmethod def concat( cls, indexes: Sequence[Self], dim: Hashable, positions: Iterable[Iterable[int]] | None = None, ) -> Self: """Create a new index by concatenating one or more indexes of the same type. Implementation is optional but required in order to support ``concat``. Otherwise it will raise an error if the index needs to be updated during the operation. Parameters ---------- indexes : sequence of Index objects Indexes objects to concatenate together. All objects must be of the same type. dim : Hashable Name of the dimension to concatenate along. positions : None or list of integer arrays, optional List of integer arrays which specifies the integer positions to which to assign each dataset along the concatenated dimension. If not supplied, objects are concatenated in the provided order. Returns ------- index : Index A new Index object. """ raise NotImplementedError() @classmethod def stack(cls, variables: Mapping[Any, Variable], dim: Hashable) -> Self: """Create a new index by stacking coordinate variables into a single new dimension. Implementation is optional but required in order to support ``stack``. Otherwise it will raise an error when trying to pass the Index subclass as argument to :py:meth:`Dataset.stack`. Parameters ---------- variables : dict-like Mapping of :py:class:`Variable` objects to stack together. dim : Hashable Name of the new, stacked dimension. Returns ------- index A new Index object. """ raise NotImplementedError( f"{cls!r} cannot be used for creating an index of stacked coordinates" ) def unstack(self) -> tuple[dict[Hashable, Index], pd.MultiIndex]: """Unstack a (multi-)index into multiple (single) indexes. Implementation is optional but required in order to support unstacking the coordinates from which this index has been built. Returns ------- indexes : tuple A 2-length tuple where the 1st item is a dictionary of unstacked Index objects and the 2nd item is a :py:class:`pandas.MultiIndex` object used to unstack unindexed coordinate variables or data variables. """ raise NotImplementedError() def create_variables( self, variables: Mapping[Any, Variable] | None = None ) -> IndexVars: """Maybe create new coordinate variables from this index. This method is useful if the index data can be reused as coordinate variable data. It is often the case when the underlying index structure has an array-like interface, like :py:class:`pandas.Index` objects. The variables given as argument (if any) are either returned as-is (default behavior) or can be used to copy their metadata (attributes and encoding) into the new returned coordinate variables. Note: the input variables may or may not have been filtered for this index. Parameters ---------- variables : dict-like, optional Mapping of :py:class:`Variable` objects. Returns ------- index_variables : dict-like Dictionary of :py:class:`Variable` or :py:class:`IndexVariable` objects. """ if variables is not None: # pass through return dict(**variables) else: return {} def should_add_coord_to_array( self, name: Hashable, var: Variable, dims: set[Hashable], ) -> bool: """Define whether or not an index coordinate variable should be added to a new DataArray. This method is called repeatedly for each Variable associated with this index when creating a new DataArray (via its constructor or from a Dataset) or updating an existing one. The variables associated with this index are the ones passed to :py:meth:`Index.from_variables` and/or returned by :py:meth:`Index.create_variables`. By default returns ``True`` if the dimensions of the coordinate variable are a subset of the array dimensions and ``False`` otherwise (DataArray model). This default behavior may be overridden in Index subclasses to bypass strict conformance with the DataArray model. This is useful for example to include the (n+1)-dimensional cell boundary coordinate associated with an interval index. Returning ``False`` will either: - raise a :py:class:`CoordinateValidationError` when passing the coordinate directly to a new or an existing DataArray, e.g., via ``DataArray.__init__()`` or ``DataArray.assign_coords()`` - drop the coordinate (and therefore drop the index) when a new DataArray is constructed by indexing a Dataset Parameters ---------- name : Hashable Name of a coordinate variable associated to this index. var : Variable Coordinate variable object. dims: tuple Dimensions of the new DataArray object being created. """ return all(d in dims for d in var.dims) def to_pandas_index(self) -> pd.Index: """Cast this xarray index to a pandas.Index object or raise a ``TypeError`` if this is not supported. This method is used by all xarray operations that still rely on pandas.Index objects. By default it raises a ``TypeError``, unless it is re-implemented in subclasses of Index. """ raise TypeError(f"{self!r} cannot be cast to a pandas.Index object") def isel( self, indexers: Mapping[Any, int | slice | np.ndarray | Variable] ) -> Index | None: """Maybe returns a new index from the current index itself indexed by positional indexers. This method should be re-implemented in subclasses of Index if the wrapped index structure supports indexing operations. For example, indexing a ``pandas.Index`` is pretty straightforward as it behaves very much like an array. By contrast, it may be harder doing so for a structure like a kd-tree that differs much from a simple array. If not re-implemented in subclasses of Index, this method returns ``None``, i.e., calling :py:meth:`Dataset.isel` will either drop the index in the resulting dataset or pass it unchanged if its corresponding coordinate(s) are not indexed. Parameters ---------- indexers : dict A dictionary of positional indexers as passed from :py:meth:`Dataset.isel` and where the entries have been filtered for the current index. Returns ------- maybe_index : Index A new Index object or ``None``. """ return None def sel(self, labels: dict[Any, Any]) -> IndexSelResult: """Query the index with arbitrary coordinate label indexers. Implementation is optional but required in order to support label-based selection. Otherwise it will raise an error when trying to call :py:meth:`Dataset.sel` with labels for this index coordinates. Coordinate label indexers can be of many kinds, e.g., scalar, list, tuple, array-like, slice, :py:class:`Variable`, :py:class:`DataArray`, etc. It is the responsibility of the index to handle those indexers properly. Parameters ---------- labels : dict A dictionary of coordinate label indexers passed from :py:meth:`Dataset.sel` and where the entries have been filtered for the current index. Returns ------- sel_results : :py:class:`IndexSelResult` An index query result object that contains dimension positional indexers. It may also contain new indexes, coordinate variables, etc. """ raise NotImplementedError(f"{self!r} doesn't support label-based selection") def join(self, other: Self, how: JoinOptions = "inner") -> Self: """Return a new index from the combination of this index with another index of the same type. Implementation is optional but required in order to support alignment. Parameters ---------- other : Index The other Index object to combine with this index. join : str, optional Method for joining the two indexes (see :py:func:`~xarray.align`). Returns ------- joined : Index A new Index object. """ raise NotImplementedError( f"{self!r} doesn't support alignment with inner/outer join method" ) def reindex_like(self, other: Self) -> dict[Hashable, Any]: """Query the index with another index of the same type. Implementation is optional but required in order to support alignment. Parameters ---------- other : Index The other Index object used to query this index. Returns ------- dim_positional_indexers : dict A dictionary where keys are dimension names and values are positional indexers. """ raise NotImplementedError(f"{self!r} doesn't support re-indexing labels") @overload def equals(self, other: Index) -> bool: ... @overload def equals( self, other: Index, *, exclude: frozenset[Hashable] | None = None ) -> bool: ... def equals(self, other: Index, **kwargs) -> bool: """Compare this index with another index of the same type. Implementation is optional but required in order to support alignment. Parameters ---------- other : Index The other Index object to compare with this object. exclude : frozenset of hashable, optional Dimensions excluded from checking. It is None by default, (i.e., when this method is not called in the context of alignment). For a n-dimensional index this option allows an Index to optionally ignore any dimension in ``exclude`` when comparing ``self`` with ``other``. For a 1-dimensional index this kwarg can be safely ignored, as this method is not called when all of the index's dimensions are also excluded from alignment (note: the index's dimensions correspond to the union of the dimensions of all coordinate variables associated with this index). Returns ------- is_equal : bool ``True`` if the indexes are equal, ``False`` otherwise. """ raise NotImplementedError() def roll(self, shifts: Mapping[Any, int]) -> Self | None: """Roll this index by an offset along one or more dimensions. This method can be re-implemented in subclasses of Index, e.g., when the index can be itself indexed. If not re-implemented, this method returns ``None``, i.e., calling :py:meth:`Dataset.roll` will either drop the index in the resulting dataset or pass it unchanged if its corresponding coordinate(s) are not rolled. Parameters ---------- shifts : mapping of hashable to int, optional A dict with keys matching dimensions and values given by integers to rotate each of the given dimensions, as passed :py:meth:`Dataset.roll`. Returns ------- rolled : Index A new index with rolled data. """ return None def rename( self, name_dict: Mapping[Any, Hashable], dims_dict: Mapping[Any, Hashable], ) -> Self: """Maybe update the index with new coordinate and dimension names. This method should be re-implemented in subclasses of Index if it has attributes that depend on coordinate or dimension names. By default (if not re-implemented), it returns the index itself. Warning: the input names are not filtered for this method, they may correspond to any variable or dimension of a Dataset or a DataArray. Parameters ---------- name_dict : dict-like Mapping of current variable or coordinate names to the desired names, as passed from :py:meth:`Dataset.rename_vars`. dims_dict : dict-like Mapping of current dimension names to the desired names, as passed from :py:meth:`Dataset.rename_dims`. Returns ------- renamed : Index Index with renamed attributes. """ return self def copy(self, deep: bool = True) -> Self: """Return a (deep) copy of this index. Implementation in subclasses of Index is optional. The base class implements the default (deep) copy semantics. Parameters ---------- deep : bool, optional If true (default), a copy of the internal structures (e.g., wrapped index) is returned with the new object. Returns ------- index : Index A new Index object. """ return self._copy(deep=deep) def __copy__(self) -> Self: return self.copy(deep=False) def __deepcopy__(self, memo: dict[int, Any] | None = None) -> Index: return self._copy(deep=True, memo=memo) def _copy(self, deep: bool = True, memo: dict[int, Any] | None = None) -> Self: cls = self.__class__ copied = cls.__new__(cls) if deep: for k, v in self.__dict__.items(): setattr(copied, k, copy.deepcopy(v, memo)) else: copied.__dict__.update(self.__dict__) return copied def __getitem__(self, indexer: Any) -> Self: raise NotImplementedError() def _repr_inline_(self, max_width: int) -> str: return self.__class__.__name__ def _maybe_cast_to_cftimeindex(index: pd.Index) -> pd.Index: from xarray.coding.cftimeindex import CFTimeIndex if len(index) > 0 and index.dtype == "O" and not isinstance(index, CFTimeIndex): try: return CFTimeIndex(index) except (ImportError, TypeError): return index else: return index def safe_cast_to_index(array: Any) -> pd.Index: """Given an array, safely cast it to a pandas.Index. If it is already a pandas.Index, return it unchanged. Unlike pandas.Index, if the array has dtype=object or dtype=timedelta64, this function will not attempt to do automatic type conversion but will always return an index with dtype=object. """ from xarray.core.dataarray import DataArray from xarray.core.variable import Variable from xarray.namedarray.pycompat import to_numpy if isinstance(array, PandasExtensionArray): array = pd.Index(array.array) if isinstance(array, pd.Index): index = array elif isinstance(array, DataArray | Variable): # returns the original multi-index for pandas.MultiIndex level coordinates index = array._to_index() elif isinstance(array, Index): index = array.to_pandas_index() elif isinstance(array, PandasIndexingAdapter): index = array.array else: kwargs: dict[str, Any] = {} if hasattr(array, "dtype"): if array.dtype.kind == "O": kwargs["dtype"] = "object" elif array.dtype == "float16": emit_user_level_warning( ( "`pandas.Index` does not support the `float16` dtype." " Casting to `float64` for you, but in the future please" " manually cast to either `float32` and `float64`." ), category=DeprecationWarning, ) kwargs["dtype"] = "float64" index = pd.Index(to_numpy(array), **kwargs) return _maybe_cast_to_cftimeindex(index) def _sanitize_slice_element(x): from xarray.core.dataarray import DataArray from xarray.core.variable import Variable if not isinstance(x, tuple) and len(np.shape(x)) != 0: raise ValueError( f"cannot use non-scalar arrays in a slice for xarray indexing: {x}" ) if isinstance(x, Variable | DataArray): x = x.values if isinstance(x, np.ndarray): x = x[()] return x def _query_slice(index, label, coord_name="", method=None, tolerance=None): if method is not None or tolerance is not None: raise NotImplementedError( "cannot use ``method`` argument if any indexers are slice objects" ) indexer = index.slice_indexer( _sanitize_slice_element(label.start), _sanitize_slice_element(label.stop), _sanitize_slice_element(label.step), ) if not isinstance(indexer, slice): # unlike pandas, in xarray we never want to silently convert a # slice indexer into an array indexer raise KeyError( "cannot represent labeled-based slice indexer for coordinate " f"{coord_name!r} with a slice over integer positions; the index is " "unsorted or non-unique" ) return indexer def _asarray_tuplesafe(values): """ Convert values into a numpy array of at most 1-dimension, while preserving tuples. Adapted from pandas.core.common._asarray_tuplesafe """ if isinstance(values, tuple): result = utils.to_0d_object_array(values) else: result = np.asarray(values) if result.ndim == 2: result = np.empty(len(values), dtype=object) result[:] = values return result def _is_nested_tuple(possible_tuple): return isinstance(possible_tuple, tuple) and any( isinstance(value, tuple | list | slice) for value in possible_tuple ) def normalize_label(value, dtype=None) -> np.ndarray: if getattr(value, "ndim", 1) <= 1: value = _asarray_tuplesafe(value) if dtype is not None and dtype.kind == "f" and value.dtype.kind != "b": # pd.Index built from coordinate with float precision != 64 # see https://github.com/pydata/xarray/pull/3153 for details # bypass coercing dtype for boolean indexers (ignore index) # see https://github.com/pydata/xarray/issues/5727 value = np.asarray(value, dtype=dtype) return value def as_scalar(value: np.ndarray): # see https://github.com/pydata/xarray/pull/4292 for details return value[()] if value.dtype.kind in "mM" else value.item() def get_indexer_nd(index: pd.Index, labels, method=None, tolerance=None) -> np.ndarray: """Wrapper around :meth:`pandas.Index.get_indexer` supporting n-dimensional labels """ flat_labels = np.ravel(labels) if flat_labels.dtype == "float16": flat_labels = flat_labels.astype("float64") flat_indexer = index.get_indexer(flat_labels, method=method, tolerance=tolerance) indexer = flat_indexer.reshape(labels.shape) return indexer T_PandasIndex = TypeVar("T_PandasIndex", bound="PandasIndex")
Index
python
getsentry__sentry
tests/sentry/features/test_manager.py
{ "start": 2031, "end": 18305 }
class ____(TestCase): def test_feature_registry(self) -> None: manager = features.FeatureManager() assert manager.all() == {} manager.add("organizations:feature1", OrganizationFeature) manager.add("projects:feature2", ProjectFeature) manager.add("projects:feature3", ProjectFeature) assert set(manager.all(OrganizationFeature).keys()) == {"organizations:feature1"} assert set(manager.all(ProjectFeature).keys()) == { "projects:feature2", "projects:feature3", } def test_feature_registry_api_expose(self) -> None: manager = features.FeatureManager() assert manager.all() == {} manager.add("organizations:feature1", OrganizationFeature) manager.add("organizations:feature2", OrganizationFeature, api_expose=True) manager.add("organizations:feature3", OrganizationFeature, api_expose=False) exposed = {"organizations:feature2"} hidden = {"organizations:feature1", "organizations:feature3"} assert set(manager.all(OrganizationFeature).keys()) == exposed | hidden assert ( set(manager.all(feature_type=OrganizationFeature, api_expose_only=True).keys()) == exposed ) assert ( set(manager.all(feature_type=OrganizationFeature, api_expose_only=False).keys()) == exposed | hidden ) def test_feature_register_default(self) -> None: manager = features.FeatureManager() manager.add("organizations:red-paint", OrganizationFeature, default=False) assert set(manager.all(OrganizationFeature)) == {"organizations:red-paint"} assert settings.SENTRY_FEATURES["organizations:red-paint"] is False # Defaults should not override config data. feature_config = { "organizations:red-paint": True, } with override_settings(SENTRY_FEATURES=feature_config): manager = features.FeatureManager() manager.add("organizations:red-paint", OrganizationFeature, default=False) assert settings.SENTRY_FEATURES["organizations:red-paint"] is True def test_handlers(self) -> None: project_flag = "projects:test_handlers" test_user = self.create_user() class TestProjectHandler(features.FeatureHandler): features = {project_flag} def __init__(self, true_set, false_set): self.true_set = frozenset(true_set) self.false_set = frozenset(false_set) def has(self, feature, actor, skip_entity: bool | None = False): assert actor == test_user if feature.project in self.true_set: return True if feature.project in self.false_set: return False return None def batch_has(self, *a, **k): raise NotImplementedError("unreachable") p1 = self.create_project() p2 = self.create_project() p3 = self.create_project() p4 = self.create_project() handlers = [ TestProjectHandler([], []), TestProjectHandler([p1, p3], []), TestProjectHandler([], [p2, p3]), ] manager = features.FeatureManager() manager.add(project_flag, ProjectFeature) for handler in handlers: manager.add_handler(handler) assert manager.has(project_flag, p1, actor=test_user) is True assert manager.has(project_flag, p2, actor=test_user) is False assert manager.has(project_flag, p3, actor=test_user) is True assert manager.has(project_flag, p4, actor=test_user) is False assert manager.has_for_batch( project_flag, mock.sentinel.organization, [p1, p2, p3, p4], actor=test_user ) == {p1: True, p2: False, p3: True, p4: False} def test_entity_handler(self) -> None: test_org = self.create_organization() # Add a registered handler registered_handler = mock.Mock() registered_handler.features = ["organizations:feature1"] manager = features.FeatureManager() manager.add("organizations:feature1", OrganizationFeature) # Add the entity handler entity_handler = mock.Mock() manager.add("organizations:unregistered-feature", OrganizationFeature) # Non entity feature manager.add("organizations:settings-feature", OrganizationFeature) manager.add_handler(registered_handler) manager.add_entity_handler(entity_handler) # A feature with a registered handler shouldn't use the entity handler assert manager.has("organizations:feature1", test_org) assert len(entity_handler.has.mock_calls) == 0 assert len(registered_handler.mock_calls) == 1 # The feature isn't registered, so it should try checking the entity_handler assert manager.has("organizations:unregistered-feature", test_org) assert len(entity_handler.has.mock_calls) == 1 assert len(registered_handler.mock_calls) == 1 # The feature isn't registered, but lets skip the entity_handler manager.has("organizations:unregistered-feature", test_org, skip_entity=True) assert len(entity_handler.has.mock_calls) == 1 assert len(registered_handler.mock_calls) == 1 # The entity_handler doesn't have a response for this feature either, so settings should be checked instead entity_handler.has.return_value = None with mock.patch.dict(settings.SENTRY_FEATURES, {"organizations:settings-feature": "test"}): assert manager.has("organizations:settings-feature", test_org) == "test" assert len(entity_handler.mock_calls) == 2 def test_entity_handler_has_capture_error(self) -> None: test_org = self.create_organization() handler = mock.Mock(spec=features.FeatureHandler) handler.has.side_effect = Exception("something bad") handler.features = {"organizations:faulty"} manager = features.FeatureManager() manager.add("organizations:faulty", OrganizationFeature) manager.add_entity_handler(handler) with ( mock.patch("sentry.features.manager.sentry_sdk.capture_exception") as mock_capture, override_options({"features.error.capture_rate": 1.0}), ): res = manager.has("organizations:faulty", test_org) assert res is False assert mock_capture.call_count == 1 def test_has_for_batch(self) -> None: test_user = self.create_user() test_org = self.create_organization() projects = [self.create_project(organization=test_org) for i in range(5)] def create_handler(flags, result): class OrganizationTestHandler(features.BatchFeatureHandler): features = set(flags) def __init__(self): self.hit_counter = 0 def _check_for_batch(self, feature_name, organization, actor): assert feature_name in self.features assert organization == test_org assert actor == test_user self.hit_counter += 1 return result def batch_has(self, *a, **k): raise NotImplementedError("unreachable") return OrganizationTestHandler() yes_flag = "organizations:yes" no_flag = "organizations:no" null_handler = create_handler([yes_flag, no_flag], None) yes_handler = create_handler([yes_flag], True) after_yes_handler = create_handler([yes_flag], False) no_handler = create_handler([no_flag], False) after_no_handler = create_handler([no_flag], True) manager = features.FeatureManager() for flag in (yes_flag, no_flag): manager.add(flag, OrganizationFeature) for handler in (null_handler, yes_handler, after_yes_handler, no_handler, after_no_handler): manager.add_handler(handler) assert manager.has_for_batch(yes_flag, test_org, projects, actor=test_user) == { p: True for p in projects } assert yes_handler.hit_counter == 1 # as opposed to len(projects) assert after_yes_handler.hit_counter == 0 assert manager.has_for_batch(no_flag, test_org, projects, actor=test_user) == { p: False for p in projects } assert no_handler.hit_counter == 1 assert after_no_handler.hit_counter == 0 assert null_handler.hit_counter == 2 def test_has_for_batch_capture_error(self) -> None: org = self.create_organization() project = self.create_project(organization=org) handler = mock.Mock(spec=features.BatchFeatureHandler) handler.features = {"organizations:faulty"} handler.has_for_batch.side_effect = ValueError("invalid thing") manager = features.FeatureManager() manager.add("oragnizations:faulty", OrganizationFeature) manager.add_handler(handler) with ( mock.patch("sentry.features.manager.sentry_sdk.capture_exception") as mock_capture, override_options({"features.error.capture_rate": 1.0}), ): res = manager.has_for_batch("organizations:faulty", org, [project]) assert res == {} assert mock_capture.call_count == 1 def test_batch_has(self) -> None: manager = features.FeatureManager() manager.add("auth:register") manager.add("organizations:feature", OrganizationFeature) manager.add("projects:feature", ProjectFeature) manager.add_entity_handler(MockBatchHandler()) ret = manager.batch_has(["auth:register"], actor=self.user) assert ret is not None assert ret["unscoped"]["auth:register"] ret = manager.batch_has( ["organizations:feature"], actor=self.user, organization=self.organization ) assert ret is not None assert ret[f"organization:{self.organization.id}"]["organizations:feature"] ret = manager.batch_has(["projects:feature"], actor=self.user, projects=[self.project]) assert ret is not None assert ret[f"project:{self.project.id}"]["projects:feature"] def test_batch_has_error(self) -> None: manager = features.FeatureManager() manager.add("organizations:feature", OrganizationFeature) manager.add("projects:feature", ProjectFeature) handler = mock.Mock(spec=features.FeatureHandler) handler.batch_has.side_effect = Exception("something bad") manager.add_entity_handler(handler) with ( mock.patch("sentry.features.manager.sentry_sdk.capture_exception") as mock_capture, override_options({"features.error.capture_rate": 1.0}), ): ret = manager.batch_has(["auth:register"], actor=self.user) assert ret is None assert mock_capture.call_count == 1 def test_batch_has_no_entity(self) -> None: manager = features.FeatureManager() manager.add("auth:register") manager.add("organizations:feature", OrganizationFeature) manager.add("projects:feature", ProjectFeature) manager.add_handler(MockBatchHandler()) ret = manager.batch_has(["auth:register"], actor=self.user) assert ret is not None assert ret["unscoped"]["auth:register"] ret = manager.batch_has( ["organizations:feature"], actor=self.user, organization=self.organization ) assert ret is not None assert ret[f"organization:{self.organization.id}"]["organizations:feature"] ret = manager.batch_has(["projects:feature"], actor=self.user, projects=[self.project]) assert ret is not None assert ret[f"project:{self.project.id}"]["projects:feature"] def test_batch_has_no_entity_multiple_projects(self) -> None: manager = features.FeatureManager() manager.add("projects:feature", ProjectFeature) manager.add_handler(MockBatchHandler()) projects = [self.project, self.create_project()] result = manager.batch_has(["projects:feature"], actor=self.user, projects=projects) assert result is not None for project in projects: assert result[f"project:{project.id}"]["projects:feature"] def test_batch_has_for_organizations(self) -> None: manager = features.FeatureManager() manager.add("organizations:feature", OrganizationFeature) manager.add_entity_handler(MockBatchHandler()) organizations = [self.organization, self.create_organization()] result = manager.batch_has_for_organizations("organizations:feature", organizations) assert result is not None for org in organizations: assert result[f"organization:{org.id}"] def test_batch_has_for_organizations_no_entity_handler(self) -> None: # Deliberately do NOT define batch_has_for_organizations class NoBatchOrgHandler(features.BatchFeatureHandler): features = {"organizations:feature"} def has(self, feature, actor, skip_entity: bool | None = False): return feature.name in self.features def batch_has( self, feature_names, *args: Any, projects=None, organization=None, **kwargs: Any ): feature_results = { feature_name: True for feature_name in feature_names if feature_name in self.features } if projects: return {f"project:{project.id}": feature_results for project in projects} if organization: return {f"organization:{organization.id}": feature_results} return {"unscoped": feature_results} def _check_for_batch(self, feature_name, organization, actor): raise NotImplementedError manager = features.FeatureManager() manager.add("organizations:feature", OrganizationFeature) manager.add_handler(NoBatchOrgHandler()) organizations = [self.organization, self.create_organization()] result = manager.batch_has_for_organizations("organizations:feature", organizations) assert result is not None for org in organizations: assert result[f"organization:{org.id}"] is True def test_has(self) -> None: manager = features.FeatureManager() manager.add("auth:register") manager.add("organizations:feature", OrganizationFeature) manager.add("projects:feature", ProjectFeature) manager.add_handler(MockBatchHandler()) assert manager.has("organizations:feature", actor=self.user, organization=self.organization) assert manager.has("projects:feature", actor=self.user, project=self.project) assert manager.has("auth:register", actor=self.user) def test_entity_feature_shim(self) -> None: manager = features.FeatureManager() manager.add("feat:1", OrganizationFeature) manager.add("feat:2", OrganizationFeature, False) manager.add("feat:3", OrganizationFeature, FeatureHandlerStrategy.INTERNAL) manager.add("feat:4", OrganizationFeature, True) manager.add("feat:5", OrganizationFeature, FeatureHandlerStrategy.FLAGPOLE) assert "feat:1" not in manager.entity_features assert "feat:2" not in manager.entity_features assert "feat:3" not in manager.entity_features assert "feat:4" in manager.entity_features assert "feat:5" in manager.entity_features def test_all(self) -> None: manager = features.FeatureManager() manager.add("feat:org", OrganizationFeature) manager.add("feat:project", ProjectFeature, False) manager.add("feat:system", SystemFeature, False) assert list(manager.all().keys()) == ["feat:org", "feat:project", "feat:system"] assert list(manager.all(OrganizationFeature).keys()) == ["feat:org"]
FeatureManagerTest
python
dagster-io__dagster
python_modules/dagster-test/dagster_test/toys/longitudinal.py
{ "start": 1106, "end": 3959 }
class ____(Exception): """To distinguish from other errors.""" def make_op( name, asset_key=None, error_rate=None, data_size_fn=None, sleep_factor=None, has_input=False, ): @op( name=name, config_schema={"partition": str}, ins={"the_input": In(dagster_type=Nothing)} if has_input else {}, out=Out(dagster_type=Nothing), ) def made_op(context): partition_date = datetime.strptime(context.op_config["partition"], DEFAULT_DATE_FORMAT) if data_size_fn: data_size = data_size_fn(partition_date) sleep_time = sleep_factor * data_size time.sleep(sleep_time) rand = random() if error_rate and rand < error_rate: raise IntentionalRandomFailure(f"random {rand} < error rate {error_rate}") if asset_key: metadata = {"Data size (bytes)": data_size} if data_size_fn else None # pyright: ignore[reportPossiblyUnboundVariable] yield AssetMaterialization( asset_key=asset_key, metadata=metadata, partition=context.op_config.get("partition"), ) return made_op @graph def longitudinal(): ingest_raw_video_views = make_op( "ingest_raw_video_views", asset_key="raw_video_views", error_rate=0.15, sleep_factor=SLEEP_INGEST, data_size_fn=video_views_data_size, ) update_video_views_table = make_op( "update_video_views_table", asset_key="video_views", has_input=True, error_rate=0.01, sleep_factor=SLEEP_PERSIST, data_size_fn=video_views_data_size, ) ingest_raw_users = make_op( "ingest_raw_users", "raw_users", error_rate=0.1, sleep_factor=SLEEP_INGEST, data_size_fn=users_data_size, ) update_users_table = make_op( "update_users_table", asset_key="users", has_input=True, sleep_factor=SLEEP_PERSIST, data_size_fn=users_data_size, error_rate=0.01, ) train_video_recommender_model = make_op( "train_video_recommender_model", has_input=True, sleep_factor=SLEEP_TRAIN, data_size_fn=combined_data_size, ) video_views = update_video_views_table(ingest_raw_video_views()) users = update_users_table(ingest_raw_users()) train_video_recommender_model([video_views, users]) longitudinal_job = longitudinal.to_job( name="longitudinal_no_schedule", description=( "Demo job that simulates updating tables of users and video views and training a " "video recommendation model. The growth of execution-time and data-throughput follows" "a sigmoidal curve." ), resource_defs={"io_manager": fs_io_manager}, )
IntentionalRandomFailure
python
huggingface__transformers
src/transformers/models/perceiver/modeling_perceiver.py
{ "start": 91107, "end": 98417 }
class ____(PerceiverAbstractDecoder): """ Multimodal decoding by composing uni-modal decoders. The *modalities* argument of the constructor is a dictionary mapping modality name to the decoder of that modality. That decoder will be used to construct queries for that modality. Modality-specific queries are padded with trainable modality-specific parameters, after which they are concatenated along the time dimension. Next, there is a shared cross attention operation across all modalities. Args: config ([*PerceiverConfig*]): Model configuration. modalities (`dict[str, PerceiverAbstractDecoder]`): Dictionary mapping modality name to the decoder of that modality. num_outputs (`int`): The number of outputs of the decoder. output_num_channels (`int`): The number of channels in the output. min_padding_size (`int`, *optional*, defaults to 2): The minimum padding size for all modalities. The final output will have num_channels equal to the maximum channels across all modalities plus min_padding_size. subsampled_index_dims (`dict[str, PerceiverAbstractDecoder]`, *optional*): Dictionary mapping modality name to the subsampled index dimensions to use for the decoder query of that modality. """ def __init__( self, config: PerceiverConfig, modalities: dict[str, PerceiverAbstractDecoder], num_outputs: int, output_num_channels: int, min_padding_size: Optional[int] = 2, subsampled_index_dims: Optional[dict[str, PerceiverAbstractDecoder]] = None, **decoder_kwargs, ) -> None: super().__init__() self.modalities = nn.ModuleDict(modalities) self.subsampled_index_dims = subsampled_index_dims self.min_padding_size = min_padding_size self.output_num_channels = output_num_channels self.num_outputs = num_outputs self.decoder = PerceiverBasicDecoder( config, output_index_dims=(num_outputs,), output_num_channels=output_num_channels, position_encoding_type="none", num_channels=self.num_query_channels, **decoder_kwargs, ) self.padding = nn.ParameterDict( { modality: nn.Parameter(torch.randn(1, self.num_query_channels - decoder.num_query_channels)) for modality, decoder in modalities.items() } ) @property def num_query_channels(self) -> int: max_channel_size = max(decoder.num_query_channels for _, decoder in self.modalities.items()) common_channel_size = max_channel_size + self.min_padding_size return common_channel_size def decoder_query(self, inputs, modality_sizes, inputs_without_pos=None, subsampled_points=None): # Partition the flat inputs among the different modalities inputs = restructure(modality_sizes, inputs) # Obtain modality-specific decoders' queries subsampled_points = subsampled_points or {} decoder_queries = {} for modality, decoder in self.modalities.items(): # Get input_without_pos for this modality if it exists. input_without_pos = None if inputs_without_pos is not None: input_without_pos = inputs_without_pos.get(modality, None) query = decoder.decoder_query( inputs=inputs[modality], modality_sizes=None, inputs_without_pos=input_without_pos, subsampled_points=subsampled_points.get(modality, None), ) decoder_queries[modality] = query # Pad all queries with trainable position encodings to make them have the same channels def embed(modality, x): x = torch.reshape(x, [x.shape[0], np.prod(x.shape[1:-1]), x.shape[-1]]) pos = self.padding[modality] pos = torch.broadcast_to(pos, [x.shape[0], x.shape[1], self.num_query_channels - x.shape[2]]) return torch.cat([x, pos], dim=2) # Apply a predictable ordering to the modalities return torch.cat( [embed(modality, decoder_queries[modality]) for modality in sorted(self.modalities.keys())], dim=1 ) def forward( self, query: torch.Tensor, z: torch.FloatTensor, query_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> torch.Tensor: # B x 1 x num_classes -> B x num_classes decoder_outputs = self.decoder(query, z, output_attentions=output_attentions) return decoder_outputs # Below: IO pre- and post-processor classes for Perceiver. def space_to_depth(frames: torch.Tensor, temporal_block_size: int = 1, spatial_block_size: int = 1) -> torch.Tensor: """ Space to depth transform. Rearranges blocks of spatial data, into depth. This function assumes the channels to be first, but will place the channels last after transformation. """ if len(frames.shape) == 4: batch_size, num_channels, height, width = frames.shape # split up dimensions (height by spatial_block_size, width by spatial_block_size) frames = frames.view( batch_size, num_channels, height // spatial_block_size, spatial_block_size, width // spatial_block_size, spatial_block_size, ) # move blocks to last dimension: (batch_size, H//bs, W//bs, bs, bs, C) frames = frames.permute(0, 2, 4, 3, 5, 1).contiguous() # concatenate blocks along channel dimension: (batch_size, H//bs, W//bs, bs*bs*C) frames = frames.view( batch_size, height // spatial_block_size, width // spatial_block_size, (spatial_block_size**2) * num_channels, ) return frames elif len(frames.shape) == 5: batch_size, time, num_channels, height, width = frames.shape # split up dimensions (time by temporal_block_size, height by spatial_block_size, width by spatial_block_size) frames = frames.view( batch_size, time // temporal_block_size, temporal_block_size, num_channels, height // spatial_block_size, spatial_block_size, width // spatial_block_size, spatial_block_size, ) # move blocks to last dimension: (batch_size, T//ts, H//bs, W//bs, ts, bs, bs, C) frames = frames.permute(0, 1, 4, 6, 2, 5, 7, 3).contiguous() # concatenate blocks along channel dimension: (batch_size, T//ts, H//bs, W//bs, ts*bs*bs*C) frames = frames.view( batch_size, time // temporal_block_size, height // spatial_block_size, width // spatial_block_size, temporal_block_size * (spatial_block_size**2) * num_channels, ) return frames else: raise ValueError( "Frames should be of rank 4 (batch, channels, height, width)" " or rank 5 (batch, time, channels, height, width)" )
PerceiverMultimodalDecoder
python
kamyu104__LeetCode-Solutions
Python/maximum-xor-product.py
{ "start": 38, "end": 404 }
class ____(object): def maximumXorProduct(self, a, b, n): """ :type a: int :type b: int :type n: int :rtype: int """ MOD = 10**9+7 for i in reversed(xrange(n)): base = 1<<i if min(a, b)&base == 0: a, b = a^base, b^base return (a%MOD)*(b%MOD)%MOD
Solution
python
pytorch__pytorch
test/dynamo/test_modules.py
{ "start": 31240, "end": 54526 }
class ____(torch._dynamo.test_case.TestCase): test_seq = make_test(Seq()) test_basicmodule1 = make_test(BasicModule()) test_basicmodule2 = make_test(BasicModule()) test_submodules1 = make_test(SubmoduleExample()) test_submodules2 = make_test(SubmoduleExample()) test_modulemethod1 = make_test(ModuleMethodCall()) test_modulemethod2 = make_test(ModuleMethodCall()) test_module_call_module_with_static_forward = make_test( ModuleCallModuleWithStaticForward() ) test_module_static_method = make_test(ModuleStaticMethodCall()) test_fnmember = make_test(FnMember()) test_fnmembercmp1 = make_test(FnMemberCmp(F.relu)) test_fnmembercmp2 = make_test(FnMemberCmp(None)) test_constloop = make_test(ConstLoop()) test_istraining1 = make_test(IsTrainingCheck()) test_istraining2 = make_test(IsTrainingCheck()) test_iseval1 = make_test(IsEvalCheck()) test_iseval2 = make_test(IsEvalCheck()) test_viamodulecall = make_test(ViaModuleCall()) test_isnonelayer = make_test(IsNoneLayer()) test_layerlist = make_test(LayerList()) test_tensorlist = make_test(TensorList()) test_intarg = make_test(IntArg()) test_cfgmod = make_test(CfgModule()) test_stringmember = make_test(StringMember()) test_modulelist = make_test(ModuleList()) test_modulelist_nested = make_test(NestedModuleList()) test_modulelist_custom = make_test(CustomGetItemModuleList()) test_moduledict = make_test(ModuleDict()) test_moduledict_custom = make_test(CustomGetItemModuleDict()) test_parameterdict = make_test(ParameterDict()) test_parameterdict_custom = make_test(CustomGetItemParameterDict()) test_super1 = make_test(SuperModule()) test_super2 = make_test(SuperModule2()) test_super_class_method = make_test(SuperChildCallsClassMethod()) test_children = make_test(Children()) test_named_children = make_test(NamedChildren()) test_densenet = make_test(DenseNetBlocks()) test_parameters1 = make_test(ParametersModule1()) test_parameters2 = make_test(ParametersModule2()) test_parameters3 = make_test(ParametersModule3(), expected_ops=5) test_parameters4 = make_test(ParametersModule4()) test_parameters5 = make_test(ParametersModule5()) test_hasattr = make_test(HasAttrModule()) test_enumvalues = make_test(EnumValues()) test_access_by_keys = make_test(AccessByKeys()) test_module_class_method = make_test(ModuleClassMethodCall()) test_module_property = make_test(ModuleProperty()) test_forward_directly = make_test(CallForwardDirectly()) test_module_name_string = make_test(ModuleNameString()) test_module_attribute_precedence = make_test(ModuleAttributePrecedence()) test_module_guard_name_is_valid = make_test(ModuleGuardNameIsValid()) test_sequential_with_duplicated_module = make_test(SequentialWithDuplicatedModule()) test_sequential_with_duplicated_module2 = make_test( SequentialWithDuplicatedModule2() ) test_module_comparison = make_test(ModuleComparison()) def test_inject_module_parameters(self): from collections import OrderedDict class ZeROOrderedDict(OrderedDict): def __init__(self, parent_module=None, *args, **kwargs): super().__init__(*args, **kwargs) self._parent_module = parent_module def __getitem__(self, key): param = super().__getitem__(key) return param def inject_parameters(module, cls): for m in module.modules(): if cls == ZeROOrderedDict: new_param = cls(parent_module=m) else: new_param = cls() for key, param in m._parameters.items(): new_param[key] = param m._parameters = new_param model = ParametersModule5() inject_parameters(model, ZeROOrderedDict) model = torch.compile(model, backend="inductor") x = torch.ones(10) # model can be compiled without error y = model(x) def test_module_forward_has_graph_break(self): m = ModuleForwardHasGraphBreak() x = torch.rand([10, 10]) ref = m(x) opt_m = torch.compile(m, backend="eager") res = opt_m(x) self.assertTrue(torch.allclose(ref, res)) def test_unsupportedmethod(self): m = UnsupportedMethodCall() i = torch.randn(10) cnt = torch._dynamo.testing.CompileCounter() opt_m = torch.compile(m, backend=cnt) r = opt_m(i) self.assertTrue(torch._dynamo.testing.same(r, m(i))) self.assertEqual(cnt.op_count, 5) def test_unsupportedmodule(self): m = UnsupportedModuleCall() i = torch.randn(10) cnt = torch._dynamo.testing.CompileCounter() opt_m = torch.compile(m, backend=cnt) r = opt_m(i) self.assertTrue(torch._dynamo.testing.same(r, m(i))) self.assertEqual(cnt.op_count, 6) @patch.object(torch._dynamo.config, "allow_unspec_int_on_nn_module", True) def test_self_mutating1(self): m1 = torch.nn.Linear(10, 10) m2 = SelfMutatingModule(m1) m3 = SelfMutatingModule(m1) m4 = SelfMutatingModule(m1) i = torch.randn(10) out2 = [m2(i), m2(i), m2(i)] cnt = torch._dynamo.testing.CompileCounter() opt_m3 = torch._dynamo.optimize_assert(cnt)(m3) opt_m4 = torch._dynamo.optimize_assert(cnt)(m4) out3 = [opt_m3(i), opt_m3(i), opt_m3(i)] out4 = [opt_m4(i), opt_m4(i), opt_m4(i)] self.assertTrue(torch._dynamo.testing.same(out2, out3)) self.assertTrue(torch._dynamo.testing.same(out2, out4)) if torch._dynamo.config.assume_static_by_default: self.assertExpectedInline(cnt.frame_count, """2""") else: self.assertExpectedInline(cnt.frame_count, """1""") def test_nn_module_setattr(self): class Mod(torch.nn.Module): def __init__(self): super().__init__() self.var = 0 @torch.compile(backend="eager", dynamic=False) def f(x, m): return x + m.var inp = torch.ones(3) m = Mod() self.assertEqual(f(inp, m), inp) # In 3.13.0, setattr will not fire a __dict__'s watchers, # so guards may not be invalidated. m.var = 1 # should trigger a recompile self.assertEqual(f(inp, m), inp + 1) @patch.object(torch._dynamo.config, "raise_on_ctx_manager_usage", False) def test_generation_tag(self): cnt = torch._dynamo.testing.CompileCounter() # guarantee that we have installed # the generation tagging function with torch._dynamo.optimize_assert(cnt): pass m1 = torch.nn.Linear(10, 10) prev_generation = GenerationTracker.get_generation_value(m1) cur_generation = prev_generation + 1 with torch._dynamo.optimize_assert(cnt): m2 = torch.nn.Linear(10, 10) self.assertEqual(GenerationTracker.get_generation_value(m1), prev_generation) self.assertEqual(GenerationTracker.get_generation_value(m2), cur_generation) # check that newly constructed instances # also have the same generation (even if copied from an old instance) m3 = deepcopy(m1) self.assertEqual(GenerationTracker.get_generation_value(m3), cur_generation) def test_simple_torch_function(self): def foo(x): # function call, twice to test wrapping x = F.sigmoid(x) x = F.sigmoid(x) # method call, twice to test wrapping x = x.sigmoid() x = x.sigmoid() return x TensorProxy = temporary_tensor_subclass() x = torch.randn(1).as_subclass(TensorProxy) cnt = torch._dynamo.testing.CompileCounter() out1 = foo(x) opt_foo = torch.compile(foo, backend=cnt, fullgraph=True) out2 = opt_foo(x) self.assertEqual(cnt.op_count, 4) self.assertTrue(torch._dynamo.testing.same(out1, out2)) def test_torch_function_with_closure(self): def run(): def foo(x): # function call, twice to test wrapping x = F.sigmoid(x) x = F.sigmoid(x) # method call, twice to test wrapping x = x.sigmoid() x = x.sigmoid() return x counter = 0 def function(): nonlocal counter # for now, only support reads from closure cells # TODO(future PR): support writes as well counter + 1 TensorProxy = temporary_tensor_subclass(function) x = torch.randn(1).as_subclass(TensorProxy) x = torch.randn(1) cnt = torch._dynamo.testing.CompileCounter() out1 = foo(x) opt_foo = torch.compile(foo, backend=cnt, fullgraph=True) out2 = opt_foo(x) self.assertEqual(cnt.op_count, 4) self.assertTrue(torch._dynamo.testing.same(out1, out2)) run() def test_torch_mangled_class_name(self): original = TensorWithTFOverrideVariable.global_mangled_class_name results = [] def instrumented(self, tx): result = original(self, tx) results.append(result) return result TensorWithTFOverrideVariable.global_mangled_class_name = instrumented def one_break(x): x = F.sigmoid(x) print() # force break x = x.sigmoid() return x try: TensorProxy = temporary_tensor_subclass() x = torch.randn(1).as_subclass(TensorProxy) x1 = one_break(x) cnt = torch._dynamo.testing.CompileCounter() opt_one_break = torch.compile(one_break, backend=cnt) x2 = opt_one_break(x) self.assertTrue(torch._dynamo.testing.same(x1, x2)) self.assertEqual(cnt.frame_count, 2) self.assertEqual(cnt.op_count, 2) compile_ids = set() for r in results: # A mangled classname looks like __subclass_TensorProxy_94524181138240_c0 # where the last segment contains the compile_id. prefix = "__subclass_TensorProxy_" before, sep, after = r.partition(prefix) self.assertEqual(before, "") self.assertEqual(sep, prefix) class_type_id, compile_id = after.split("_") self.assertTrue(class_type_id.isnumeric()) self.assertTrue(compile_id.startswith("c")) cid = compile_id[1:] self.assertTrue(cid.isnumeric()) compile_ids.add(cid) self.assertEqual(len(compile_ids), 3) finally: TensorWithTFOverrideVariable.global_mangled_class_name = original def test_nn_moduledict_contains(self): class M(torch.nn.Module): def __init__(self, module_dict): super().__init__() self.module_dict = module_dict def forward(self, x): if "foo" in self.module_dict: x = torch.mul(x, 1.0) x = torch.add(x, 1.0) return x module_dict = torch.nn.ModuleDict({"foo": torch.nn.Conv2d(1, 1, 1)}) m = M(module_dict) data = torch.randn(1) out1 = m(data) cnt = torch._dynamo.testing.CompileCounter() opt_m = torch._dynamo.optimize(cnt, nopython=True)(m) out2 = opt_m(data) self.assertEqual(cnt.op_count, 2) self.assertTrue(torch._dynamo.testing.same(out1, out2)) module_dict = torch.nn.ModuleDict({"bar": torch.nn.Conv2d(1, 1, 1)}) m = M(module_dict) data = torch.randn(1) out1 = m(data) cnt = torch._dynamo.testing.CompileCounter() torch._dynamo.reset() opt_m = torch._dynamo.optimize(cnt, nopython=True)(m) out2 = opt_m(data) self.assertEqual(cnt.op_count, 1) self.assertTrue(torch._dynamo.testing.same(out1, out2)) # RuntimeError: SymIntArrayRef expected to contain only concrete integers @expectedFailureDynamic def test_lazy_module1(self): input_shape = (16, 3, 6, 7, 8) cnt = torch._dynamo.testing.CompileCounter() module = LazyModule() def test_static_module(): input = torch.ones(*input_shape) module(input) # test no graph break opt_test_static_module = torch.compile( test_static_module, backend=cnt, fullgraph=True ) opt_test_static_module() self.assertTrue( isinstance(module, MaterializedModule), "Module should be transformed to an instance of MaterializedModule.", ) self.assertEqual(module.param.shape, input_shape) # test when mapped to UnspecializedNNModule module = LazyModule() def test_unspecialized(): nonlocal module module = LazyModule() input = torch.ones(*input_shape) module(input) opt_test_unspecialized = torch.compile(test_unspecialized, backend=cnt) opt_test_unspecialized() self.assertTrue( isinstance(module, MaterializedModule), "Module should be transformed to an instance of MaterializedModule.", ) self.assertEqual(module.param.shape, input_shape) # test with a static module in torch.* module = torch.nn.modules.LazyBatchNorm3d( affine=False, track_running_stats=False ) cnt = torch._dynamo.testing.CompileCounter() torch._dynamo.reset() def test_torch_static(): input = torch.ones(*input_shape) return module(input) # fully materialized # test no graph break opt_test_torch_static = torch.compile( test_torch_static, backend=cnt, fullgraph=True ) opt_test_torch_static() out = opt_test_torch_static() self.assertTrue(same(out, module(torch.ones(*input_shape)))) self.assertTrue( isinstance(module, torch.nn.modules.batchnorm.BatchNorm3d), "Module should be transformed to an instance of BatchNorm3d.", ) self.assertEqual(cnt.frame_count, 1, "No guards should have triggered.") # RuntimeError: SymIntArrayRef expected to contain only concrete integers @expectedFailureDynamic def test_lazy_module2(self): # Test FX graph 'call_module' works well if argument is lazy module m = LazyMLP() x = torch.rand([10, 10]) opt_m = torch.compile(m, backend="eager", fullgraph=True) # We should run compile mode firstly, otherwise the module # would be initialized when running eager mode. res = opt_m(x) ref = m(x) self.assertTrue(torch.allclose(ref, res)) # RuntimeError: SymIntArrayRef expected to contain only concrete integers @expectedFailureDynamic def test_lazy_module4(self): m = LazyMLP() x = torch.rand([10, 10]) cnt = torch._dynamo.testing.CompileCounter() opt_m = torch.compile(m, backend=cnt, fullgraph=True) # first iteration res = opt_m(x) ref = m(x) self.assertTrue(torch.allclose(ref, res)) # input shape changed and second iteration x = torch.rand([20, 20]) try: opt_m(x) except RuntimeError: self.assertIn("must have same reduction dim", traceback.format_exc()) # RuntimeError: SymIntArrayRef expected to contain only concrete integers @expectedFailureDynamic def test_lazy_module5(self): # Test lazy module works well with list/tuple input m = LazyModuleWithListInput() x = [torch.rand([5, 5])] * 3 + [None] opt_m = torch.compile(m, backend="eager", fullgraph=True) res = opt_m(x) ref = m(x) self.assertTrue(torch.allclose(ref, res)) # RuntimeError: SymIntArrayRef expected to contain only concrete integers @expectedFailureDynamic def test_lazy_module6(self): # Test new lazy submodule in lazy module's initialize_parameters m = LazyModuleWithLazySubmodule() x = [torch.rand([5, 5])] * 3 opt_m = torch.compile(m, backend="eager", fullgraph=True) res = opt_m(x) ref = m(x) self.assertTrue(torch.allclose(ref, res)) # RuntimeError: SymIntArrayRef expected to contain only concrete integers @expectedFailureDynamic def test_lazy_module7(self): # Test lazy module works well with namedtuple/dict input m = LazyModuleWithNamedTupleInput() x = MyInput( x={"a": [torch.rand([5, 5])] * 3, "b": torch.rand([5, 5])}, y=torch.rand([5, 5]), ) opt_m = torch.compile(backend="eager", fullgraph=True)(m) res = opt_m(x) ref = m(x) self.assertTrue(torch.allclose(ref, res)) def test_lazy_module_no_cls_to_become(self): # make sure super() works in the case where cls_to_become is None m = LazyChildModuleNoClsToBecome() x = torch.rand(2, 2) opt_m = torch.compile(m, backend="eager", fullgraph=True) res = opt_m(x) ref = m(x) self.assertTrue(torch.allclose(ref, res)) def test_lazy_module_kwargs(self): m = LazyModuleKwArgs() x = [torch.rand([5, 5])] * 3 y = [torch.rand([5, 5])] * 2 opt_m = torch.compile(backend="eager", fullgraph=True)(m) exp_res = m(x, y) self.assertTrue(torch.allclose(exp_res, opt_m(x, y))) def test_lazy_module_bad_params(self): m = LazyModuleBadInferParams() x = [torch.rand([5, 5])] * 3 y = [torch.rand([5, 5])] * 2 # Note that this raises from within dynamo code, with no exception handling. with self.assertRaises(AttributeError) as cm: opt_m = torch.compile(backend="eager")(m) exp_res = opt_m(x, y) def test_lazy_module_bad_params_call_function(self): class holder: x = LazyModuleBadInferParams() def apply(self, x, y): self.x(x, y) def m(x, y): h = holder() return h.apply(x, y) x = [torch.rand([5, 5])] * 3 y = [torch.rand([5, 5])] * 2 opt_m = torch.compile(backend="eager")(m) with self.assertRaises(AttributeError): exp_res = opt_m(x, y) # RuntimeError: SymIntArrayRef expected to contain only concrete integers @expectedFailureDynamic def test_lazy_module_speculation_log_divergence(self): class ModWithOneLazyLinear(torch.nn.Module): def __init__(self) -> None: super().__init__() self.layer = torch.nn.LazyLinear(8) def forward(self, x): return self.layer(x) # This allows us to restart tracing without clearing speculation log def id_and_fail_inlining(x): torch._dynamo.graph_break() return x cnt = torch._dynamo.testing.CompileCounter() @torch.compile(backend=cnt) def test(mod, x): res = mod(x) # Speculation log must not diverge in the 2nd round of tracing, # after we've initialized the `LazyLinear` into a `Linear` in the # 1st round. res2 = id_and_fail_inlining(res) return res mod = ModWithOneLazyLinear() x = torch.ones(10, 3) # Make sure we don't get recompilation across multiple runs actual_res = test(mod, x) expect_res = mod(x) self.assertTrue(torch.allclose(expect_res, actual_res)) actual_res = test(mod, x) expect_res = mod(x) self.assertTrue(torch.allclose(expect_res, actual_res)) self.assertEqual(cnt.frame_count, 1) def test_call_fn_with_non_const_inputs_safe(self): class ModuleSpecialFwd(torch.nn.Module): def __init__(self) -> None: super().__init__() self.conv = torch.nn.Conv2d( in_channels=3, out_channels=20, kernel_size=(5, 5) ) def _conv_forward(self, x): return self.conv._conv_forward(x, self.conv.weight, self.conv.bias) def forward(self, x): return self._conv_forward(x) mod = ModuleSpecialFwd() rx = torch.randn([3, 10, 10]) real = mod(rx) graph, _ = torch._dynamo.export(mod)(rx) self.assertTrue(torch._dynamo.testing.same(real, graph(rx))) def test_conv_call_forward_directly(self): m = ConvCallForwardDirectly() x = torch.rand([4, 3, 9, 9]) ref = m(x) opt_m = torch.compile(backend="eager", fullgraph=True)(m) res = opt_m(x) self.assertTrue(torch.allclose(ref, res)) def test_conv_transpose_call_forward_directly(self): m = ConvTransposeCallForwardDirectly() x = torch.rand([4, 4, 4, 4]) ref = m(x) opt_m = torch.compile(backend="eager", fullgraph=True)(m) res = opt_m(x) self.assertTrue(torch.allclose(ref, res)) def test_conv_call_super_forward_directly(self): x = torch.randn(4, 4) m = ConvCallSuperForwardDirectly(4, 4, 4) ref = m(x) opt_m = torch.compile(backend="eager", fullgraph=True)(m) res = opt_m(x) self.assertTrue(torch.allclose(ref, res)) def test_conv_transpose_call_super_forward_directly(self): x = torch.randn(4, 4, 4) m = ConvTransposeCallSuperForwardDirectly(4, 4, 4) ref = m(x) opt_m = torch.compile(backend="eager", fullgraph=True)(m) res = opt_m(x) self.assertTrue(torch.allclose(ref, res)) @torch._dynamo.config.patch("allow_unspec_int_on_nn_module", True) def test_nn_module_unspec_int_attr(self): for module_class in [ModuleWithIntAttr, UnspecModuleWithIntAttr]: mod = module_class() cnt = torch._dynamo.testing.CompileCounter() opt_mod = torch.compile(backend=cnt)(copy.deepcopy(mod)) x = torch.rand(3, 4) # Compiling `self.step` as static ref1 = mod(x) res1 = opt_mod(x) self.assertTrue(torch.allclose(ref1, res1)) self.assertEqual(cnt.frame_count, 1) mod.step += 1 opt_mod.step += 1 # Second time: compiling `self.step` as dynamic ref2 = mod(x) res2 = opt_mod(x) self.assertTrue(torch.allclose(ref2, res2)) self.assertEqual(cnt.frame_count, ifdynstaticdefault(2, 1)) mod.step += 1 opt_mod.step += 1 # Third time: no re-compilation! ref3 = mod(x) res3 = opt_mod(x) self.assertTrue(torch.allclose(ref3, res3)) self.assertEqual(cnt.frame_count, ifdynstaticdefault(2, 1))
NNModuleTests
python
tensorflow__tensorflow
tensorflow/python/distribute/coordinator/fault_tolerance_test.py
{ "start": 1748, "end": 2379 }
class ____( fault_tolerance_test_base.BaseFaultToleranceTest, test.TestCase): """Single worker fault tolerance tests. This covers the cases that ensure training can continue in a single-worker cluster, even if the only worker can become unavailable at some point and recovered (if there are multiple workers, it is possible that the training succeeds with the workers that did not fail). Realistically single worker is very rarely used, but the tests are important to ensure the correct behaviors. """ def setUp(self): super(SingleWorkerFaultToleranceTest, self).setUp(1, 1)
SingleWorkerFaultToleranceTest
python
huggingface__transformers
src/transformers/models/voxtral/modular_voxtral.py
{ "start": 1341, "end": 1397 }
class ____(Qwen2AudioAttention): pass
VoxtralAttention
python
doocs__leetcode
solution/1500-1599/1522.Diameter of N-Ary Tree/Solution.py
{ "start": 184, "end": 748 }
class ____: def diameter(self, root: 'Node') -> int: """ :type root: 'Node' :rtype: int """ def dfs(root): if root is None: return 0 nonlocal ans m1 = m2 = 0 for child in root.children: t = dfs(child) if t > m1: m2, m1 = m1, t elif t > m2: m2 = t ans = max(ans, m1 + m2) return 1 + m1 ans = 0 dfs(root) return ans
Solution
python
ray-project__ray
rllib/core/models/torch/utils.py
{ "start": 89, "end": 2945 }
class ____(nn.Module): """A striding layer for doing torch Conv2DTranspose operations. Using this layer before the 0-padding (on a 3D input "image") and before the actual ConvTranspose2d allows for a padding="same" behavior that matches 100% that of a `tf.keras.layers.Conv2DTranspose` layer. Examples: Input image (4x4): A B C D E F G H I J K L M N O P Stride with stride=2 -> output image=(7x7) A 0 B 0 C 0 D 0 0 0 0 0 0 0 E 0 F 0 G 0 H 0 0 0 0 0 0 0 I 0 J 0 K 0 L 0 0 0 0 0 0 0 M 0 N 0 O 0 P """ def __init__(self, width, height, stride_w, stride_h): """Initializes a Stride2D instance. Args: width: The width of the 3D input "image". height: The height of the 3D input "image". stride_w: The stride in width direction, with which to stride the incoming image. stride_h: The stride in height direction, with which to stride the incoming image. """ super().__init__() self.width = width self.height = height self.stride_w = stride_w self.stride_h = stride_h self.register_buffer( "zeros", torch.zeros( size=( self.width * self.stride_w - (self.stride_w - 1), self.height * self.stride_h - (self.stride_h - 1), ), dtype=torch.float32, ), ) self.out_width, self.out_height = self.zeros.shape[0], self.zeros.shape[1] # Squeeze in batch and channel dims. self.zeros = self.zeros.unsqueeze(0).unsqueeze(0) where_template = torch.zeros( (self.stride_w, self.stride_h), dtype=torch.float32 ) # Set upper/left corner to 1.0. where_template[0][0] = 1.0 # then tile across the entire (strided) image size. where_template = where_template.repeat((self.height, self.width))[ : -(self.stride_w - 1), : -(self.stride_h - 1) ] # Squeeze in batch and channel dims and convert to bool. where_template = where_template.unsqueeze(0).unsqueeze(0).bool() self.register_buffer("where_template", where_template) def forward(self, x): # Repeat incoming image stride(w/h) times to match the strided output template. repeated_x = ( x.repeat_interleave(self.stride_w, dim=-2).repeat_interleave( self.stride_h, dim=-1 ) )[:, :, : -(self.stride_w - 1), : -(self.stride_h - 1)] # Where `self.where_template` == 1.0 -> Use image pixel, otherwise use # zero filler value. return torch.where(self.where_template, repeated_x, self.zeros)
Stride2D
python
spyder-ide__spyder
spyder/plugins/console/widgets/internalshell.py
{ "start": 3470, "end": 15996 }
class ____(PythonShellWidget): """Shell base widget: link between PythonShellWidget and Interpreter""" # --- Signals # This signal is emitted when the buffer is flushed sig_refreshed = Signal() # Request to show a status message on the main window sig_show_status_requested = Signal(str) # This signal emits a parsed error traceback text so we can then # request opening the file that traceback comes from in the Editor. sig_go_to_error_requested = Signal(str) # TODO: I think this is not being used now? sig_focus_changed = Signal() def __init__(self, parent=None, commands=None, message=None, max_line_count=300, exitfunc=None, profile=False, multithreaded=True): super().__init__(parent, get_conf_path('history_internal.py'), profile=profile) self.multithreaded = multithreaded self.setMaximumBlockCount(max_line_count) # Allow raw_input support: self.input_loop = None self.input_mode = False # KeyboardInterrupt support self.interrupted = False # used only for not-multithreaded mode self.sig_keyboard_interrupt.connect(self.keyboard_interrupt) # Code completion / calltips # keyboard events management self.eventqueue = [] # Init interpreter self.exitfunc = exitfunc commands = [] if commands is None else commands self.commands = commands self.message = message self.interpreter = None # Clear status bar self.sig_show_status_requested.emit('') # Embedded shell -- requires the monitor (which installs the # 'open_in_spyder' function in builtins) if hasattr(builtins, 'open_in_spyder'): self.sig_go_to_error_requested.connect( self.open_with_external_spyder) #------ Interpreter def start_interpreter(self, namespace): """Start Python interpreter.""" self.clear() if self.interpreter is not None: self.interpreter.closing() self.interpreter = Interpreter(namespace, self.exitfunc, SysOutput, WidgetProxy, get_debug_level()) self.interpreter.stdout_write.data_avail.connect(self.stdout_avail) self.interpreter.stderr_write.data_avail.connect(self.stderr_avail) self.interpreter.widget_proxy.sig_set_readonly.connect(self.setReadOnly) self.interpreter.widget_proxy.sig_new_prompt.connect(self.new_prompt) self.interpreter.widget_proxy.sig_edit.connect(self.edit_script) self.interpreter.widget_proxy.sig_wait_input.connect(self.wait_input) if self.multithreaded: self.interpreter.start() # Interpreter banner banner = create_banner(self.message) self.write(banner, prompt=True) # Initial commands for cmd in self.commands: self.run_command(cmd, history=False, new_prompt=False) # First prompt self.new_prompt(self.interpreter.p1) self.sig_refreshed.emit() return self.interpreter def exit_interpreter(self): """Exit interpreter""" self.interpreter.exit_flag = True if self.multithreaded: self.interpreter.stdin_write.write(b'\n') self.interpreter.restore_stds() def edit_script(self, filename, external_editor): filename = str(filename) if external_editor: self.external_editor(filename) else: self.parent().edit_script(filename) def stdout_avail(self): """Data is available in stdout, let's empty the queue and write it!""" data = self.interpreter.stdout_write.empty_queue() if data: self.write(data) def stderr_avail(self): """Data is available in stderr, let's empty the queue and write it!""" data = self.interpreter.stderr_write.empty_queue() if data: self.write(data, error=True) self.flush(error=True) #------Raw input support def wait_input(self, prompt=''): """Wait for input (raw_input support)""" self.new_prompt(prompt) self.setFocus() self.input_mode = True self.input_loop = QEventLoop(None) self.input_loop.exec_() self.input_loop = None def end_input(self, cmd): """End of wait_input mode""" self.input_mode = False self.input_loop.exit() self.interpreter.widget_proxy.end_input(cmd) #----- Menus, actions, ... def setup_context_menu(self): """Reimplement PythonShellWidget method""" PythonShellWidget.setup_context_menu(self) self.help_action = create_action(self, _("Help..."), icon=ima.icon('DialogHelpButton'), triggered=self.help) self.menu.addAction(self.help_action) @Slot() def help(self): """Help on Spyder console""" QMessageBox.about(self, _("Help"), """<b>%s</b> <p><i>%s</i><br> edit foobar.py <p><i>%s</i><br> xedit foobar.py <p><i>%s</i><br> run foobar.py <p><i>%s</i><br> clear x, y <p><i>%s</i><br> !ls <p><i>%s</i><br> object? <p><i>%s</i><br> result = oedit(object) """ % (_('Shell special commands:'), _('Internal editor:'), _('External editor:'), _('Run script:'), _('Remove references:'), _('System commands:'), _('Python help:'), _('GUI-based editor:'))) #------ External editing def open_with_external_spyder(self, text): """Load file in external Spyder's editor, if available This method is used only for embedded consoles (could also be useful if we ever implement the magic %edit command)""" match = get_error_match(str(text)) if match: fname, lnb = match.groups() builtins.open_in_spyder(fname, int(lnb)) def set_external_editor(self, path, gotoline): """Set external editor path and gotoline option.""" self._path = path self._gotoline = gotoline def external_editor(self, filename, goto=-1): """ Edit in an external editor. Recommended: SciTE (e.g. to go to line where an error did occur). """ editor_path = self._path goto_option = self._gotoline if os.path.isfile(editor_path): try: args = [filename] if goto > 0 and goto_option: args.append('%s%d'.format(goto_option, goto)) programs.run_program(editor_path, args) except OSError: self.write_error("External editor was not found:" " %s\n" % editor_path) #------ I/O def flush(self, error=False, prompt=False): """Reimplement ShellBaseWidget method""" PythonShellWidget.flush(self, error=error, prompt=prompt) if self.interrupted: self.interrupted = False raise KeyboardInterrupt #------ Clear terminal def clear_terminal(self): """Reimplement ShellBaseWidget method""" self.clear() self.new_prompt(self.interpreter.p2 if self.interpreter.more else self.interpreter.p1) #------ Keyboard events def on_enter(self, command): """on_enter""" if self.profile: # Simple profiling test t0 = time() for _ in range(10): self.execute_command(command) self.insert_text(u"\n<Δt>=%dms\n" % (1e2*(time()-t0))) self.new_prompt(self.interpreter.p1) else: self.execute_command(command) self.__flush_eventqueue() def keyPressEvent(self, event): """ Reimplement Qt Method Enhanced keypress event handler """ if self.preprocess_keyevent(event): # Event was accepted in self.preprocess_keyevent return self.postprocess_keyevent(event) def __flush_eventqueue(self): """Flush keyboard event queue""" while self.eventqueue: past_event = self.eventqueue.pop(0) self.postprocess_keyevent(past_event) #------ Command execution def keyboard_interrupt(self): """Simulate keyboard interrupt""" if self.multithreaded: self.interpreter.raise_keyboard_interrupt() else: if self.interpreter.more: self.write_error("\nKeyboardInterrupt\n") self.interpreter.more = False self.new_prompt(self.interpreter.p1) self.interpreter.resetbuffer() else: self.interrupted = True def execute_lines(self, lines): """ Execute a set of lines as multiple command lines: multiple lines of text to be executed as single commands """ for line in lines.splitlines(): stripped_line = line.strip() if stripped_line.startswith('#'): continue self.write(line+os.linesep, flush=True) self.execute_command(line+"\n") self.flush() def execute_command(self, cmd): """ Execute a command cmd: one-line command only, with '\n' at the end """ if self.input_mode: self.end_input(cmd) return if cmd.endswith('\n'): cmd = cmd[:-1] # cls command if cmd == 'cls': self.clear_terminal() return self.run_command(cmd) def run_command(self, cmd, history=True, new_prompt=True): """Run command in interpreter""" if not cmd: cmd = '' else: if history: self.add_to_history(cmd) if not self.multithreaded: if 'input' not in cmd: self.interpreter.stdin_write.write(bytes(cmd + '\n', "utf-8")) self.interpreter.run_line() self.sig_refreshed.emit() else: self.write(_('In order to use commands like "raw_input" ' 'or "input" run Spyder with the multithread ' 'option (--multithread) from a system terminal'), error=True) else: self.interpreter.stdin_write.write(bytes(cmd + '\n', "utf-8")) #------ Code completion / Calltips def _eval(self, text): """Is text a valid object?""" return self.interpreter.eval(text) def get_dir(self, objtxt): """Return dir(object)""" obj, valid = self._eval(objtxt) if valid: return getobjdir(obj) def get_globals_keys(self): """Return shell globals() keys""" return list(self.interpreter.namespace.keys()) def get_cdlistdir(self): """Return shell current directory list dir""" return os.listdir(getcwd_or_home()) def iscallable(self, objtxt): """Is object callable?""" obj, valid = self._eval(objtxt) if valid: return callable(obj) def get_arglist(self, objtxt): """Get func/method argument list""" obj, valid = self._eval(objtxt) if valid: return getargtxt(obj) def get__doc__(self, objtxt): """Get object __doc__""" obj, valid = self._eval(objtxt) if valid: return obj.__doc__ def get_doc(self, objtxt): """Get object documentation dictionary""" obj, valid = self._eval(objtxt) if valid: return getdoc(obj) def get_source(self, objtxt): """Get object source""" obj, valid = self._eval(objtxt) if valid: return getsource(obj) def is_defined(self, objtxt, force_import=False): """Return True if object is defined""" return self.interpreter.is_defined(objtxt, force_import)
InternalShell
python
altair-viz__altair
altair/vegalite/v6/schema/channels.py
{ "start": 415431, "end": 420788 }
class ____( ValueChannelMixin, core.ValueDefWithConditionMarkPropFieldOrDatumDefnumber ): """ OpacityValue schema wrapper. Parameters ---------- condition : dict, :class:`ConditionalValueDefnumberExprRef`, :class:`ConditionalMarkPropFieldOrDatumDef`, :class:`ConditionalParameterValueDefnumberExprRef`, :class:`ConditionalPredicateValueDefnumberExprRef`, :class:`ConditionalParameterMarkPropFieldOrDatumDef`, :class:`ConditionalPredicateMarkPropFieldOrDatumDef`, Sequence[dict, :class:`ConditionalValueDefnumberExprRef`, :class:`ConditionalParameterValueDefnumberExprRef`, :class:`ConditionalPredicateValueDefnumberExprRef`] A field definition or one or more value definition(s) with a parameter predicate. value : dict, float, :class:`ExprRef` A constant value in visual domain (e.g., ``"red"`` / ``"#0099ff"`` / `gradient definition <https://vega.github.io/vega-lite/docs/types.html#gradient>`__ for color, values between ``0`` to ``1`` for opacity). """ _class_is_valid_at_instantiation = False _encoding_name = "opacity" @overload def condition( self, *, aggregate: Optional[SchemaBase | Map | NonArgAggregateOp_T] = Undefined, bandPosition: Optional[float] = Undefined, bin: Optional[bool | SchemaBase | Map | None] = Undefined, field: Optional[str | SchemaBase | Map] = Undefined, legend: Optional[SchemaBase | Map | None] = Undefined, scale: Optional[SchemaBase | Map | None] = Undefined, sort: Optional[ SchemaBase | Sequence[str] | Sequence[bool] | Sequence[float] | Sequence[Temporal | SchemaBase | Map] | Map | AllSortString_T | None ] = Undefined, test: Optional[str | SchemaBase | Map] = Undefined, timeUnit: Optional[ SchemaBase | Map | MultiTimeUnit_T | BinnedTimeUnit_T | SingleTimeUnit_T ] = Undefined, title: Optional[str | SchemaBase | Sequence[str] | None] = Undefined, type: Optional[SchemaBase | StandardType_T] = Undefined, ) -> OpacityValue: ... @overload def condition( self, *, bandPosition: Optional[float] = Undefined, datum: Optional[ Temporal | Parameter | SchemaBase | Map | PrimitiveValue_T ] = Undefined, legend: Optional[SchemaBase | Map | None] = Undefined, scale: Optional[SchemaBase | Map | None] = Undefined, test: Optional[str | SchemaBase | Map] = Undefined, title: Optional[str | SchemaBase | Sequence[str] | None] = Undefined, type: Optional[SchemaBase | Type_T] = Undefined, ) -> OpacityValue: ... @overload def condition( self, *, aggregate: Optional[SchemaBase | Map | NonArgAggregateOp_T] = Undefined, bandPosition: Optional[float] = Undefined, bin: Optional[bool | SchemaBase | Map | None] = Undefined, empty: Optional[bool] = Undefined, field: Optional[str | SchemaBase | Map] = Undefined, legend: Optional[SchemaBase | Map | None] = Undefined, param: Optional[str | SchemaBase] = Undefined, scale: Optional[SchemaBase | Map | None] = Undefined, sort: Optional[ SchemaBase | Sequence[str] | Sequence[bool] | Sequence[float] | Sequence[Temporal | SchemaBase | Map] | Map | AllSortString_T | None ] = Undefined, timeUnit: Optional[ SchemaBase | Map | MultiTimeUnit_T | BinnedTimeUnit_T | SingleTimeUnit_T ] = Undefined, title: Optional[str | SchemaBase | Sequence[str] | None] = Undefined, type: Optional[SchemaBase | StandardType_T] = Undefined, ) -> OpacityValue: ... @overload def condition( self, *, bandPosition: Optional[float] = Undefined, datum: Optional[ Temporal | Parameter | SchemaBase | Map | PrimitiveValue_T ] = Undefined, empty: Optional[bool] = Undefined, legend: Optional[SchemaBase | Map | None] = Undefined, param: Optional[str | SchemaBase] = Undefined, scale: Optional[SchemaBase | Map | None] = Undefined, title: Optional[str | SchemaBase | Sequence[str] | None] = Undefined, type: Optional[SchemaBase | Type_T] = Undefined, ) -> OpacityValue: ... @overload def condition( self, *, test: Optional[str | SchemaBase | Map] = Undefined, value: Optional[float | Parameter | SchemaBase | Map] = Undefined, ) -> OpacityValue: ... @overload def condition( self, *, empty: Optional[bool] = Undefined, param: Optional[str | SchemaBase] = Undefined, value: Optional[float | Parameter | SchemaBase | Map] = Undefined, ) -> OpacityValue: ... @overload def condition( self, _: list[core.ConditionalValueDefnumberExprRef], / ) -> OpacityValue: ... def __init__( self, value, condition: Optional[SchemaBase | Sequence[SchemaBase | Map] | Map] = Undefined, **kwds, ): super().__init__(value=value, condition=condition, **kwds) @with_property_setters
OpacityValue
python
kamyu104__LeetCode-Solutions
Python/largest-palindromic-number.py
{ "start": 71, "end": 669 }
class ____(object): def largestPalindromic(self, num): """ :type num: str :rtype: str """ cnt = collections.Counter(num) result = [] for i in reversed(xrange(10)): if not cnt[str(i)]//2 or (i == 0 and not result): continue for _ in xrange(cnt[str(i)]//2): result.append(str(i)) result.append(max([k for k, v in cnt.iteritems() if v%2] or [""])) for i in reversed(xrange(len(result)-1)): result.append(result[i]) return "".join(result) or "0"
Solution
python
cython__cython
Cython/Compiler/FlowControl.py
{ "start": 22569, "end": 23006 }
class ____(TreeVisitor): def __init__(self): super().__init__() self.assignments = [] def visit_Node(self): self._visitchildren(self, None, None) def visit_SingleAssignmentNode(self, node): self.assignments.append((node.lhs, node.rhs)) def visit_CascadedAssignmentNode(self, node): for lhs in node.lhs_list: self.assignments.append((lhs, node.rhs))
AssignmentCollector
python
tensorflow__tensorflow
tensorflow/python/ops/numpy_ops/np_array_ops_test.py
{ "start": 19785, "end": 41797 }
class ____(test.TestCase): def setUp(self): super(ArrayMethodsTest, self).setUp() set_up_virtual_devices() self.array_transforms = [ lambda x: x, ops.convert_to_tensor, np.array, np_array_ops.array, ] def testAllAny(self): def run_test(arr, *args, **kwargs): for fn in self.array_transforms: arr = fn(arr) self.match( np_array_ops.all(arr, *args, **kwargs), np.all(arr, *args, **kwargs)) self.match( np_array_ops.any(arr, *args, **kwargs), np.any(arr, *args, **kwargs)) run_test(0) run_test(1) run_test([]) run_test([[True, False], [True, True]]) run_test([[True, False], [True, True]], axis=0) run_test([[True, False], [True, True]], axis=0, keepdims=True) run_test([[True, False], [True, True]], axis=1) run_test([[True, False], [True, True]], axis=1, keepdims=True) run_test([[True, False], [True, True]], axis=(0, 1)) run_test([[True, False], [True, True]], axis=(0, 1), keepdims=True) run_test([5.2, 3.5], axis=0) run_test([1, 0], axis=0) def testCompress(self): def run_test(condition, arr, *args, **kwargs): for fn1 in self.array_transforms: for fn2 in self.array_transforms: arg1 = fn1(condition) arg2 = fn2(arr) self.match( np_array_ops.compress(arg1, arg2, *args, **kwargs), np.compress( np.asarray(arg1).astype(np.bool_), arg2, *args, **kwargs)) run_test([True], 5) run_test([False], 5) run_test([], 5) run_test([True, False, True], [1, 2, 3]) run_test([True, False], [1, 2, 3]) run_test([False, True], [[1, 2], [3, 4]]) run_test([1, 0, 1], [1, 2, 3]) run_test([1, 0], [1, 2, 3]) run_test([0, 1], [[1, 2], [3, 4]]) run_test([True], [[1, 2], [3, 4]]) run_test([False, True], [[1, 2], [3, 4]], axis=1) run_test([False, True], [[1, 2], [3, 4]], axis=0) run_test([False, True], [[1, 2], [3, 4]], axis=-1) run_test([False, True], [[1, 2], [3, 4]], axis=-2) def testCopy(self): def run_test(arr, *args, **kwargs): for fn in self.array_transforms: arg = fn(arr) self.match( np_array_ops.copy(arg, *args, **kwargs), np.copy(arg, *args, **kwargs)) run_test([]) run_test([1, 2, 3]) run_test([1., 2., 3.]) run_test([True]) run_test(np.arange(9).reshape((3, 3)).tolist()) a = np_array_ops.asarray(0) self.assertNotIn('CPU:1', a.backing_device) with ops.device('CPU:1'): self.assertIn('CPU:1', np_array_ops.array(a, copy=True) .backing_device) self.assertIn('CPU:1', np_array_ops.array(np.array(0), copy=True) .backing_device) def testCumProdAndSum(self): def run_test(arr, *args, **kwargs): for fn in self.array_transforms: arg = fn(arr) self.match( np_array_ops.cumprod(arg, *args, **kwargs), np.cumprod(arg, *args, **kwargs)) self.match( np_array_ops.cumsum(arg, *args, **kwargs), np.cumsum(arg, *args, **kwargs)) run_test([]) run_test([1, 2, 3]) run_test([1, 2, 3], dtype=float) run_test([1, 2, 3], dtype=np.float32) run_test([1, 2, 3], dtype=np.float64) run_test([1., 2., 3.]) run_test([1., 2., 3.], dtype=int) run_test([1., 2., 3.], dtype=np.int32) run_test([1., 2., 3.], dtype=np.int64) run_test([[1, 2], [3, 4]], axis=1) run_test([[1, 2], [3, 4]], axis=0) run_test([[1, 2], [3, 4]], axis=-1) run_test([[1, 2], [3, 4]], axis=-2) def testImag(self): def run_test(arr, *args, **kwargs): for fn in self.array_transforms: arg = fn(arr) self.match( np_array_ops.imag(arg, *args, **kwargs), # np.imag may return a scalar so we convert to a np.ndarray. np.array(np.imag(arg, *args, **kwargs))) run_test(1) run_test(5.5) run_test(5 + 3j) run_test(3j) run_test([]) run_test([1, 2, 3]) run_test([1 + 5j, 2 + 3j]) run_test([[1 + 5j, 2 + 3j], [1 + 7j, 2 + 8j]]) def testAMaxAMin(self): def run_test(arr, *args, **kwargs): axis = kwargs.pop('axis', None) for fn1 in self.array_transforms: for fn2 in self.array_transforms: arr_arg = fn1(arr) axis_arg = fn2(axis) if axis is not None else None self.match( np_array_ops.amax(arr_arg, axis=axis_arg, *args, **kwargs), np.amax(arr_arg, axis=axis, *args, **kwargs)) self.match( np_array_ops.amin(arr_arg, axis=axis_arg, *args, **kwargs), np.amin(arr_arg, axis=axis, *args, **kwargs)) run_test([1, 2, 3]) run_test([1., 2., 3.]) run_test([[1, 2], [3, 4]], axis=1) run_test([[1, 2], [3, 4]], axis=0) run_test([[1, 2], [3, 4]], axis=-1) run_test([[1, 2], [3, 4]], axis=-2) run_test([[1, 2], [3, 4]], axis=(0, 1)) run_test(np.arange(8).reshape((2, 2, 2)).tolist(), axis=(0, 2)) run_test( np.arange(8).reshape((2, 2, 2)).tolist(), axis=(0, 2), keepdims=True) run_test(np.arange(8).reshape((2, 2, 2)).tolist(), axis=(2, 0)) run_test( np.arange(8).reshape((2, 2, 2)).tolist(), axis=(2, 0), keepdims=True) self.assertRaises(ValueError, np_array_ops.amax, np.ones([2, 2]), out=[]) self.assertRaises(ValueError, np_array_ops.amin, np.ones([2, 2]), out=[]) def testMean(self): def run_test(arr, *args, **kwargs): axis = kwargs.pop('axis', None) for fn1 in self.array_transforms: for fn2 in self.array_transforms: arr_arg = fn1(arr) axis_arg = fn2(axis) if axis is not None else None self.match( np_array_ops.mean(arr_arg, axis=axis_arg, *args, **kwargs), np.mean(arr_arg, axis=axis, *args, **kwargs)) run_test([1, 2, 1]) run_test([1., 2., 1.]) run_test([1., 2., 1.], dtype=int) run_test([[1, 2], [3, 4]], axis=1) run_test([[1, 2], [3, 4]], axis=0) run_test([[1, 2], [3, 4]], axis=-1) run_test([[1, 2], [3, 4]], axis=-2) run_test([[1, 2], [3, 4]], axis=(0, 1)) run_test(np.arange(8).reshape((2, 2, 2)).tolist(), axis=(0, 2)) run_test( np.arange(8).reshape((2, 2, 2)).tolist(), axis=(0, 2), keepdims=True) run_test(np.arange(8).reshape((2, 2, 2)).tolist(), axis=(2, 0)) run_test( np.arange(8).reshape((2, 2, 2)).tolist(), axis=(2, 0), keepdims=True) self.assertRaises(ValueError, np_array_ops.mean, np.ones([2, 2]), out=[]) def testStd(self): def run_test(arr, *args, **kwargs): axis = kwargs.pop('axis', None) for fn1 in self.array_transforms: for fn2 in self.array_transforms: arr_arg = fn1(arr) axis_arg = fn2(axis) if axis is not None else None self.match( np_array_ops.std(arr_arg, axis=axis_arg, *args, **kwargs), np.std(arr_arg, axis=axis, *args, **kwargs)) run_test([1, 2, 1]) run_test([1., 2., 1.]) run_test([1.j, 2., 1.j]) run_test([[1, 2], [3, 4]], axis=1) run_test([[1, 2], [3, 4]], axis=0) run_test([[1, 2], [3, 4]], axis=-1) run_test([[1, 2], [3, 4]], axis=-2) run_test([[1, 2], [3, 4]], axis=(0, 1)) run_test(np.arange(8).reshape((2, 2, 2)).tolist(), axis=(0, 2)) run_test( np.arange(8).reshape((2, 2, 2)).tolist(), axis=(0, 2), keepdims=True) run_test(np.arange(8).reshape((2, 2, 2)).tolist(), axis=(2, 0)) run_test( np.arange(8).reshape((2, 2, 2)).tolist(), axis=(2, 0), keepdims=True) def testVar(self): def run_test(arr, *args, **kwargs): axis = kwargs.pop('axis', None) for fn1 in self.array_transforms: for fn2 in self.array_transforms: arr_arg = fn1(arr) axis_arg = fn2(axis) if axis is not None else None self.match( np_array_ops.var(arr_arg, axis=axis_arg, *args, **kwargs), np.var(arr_arg, axis=axis, *args, **kwargs)) run_test([1, 2, 1]) run_test([1., 2., 1.]) run_test([1.j, 2., 1.j]) run_test([1., 2., 1.], dtype=np.int64) run_test([[1, 2], [3, 4]], axis=1) run_test([[1, 2], [3, 4]], axis=0) run_test([[1, 2], [3, 4]], axis=-1) run_test([[1, 2], [3, 4]], axis=-2) run_test([[1, 2], [3, 4]], axis=(0, 1)) run_test(np.arange(8).reshape((2, 2, 2)).tolist(), axis=(0, 2)) run_test( np.arange(8).reshape((2, 2, 2)).tolist(), axis=(0, 2), keepdims=True) run_test(np.arange(8).reshape((2, 2, 2)).tolist(), axis=(2, 0)) run_test( np.arange(8).reshape((2, 2, 2)).tolist(), axis=(2, 0), keepdims=True) self.assertRaises(ValueError, np_array_ops.var, np.ones([2, 2]), out=[]) def testProd(self): def run_test(arr, *args, **kwargs): for fn in self.array_transforms: arg = fn(arr) self.match( np_array_ops.prod(arg, *args, **kwargs), np.prod(arg, *args, **kwargs)) run_test([1, 2, 3]) run_test([1., 2., 3.]) run_test(np.array([1, 2, 3], dtype=np.int16)) run_test([[1, 2], [3, 4]], axis=1) run_test([[1, 2], [3, 4]], axis=0) run_test([[1, 2], [3, 4]], axis=-1) run_test([[1, 2], [3, 4]], axis=-2) run_test([[1, 2], [3, 4]], axis=(0, 1)) run_test(np.arange(8).reshape((2, 2, 2)).tolist(), axis=(0, 2)) run_test( np.arange(8).reshape((2, 2, 2)).tolist(), axis=(0, 2), keepdims=True) run_test(np.arange(8).reshape((2, 2, 2)).tolist(), axis=(2, 0)) run_test( np.arange(8).reshape((2, 2, 2)).tolist(), axis=(2, 0), keepdims=True) def _testReduce(self, math_fun, np_fun, name): axis_transforms = [ lambda x: x, # Identity, ops.convert_to_tensor, np.array, np_array_ops.array, lambda x: np_array_ops.array(x, dtype=np.float32), lambda x: np_array_ops.array(x, dtype=np.float64), ] def run_test(a, **kwargs): axis = kwargs.pop('axis', None) for fn1 in self.array_transforms: for fn2 in axis_transforms: arg1 = fn1(a) axis_arg = fn2(axis) if axis is not None else None self.match( math_fun(arg1, axis=axis_arg, **kwargs), np_fun(arg1, axis=axis, **kwargs), msg='{}({}, axis={}, keepdims={})'.format(name, arg1, axis, kwargs.get('keepdims'))) run_test(5) run_test([2, 3]) run_test([[2, -3], [-6, 7]]) run_test([[2, -3], [-6, 7]], axis=0) run_test([[2, -3], [-6, 7]], axis=0, keepdims=True) run_test([[2, -3], [-6, 7]], axis=1) run_test([[2, -3], [-6, 7]], axis=1, keepdims=True) run_test([[2, -3], [-6, 7]], axis=(0, 1)) run_test([[2, -3], [-6, 7]], axis=(1, 0)) def testSum(self): self._testReduce(np_array_ops.sum, np.sum, 'sum') def testAmax(self): self._testReduce(np_array_ops.amax, np.amax, 'amax') def testSize(self): def run_test(arr, axis=None): onp_arr = np.array(arr) self.assertEqual(np_array_ops.size(arr, axis), np.size(onp_arr, axis)) run_test(np_array_ops.array([1])) run_test(np_array_ops.array([1, 2, 3, 4, 5])) run_test(np_array_ops.ones((2, 3, 2))) run_test(np_array_ops.ones((3, 2))) run_test(np_array_ops.zeros((5, 6, 7))) run_test(1) run_test(np_array_ops.ones((3, 2, 1))) run_test(constant_op.constant(5)) run_test(constant_op.constant([1, 1, 1])) self.assertRaises(NotImplementedError, np_array_ops.size, np.ones((2, 2)), 1) @def_function.function(input_signature=[ tensor_spec.TensorSpec(dtype=dtypes.float64, shape=None)]) def f(arr): arr = np_array_ops.asarray(arr) return np_array_ops.size(arr) self.assertEqual(f(np_array_ops.ones((3, 2))).numpy(), 6) def testRavel(self): def run_test(arr, *args, **kwargs): for fn in self.array_transforms: arg = fn(arr) self.match( np_array_ops.ravel(arg, *args, **kwargs), np.ravel(arg, *args, **kwargs)) run_test(5) run_test(5.) run_test([]) run_test([[]]) run_test([[], []]) run_test([1, 2, 3]) run_test([1., 2., 3.]) run_test([[1, 2], [3, 4]]) run_test(np.arange(8).reshape((2, 2, 2)).tolist()) def testReal(self): def run_test(arr, *args, **kwargs): for fn in self.array_transforms: arg = fn(arr) self.match( np_array_ops.real(arg, *args, **kwargs), np.array(np.real(arg, *args, **kwargs))) run_test(1) run_test(5.5) run_test(5 + 3j) run_test(3j) run_test([]) run_test([1, 2, 3]) run_test([1 + 5j, 2 + 3j]) run_test([[1 + 5j, 2 + 3j], [1 + 7j, 2 + 8j]]) def testRepeat(self): def run_test(arr, repeats, *args, **kwargs): for fn1 in self.array_transforms: for fn2 in self.array_transforms: arr_arg = fn1(arr) repeats_arg = fn2(repeats) self.match( np_array_ops.repeat(arr_arg, repeats_arg, *args, **kwargs), np.repeat(arr_arg, repeats_arg, *args, **kwargs)) run_test(1, 2) run_test([1, 2], 2) run_test([1, 2], [2]) run_test([1, 2], [1, 2]) run_test([[1, 2], [3, 4]], 3, axis=0) run_test([[1, 2], [3, 4]], 3, axis=1) run_test([[1, 2], [3, 4]], [3], axis=0) run_test([[1, 2], [3, 4]], [3], axis=1) run_test([[1, 2], [3, 4]], [3, 2], axis=0) run_test([[1, 2], [3, 4]], [3, 2], axis=1) run_test([[1, 2], [3, 4]], [3, 2], axis=-1) run_test([[1, 2], [3, 4]], [3, 2], axis=-2) def testAround(self): def run_test(arr, *args, **kwargs): for fn in self.array_transforms: arg = fn(arr) self.match( np_array_ops.around(arg, *args, **kwargs), np.around(arg, *args, **kwargs)) run_test(5.5) run_test(5.567, decimals=2) run_test([]) run_test([1.27, 2.49, 2.75], decimals=1) run_test([23.6, 45.1], decimals=-1) def testReshape(self): def run_test(arr, newshape, *args, **kwargs): for fn1 in self.array_transforms: for fn2 in self.array_transforms: arr_arg = fn1(arr) newshape_arg = fn2(newshape) self.match( np_array_ops.reshape(arr_arg, newshape_arg, *args, **kwargs), np.reshape(arr_arg, newshape, *args, **kwargs)) run_test(5, [-1]) run_test([], [-1]) run_test([1, 2, 3], [1, 3]) run_test([1, 2, 3], [3, 1]) run_test([1, 2, 3, 4], [2, 2]) run_test([1, 2, 3, 4], [2, 1, 2]) def testExpandDims(self): def run_test(arr, axis): self.match(np_array_ops.expand_dims(arr, axis), np.expand_dims(arr, axis)) run_test([1, 2, 3], 0) run_test([1, 2, 3], 1) def testSqueeze(self): def run_test(arr, *args, **kwargs): for fn in self.array_transforms: arg = fn(arr) # Note: np.squeeze ignores the axis arg for non-ndarray objects. # This looks like a bug: https://github.com/numpy/numpy/issues/8201 # So we convert the arg to np.ndarray before passing to np.squeeze. self.match( np_array_ops.squeeze(arg, *args, **kwargs), np.squeeze(np.array(arg), *args, **kwargs)) run_test(5) run_test([]) run_test([5]) run_test([[1, 2, 3]]) run_test([[[1], [2], [3]]]) run_test([[[1], [2], [3]]], axis=0) run_test([[[1], [2], [3]]], axis=2) run_test([[[1], [2], [3]]], axis=(0, 2)) run_test([[[1], [2], [3]]], axis=-1) run_test([[[1], [2], [3]]], axis=-3) def testTranspose(self): def run_test(arr, axes=None): for fn1 in self.array_transforms: for fn2 in self.array_transforms: arr_arg = fn1(arr) axes_arg = fn2(axes) if axes is not None else None self.match( np_array_ops.transpose(arr_arg, axes_arg), np.transpose(arr_arg, axes)) run_test(5) run_test([]) run_test([5]) run_test([5, 6, 7]) run_test(np.arange(30).reshape(2, 3, 5).tolist()) run_test(np.arange(30).reshape(2, 3, 5).tolist(), [0, 1, 2]) run_test(np.arange(30).reshape(2, 3, 5).tolist(), [0, 2, 1]) run_test(np.arange(30).reshape(2, 3, 5).tolist(), [1, 0, 2]) run_test(np.arange(30).reshape(2, 3, 5).tolist(), [1, 2, 0]) run_test(np.arange(30).reshape(2, 3, 5).tolist(), [2, 0, 1]) run_test(np.arange(30).reshape(2, 3, 5).tolist(), [2, 1, 0]) def match_shape(self, actual, expected, msg=None): if msg: msg = 'Shape match failed for: {}. Expected: {} Actual: {}'.format( msg, expected.shape, actual.shape) self.assertEqual(actual.shape, expected.shape, msg=msg) def match_dtype(self, actual, expected, msg=None): if msg: msg = 'Dtype match failed for: {}. Expected: {} Actual: {}.'.format( msg, expected.dtype, actual.dtype) self.assertEqual(actual.dtype, expected.dtype, msg=msg) def match(self, actual, expected, msg=None, check_dtype=True): msg_ = 'Expected: {} Actual: {}'.format(expected, actual) if msg: msg = '{} {}'.format(msg_, msg) else: msg = msg_ self.assertIsInstance(actual, np_arrays.ndarray) if check_dtype: self.match_dtype(actual, expected, msg) self.match_shape(actual, expected, msg) if not actual.shape.rank: self.assertAllClose(actual.tolist(), expected.tolist()) else: self.assertAllClose(actual.tolist(), expected.tolist()) def testPad(self): t = [[1, 2, 3], [4, 5, 6]] paddings = [[ 1, 1, ], [2, 2]] self.assertAllEqual( np_array_ops.pad(t, paddings, 'constant'), [[0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 2, 3, 0, 0], [0, 0, 4, 5, 6, 0, 0], [0, 0, 0, 0, 0, 0, 0]]) self.assertAllEqual( np_array_ops.pad(t, paddings, 'reflect'), [[6, 5, 4, 5, 6, 5, 4], [3, 2, 1, 2, 3, 2, 1], [6, 5, 4, 5, 6, 5, 4], [3, 2, 1, 2, 3, 2, 1]]) self.assertAllEqual( np_array_ops.pad(t, paddings, 'symmetric'), [[2, 1, 1, 2, 3, 3, 2], [2, 1, 1, 2, 3, 3, 2], [5, 4, 4, 5, 6, 6, 5], [5, 4, 4, 5, 6, 6, 5]]) def testTake(self): a = [4, 3, 5, 7, 6, 8] indices = [0, 1, 4] self.assertAllEqual([4, 3, 6], np_array_ops.take(a, indices)) indices = [[0, 1], [2, 3]] self.assertAllEqual([[4, 3], [5, 7]], np_array_ops.take(a, indices)) a = [[4, 3, 5], [7, 6, 8]] self.assertAllEqual([[4, 3], [5, 7]], np_array_ops.take(a, indices)) a = np.random.rand(2, 16, 3) axis = 1 self.assertAllEqual( np.take(a, indices, axis=axis), np_array_ops.take(a, indices, axis=axis)) def testTakeAlongAxis(self): rng = np.random.default_rng() x = rng.standard_normal((2, 3)).astype(np.float32) ind = rng.integers(0, 3, (2, 5)).astype(np.int64) out_expected = np.take_along_axis(x, ind, axis=1) out = np_array_ops.take_along_axis(x, ind, axis=1) self.assertAllEqual(out, out_expected) def testWhere(self): self.assertAllEqual([[1.0, 1.0], [1.0, 1.0]], np_array_ops.where([True], [1.0, 1.0], [[0, 0], [0, 0]])) def testShape(self): self.assertAllEqual((1, 2), np_array_ops.shape([[0, 0]])) def testSwapaxes(self): x = [[1, 2, 3]] self.assertAllEqual([[1], [2], [3]], np_array_ops.swapaxes(x, 0, 1)) self.assertAllEqual([[1], [2], [3]], np_array_ops.swapaxes(x, -2, -1)) x = [[[0, 1], [2, 3]], [[4, 5], [6, 7]]] self.assertAllEqual([[[0, 4], [2, 6]], [[1, 5], [3, 7]]], np_array_ops.swapaxes(x, 0, 2)) self.assertAllEqual([[[0, 4], [2, 6]], [[1, 5], [3, 7]]], np_array_ops.swapaxes(x, -3, -1)) def testMoveaxis(self): def _test(*args): # pylint: disable=no-value-for-parameter expected = np.moveaxis(*args) raw_ans = np_array_ops.moveaxis(*args) self.assertAllEqual(expected, raw_ans) a = np.random.rand(1, 2, 3, 4, 5, 6) # Basic _test(a, (0, 2), (3, 5)) _test(a, (0, 2), (-1, -3)) _test(a, (-6, -4), (3, 5)) _test(a, (-6, -4), (-1, -3)) _test(a, 0, 4) _test(a, -6, -2) _test(a, tuple(range(6)), tuple(range(6))) _test(a, tuple(range(6)), tuple(reversed(range(6)))) _test(a, (), ()) def testNdim(self): self.assertAllEqual(0, np_array_ops.ndim(0.5)) self.assertAllEqual(1, np_array_ops.ndim([1, 2])) def testIsscalar(self): self.assertTrue(np_array_ops.isscalar(0.5)) self.assertTrue(np_array_ops.isscalar(5)) self.assertTrue(np_array_ops.isscalar(False)) self.assertFalse(np_array_ops.isscalar([1, 2])) def assertListEqual(self, a, b): self.assertAllEqual(len(a), len(b)) for x, y in zip(a, b): self.assertAllEqual(x, y) def testSplit(self): x = np_array_ops.arange(9) y = np_array_ops.split(x, 3) self.assertListEqual([([0, 1, 2]), ([3, 4, 5]), ([6, 7, 8])], y) x = np_array_ops.arange(8) y = np_array_ops.split(x, [3, 5, 6, 10]) self.assertListEqual([([0, 1, 2]), ([3, 4]), ([5]), ([6, 7]), ([])], y) def testHSplitBecomesVsplitFor1DInput(self): @def_function.function def f(arr): return np_array_ops.hsplit(arr, 2) x = np_array_ops.arange(4) self.assertListEqual([[0, 1], [2, 3]], f(x)) def testSign(self): state = np.random.RandomState(0) test_types = [np.float16, np.float32, np.float64, np.int32, np.int64, np.complex64, np.complex128] test_shapes = [(), (1,), (2, 3, 4), (2, 3, 0, 4)] for dtype in test_types: for shape in test_shapes: if np.issubdtype(dtype, np.complexfloating): arr = (np.asarray(state.randn(*shape) * 100, dtype=dtype) + 1j * np.asarray(state.randn(*shape) * 100, dtype=dtype)) else: arr = np.asarray(state.randn(*shape) * 100, dtype=dtype) self.match(np_array_ops.sign(arr), np.sign(arr))
ArrayMethodsTest
python
scikit-learn__scikit-learn
sklearn/cluster/_birch.py
{ "start": 3685, "end": 9566 }
class ____: """Each node in a CFTree is called a CFNode. The CFNode can have a maximum of branching_factor number of CFSubclusters. Parameters ---------- threshold : float Threshold needed for a new subcluster to enter a CFSubcluster. branching_factor : int Maximum number of CF subclusters in each node. is_leaf : bool We need to know if the CFNode is a leaf or not, in order to retrieve the final subclusters. n_features : int The number of features. Attributes ---------- subclusters_ : list List of subclusters for a particular CFNode. prev_leaf_ : _CFNode Useful only if is_leaf is True. next_leaf_ : _CFNode next_leaf. Useful only if is_leaf is True. the final subclusters. init_centroids_ : ndarray of shape (branching_factor + 1, n_features) Manipulate ``init_centroids_`` throughout rather than centroids_ since the centroids are just a view of the ``init_centroids_`` . init_sq_norm_ : ndarray of shape (branching_factor + 1,) manipulate init_sq_norm_ throughout. similar to ``init_centroids_``. centroids_ : ndarray of shape (branching_factor + 1, n_features) View of ``init_centroids_``. squared_norm_ : ndarray of shape (branching_factor + 1,) View of ``init_sq_norm_``. """ def __init__(self, *, threshold, branching_factor, is_leaf, n_features, dtype): self.threshold = threshold self.branching_factor = branching_factor self.is_leaf = is_leaf self.n_features = n_features # The list of subclusters, centroids and squared norms # to manipulate throughout. self.subclusters_ = [] self.init_centroids_ = np.zeros((branching_factor + 1, n_features), dtype=dtype) self.init_sq_norm_ = np.zeros((branching_factor + 1), dtype) self.squared_norm_ = [] self.prev_leaf_ = None self.next_leaf_ = None def append_subcluster(self, subcluster): n_samples = len(self.subclusters_) self.subclusters_.append(subcluster) self.init_centroids_[n_samples] = subcluster.centroid_ self.init_sq_norm_[n_samples] = subcluster.sq_norm_ # Keep centroids and squared norm as views. In this way # if we change init_centroids and init_sq_norm_, it is # sufficient, self.centroids_ = self.init_centroids_[: n_samples + 1, :] self.squared_norm_ = self.init_sq_norm_[: n_samples + 1] def update_split_subclusters(self, subcluster, new_subcluster1, new_subcluster2): """Remove a subcluster from a node and update it with the split subclusters. """ ind = self.subclusters_.index(subcluster) self.subclusters_[ind] = new_subcluster1 self.init_centroids_[ind] = new_subcluster1.centroid_ self.init_sq_norm_[ind] = new_subcluster1.sq_norm_ self.append_subcluster(new_subcluster2) def insert_cf_subcluster(self, subcluster): """Insert a new subcluster into the node.""" if not self.subclusters_: self.append_subcluster(subcluster) return False threshold = self.threshold branching_factor = self.branching_factor # We need to find the closest subcluster among all the # subclusters so that we can insert our new subcluster. dist_matrix = np.dot(self.centroids_, subcluster.centroid_) dist_matrix *= -2.0 dist_matrix += self.squared_norm_ closest_index = np.argmin(dist_matrix) closest_subcluster = self.subclusters_[closest_index] # If the subcluster has a child, we need a recursive strategy. if closest_subcluster.child_ is not None: split_child = closest_subcluster.child_.insert_cf_subcluster(subcluster) if not split_child: # If it is determined that the child need not be split, we # can just update the closest_subcluster closest_subcluster.update(subcluster) self.init_centroids_[closest_index] = self.subclusters_[ closest_index ].centroid_ self.init_sq_norm_[closest_index] = self.subclusters_[ closest_index ].sq_norm_ return False # things not too good. we need to redistribute the subclusters in # our child node, and add a new subcluster in the parent # subcluster to accommodate the new child. else: new_subcluster1, new_subcluster2 = _split_node( closest_subcluster.child_, threshold, branching_factor, ) self.update_split_subclusters( closest_subcluster, new_subcluster1, new_subcluster2 ) if len(self.subclusters_) > self.branching_factor: return True return False # good to go! else: merged = closest_subcluster.merge_subcluster(subcluster, self.threshold) if merged: self.init_centroids_[closest_index] = closest_subcluster.centroid_ self.init_sq_norm_[closest_index] = closest_subcluster.sq_norm_ return False # not close to any other subclusters, and we still # have space, so add. elif len(self.subclusters_) < self.branching_factor: self.append_subcluster(subcluster) return False # We do not have enough space nor is it closer to an # other subcluster. We need to split. else: self.append_subcluster(subcluster) return True
_CFNode
python
pyca__cryptography
src/cryptography/x509/name.py
{ "start": 490, "end": 3536 }
class ____(utils.Enum): BitString = 3 OctetString = 4 UTF8String = 12 NumericString = 18 PrintableString = 19 T61String = 20 IA5String = 22 UTCTime = 23 GeneralizedTime = 24 VisibleString = 26 UniversalString = 28 BMPString = 30 _ASN1_TYPE_TO_ENUM = {i.value: i for i in _ASN1Type} _NAMEOID_DEFAULT_TYPE: dict[ObjectIdentifier, _ASN1Type] = { NameOID.COUNTRY_NAME: _ASN1Type.PrintableString, NameOID.JURISDICTION_COUNTRY_NAME: _ASN1Type.PrintableString, NameOID.SERIAL_NUMBER: _ASN1Type.PrintableString, NameOID.DN_QUALIFIER: _ASN1Type.PrintableString, NameOID.EMAIL_ADDRESS: _ASN1Type.IA5String, NameOID.DOMAIN_COMPONENT: _ASN1Type.IA5String, } # Type alias _OidNameMap = typing.Mapping[ObjectIdentifier, str] _NameOidMap = typing.Mapping[str, ObjectIdentifier] #: Short attribute names from RFC 4514: #: https://tools.ietf.org/html/rfc4514#page-7 _NAMEOID_TO_NAME: _OidNameMap = { NameOID.COMMON_NAME: "CN", NameOID.LOCALITY_NAME: "L", NameOID.STATE_OR_PROVINCE_NAME: "ST", NameOID.ORGANIZATION_NAME: "O", NameOID.ORGANIZATIONAL_UNIT_NAME: "OU", NameOID.COUNTRY_NAME: "C", NameOID.STREET_ADDRESS: "STREET", NameOID.DOMAIN_COMPONENT: "DC", NameOID.USER_ID: "UID", } _NAME_TO_NAMEOID = {v: k for k, v in _NAMEOID_TO_NAME.items()} _NAMEOID_LENGTH_LIMIT = { NameOID.COUNTRY_NAME: (2, 2), NameOID.JURISDICTION_COUNTRY_NAME: (2, 2), NameOID.COMMON_NAME: (1, 64), } def _escape_dn_value(val: str | bytes) -> str: """Escape special characters in RFC4514 Distinguished Name value.""" if not val: return "" # RFC 4514 Section 2.4 defines the value as being the # (U+0023) character # followed by the hexadecimal encoding of the octets. if isinstance(val, bytes): return "#" + binascii.hexlify(val).decode("utf8") # See https://tools.ietf.org/html/rfc4514#section-2.4 val = val.replace("\\", "\\\\") val = val.replace('"', '\\"') val = val.replace("+", "\\+") val = val.replace(",", "\\,") val = val.replace(";", "\\;") val = val.replace("<", "\\<") val = val.replace(">", "\\>") val = val.replace("\0", "\\00") if val[0] == "#" or (val[0] == " " and len(val) > 1): val = "\\" + val if val[-1] == " ": val = val[:-1] + "\\ " return val def _unescape_dn_value(val: str) -> str: if not val: return "" # See https://tools.ietf.org/html/rfc4514#section-3 # special = escaped / SPACE / SHARP / EQUALS # escaped = DQUOTE / PLUS / COMMA / SEMI / LANGLE / RANGLE def sub(m): val = m.group(0) # Special character escape if len(val) == 2: return val[1:] # Unicode string of hex return binascii.unhexlify(val.replace("\\", "")).decode() return _RFC4514NameParser._PAIR_MULTI_RE.sub(sub, val) NameAttributeValueType = typing.TypeVar( "NameAttributeValueType", typing.Union[str, bytes], str, bytes, covariant=True, )
_ASN1Type
python
cython__cython
tests/run/pep526_variable_annotations.py
{ "start": 2802, "end": 7762 }
class ____(object): pass c = Cls() c.x: int = 0 # Annotates c.x with int. c.y: int # Annotates c.y with int. d = {} d['a']: int = 0 # Annotates d['a'] with int. d['b']: int # Annotates d['b'] with int. (x): int # Annotates x with int, (x) treated as expression by compiler. (y): int = 0 # Same situation here. @cython.test_assert_path_exists( "//WhileStatNode", "//WhileStatNode//DictIterationNextNode", ) def iter_declared_dict(d): """ >>> d = {1.1: 2.5, 3.3: 4.5} >>> iter_declared_dict(d) 7.0 # specialized "compiled" test in module-level __doc__ """ typed_dict : Dict[cython.float, cython.float] = d s = 0.0 for key in typed_dict: s += d[key] return s @cython.test_assert_path_exists( "//WhileStatNode", "//WhileStatNode//DictIterationNextNode", ) def iter_declared_dict_arg(d : Dict[cython.float, cython.float]): """ >>> d = {1.1: 2.5, 3.3: 4.5} >>> iter_declared_dict_arg(d) 7.0 # module level "compiled" test in __doc__ below """ s = 0.0 for key in d: s += d[key] return s def literal_list_ptr(): """ >>> literal_list_ptr() 4 """ a : cython.p_int = [1, 2, 3, 4, 5] return a[3] def test_subscripted_types(): """ >>> test_subscripted_types() dict object dict object list object list object list object set object """ a1: typing.Dict[cython.int, cython.float] = {} a2: dict[cython.int, cython.float] = {} b1: List[cython.int] = [] b2: list[cython.int] = [] b3: List = [] # doesn't need to be subscripted c: _SET_[object] = set() print(cython.typeof(a1) + (" object" if not cython.compiled else "")) print(cython.typeof(a2) + (" object" if not cython.compiled else "")) print(cython.typeof(b1) + (" object" if not cython.compiled else "")) print(cython.typeof(b2) + (" object" if not cython.compiled else "")) print(cython.typeof(b3) + (" object" if not cython.compiled else "")) print(cython.typeof(c) + (" object" if not cython.compiled else "")) def test_use_typing_attributes_as_non_annotations(): """ >>> test_use_typing_attributes_as_non_annotations() typing.Tuple typing.Tuple[int] Optional True Optional True Optional True Union typing.FrozenSet Union typing.Dict """ x1 = typing.Tuple x2 = typing.Tuple[int] y1 = typing.Optional # It's important for the test that FrozenSet isn't available in the module namespace, # since one bug would have looked it up there rather than as an attribute of typing y2 = typing.Optional[typing.FrozenSet] z1 = Optional z2 = Optional[Dict] q1 = typing.Union q2 = typing.Union[typing.FrozenSet] w1 = Union w2 = Union[Dict] def name_of(special_decl): try: return special_decl.__name__ except AttributeError: return str(special_decl).partition('.')[-1] # The result of printing "Optional[type]" is slightly version-dependent # so accept different forms. allowed_optional_frozenset_strings = [ "typing.Union[typing.FrozenSet, NoneType]", "typing.Optional[typing.FrozenSet]", "typing.FrozenSet | None", ] allowed_optional_dict_strings = [ "typing.Union[typing.Dict, NoneType]", "typing.Optional[typing.Dict]", "typing.Dict | None", ] print(x1, x2) print(name_of(y1), y1 is z1 or (y1, z1)) print(name_of(y1), str(y2) in allowed_optional_frozenset_strings or str(y2)) print(name_of(z1), str(z2) in allowed_optional_dict_strings or str(z2)) print(name_of(q1), str(q2) in ["typing.Union[typing.FrozenSet, NoneType]", "typing.FrozenSet | None"] or str(q2)) print(name_of(w1), str(w2) in ["typing.Union[typing.Dict, NoneType]", "typing.Dict | None"] or str(w2)) try: import numpy.typing as npt import numpy as np except ImportError: # we can't actually use numpy typing right now, it was just part # of a reproducer that caused a compiler crash. We don't need it # available to use it in annotations, so don't fail if it's not there pass def list_float_to_numpy(z: List[float]) -> List[npt.NDArray[np.float64]]: # since we're not actually requiring numpy, don't make the return type match assert cython.typeof(z) == 'list' return [z[0]] if cython.compiled: __doc__ = """ # passing non-dicts to variables declared as dict now fails >>> class D(object): ... def __getitem__(self, x): return 2 ... def __iter__(self): return iter([1, 2, 3]) >>> iter_declared_dict(D()) # doctest:+IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... TypeError: Expected dict, got D >>> iter_declared_dict_arg(D()) # doctest:+IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... TypeError: Expected dict, got D """ _WARNINGS = """ """
Cls
python
ray-project__ray
python/ray/data/_internal/datasource/parquet_datasource.py
{ "start": 38211, "end": 46993 }
class ____: # Estimated avg byte size of a row (in-memory) avg_row_in_mem_bytes: Optional[int] # Corresponding file metadata metadata: "pyarrow._parquet.FileMetaData" def estimate_in_memory_bytes(self) -> Optional[int]: if self.avg_row_in_mem_bytes is None: return None return self.avg_row_in_mem_bytes * self.metadata.num_rows def _estimate_files_encoding_ratio( fragments: List[_ParquetFragment], file_infos: List[_ParquetFileInfo], ) -> float: """Return an estimate of the Parquet files encoding ratio. To avoid OOMs, it is safer to return an over-estimate than an underestimate. """ if not DataContext.get_current().decoding_size_estimation: return PARQUET_ENCODING_RATIO_ESTIMATE_DEFAULT assert len(file_infos) == len(fragments) # Estimate size of the rows in a file in memory estimated_in_mem_size_arr = [ fi.estimate_in_memory_bytes() if fi is not None else None for fi in file_infos ] file_size_arr = [f.file_size for f in fragments] estimated_encoding_ratios = [ float(in_mem_size) / file_size for in_mem_size, file_size in zip(estimated_in_mem_size_arr, file_size_arr) if file_size > 0 and in_mem_size is not None ] # Return default estimate of 5 if all sampled files turned out to be empty if not estimated_encoding_ratios: return PARQUET_ENCODING_RATIO_ESTIMATE_DEFAULT estimated_ratio = np.mean(estimated_encoding_ratios) logger.info(f"Estimated parquet encoding ratio is {estimated_ratio:.3f}.") return max(estimated_ratio, PARQUET_ENCODING_RATIO_ESTIMATE_LOWER_BOUND) def _fetch_file_infos( sampled_fragments: List[_ParquetFragment], *, columns: Optional[List[str]], schema: Optional["pyarrow.Schema"], local_scheduling: Optional[bool], ) -> List[Optional[_ParquetFileInfo]]: fetch_file_info = cached_remote_fn(_fetch_parquet_file_info) futures = [] for fragment in sampled_fragments: # Sample the first rows batch in i-th file. # Use SPREAD scheduling strategy to avoid packing many sampling tasks on # same machine to cause OOM issue, as sampling can be memory-intensive. futures.append( fetch_file_info.options( scheduling_strategy=local_scheduling or DataContext.get_current().scheduling_strategy, # Retry in case of transient errors during sampling. retry_exceptions=[OSError], ).remote( fragment, columns=columns, schema=schema, ) ) sample_bar = ProgressBar("Parquet dataset sampling", len(futures), unit="file") file_infos = sample_bar.fetch_until_complete(futures) sample_bar.close() return file_infos def _estimate_reader_batch_size( file_infos: List[Optional[_ParquetFileInfo]], target_block_size: Optional[int] ) -> Optional[int]: if target_block_size is None: return None avg_num_rows_per_block = [ target_block_size / fi.avg_row_in_mem_bytes for fi in file_infos if ( fi is not None and fi.avg_row_in_mem_bytes is not None and fi.avg_row_in_mem_bytes > 0 ) ] if not avg_num_rows_per_block: return DEFAULT_PARQUET_READER_ROW_BATCH_SIZE estimated_batch_size: int = max(math.ceil(np.mean(avg_num_rows_per_block)), 1) logger.info(f"Estimated parquet reader batch size at {estimated_batch_size} rows") return estimated_batch_size def get_parquet_dataset(paths, filesystem, dataset_kwargs): import pyarrow.parquet as pq # If you pass a list containing a single directory path to `ParquetDataset`, PyArrow # errors with 'IsADirectoryError: Path ... points to a directory, but only file # paths are supported'. To avoid this, we pass the directory path directly. if len(paths) == 1: paths = paths[0] try: dataset = pq.ParquetDataset( paths, **dataset_kwargs, filesystem=filesystem, ) except TypeError: # Fallback: resolve filesystem locally in the worker try: resolved_paths, resolved_filesystem = _resolve_paths_and_filesystem( paths, filesystem=None ) resolved_filesystem = RetryingPyFileSystem.wrap( resolved_filesystem, retryable_errors=DataContext.get_current().retried_io_errors, ) dataset = pq.ParquetDataset( resolved_paths, **dataset_kwargs, filesystem=resolved_filesystem, ) except OSError as os_e: _handle_read_os_error(os_e, paths) except OSError as e: _handle_read_os_error(e, paths) return dataset def _sample_fragments( fragments: List[_ParquetFragment], ) -> List[_ParquetFragment]: if not fragments: return [] target_num_samples = math.ceil( len(fragments) * PARQUET_ENCODING_RATIO_ESTIMATE_SAMPLING_RATIO ) target_num_samples = max( min(target_num_samples, PARQUET_ENCODING_RATIO_ESTIMATE_MAX_NUM_SAMPLES), PARQUET_ENCODING_RATIO_ESTIMATE_MIN_NUM_SAMPLES, ) # Make sure number of samples doesn't exceed total # of files target_num_samples = min(target_num_samples, len(fragments)) # Evenly distributed to choose which file to sample, to avoid biased prediction # if data is skewed. pivots = np.linspace(0, len(fragments) - 1, target_num_samples).astype(int) return [fragments[idx] for idx in pivots.tolist()] def _add_partitions_to_table( partition_col_values: Dict[str, PartitionDataType], table: "pyarrow.Table" ) -> "pyarrow.Table": for partition_col, value in partition_col_values.items(): field_index = table.schema.get_field_index(partition_col) if field_index == -1: table = BlockAccessor.for_block(table).fill_column(partition_col, value) elif log_once(f"duplicate_partition_field_{partition_col}"): logger.warning( f"The partition field '{partition_col}' also exists in the Parquet " f"file. Ray Data will default to using the value in the Parquet file." ) return table def _get_partition_columns_schema( partitioning: Partitioning, file_paths: List[str], ) -> "pyarrow.Schema": """Return a new schema with partition fields added. This function infers the partition fields from the first file path in the dataset. """ import pyarrow as pa # If the dataset is empty, we can't infer the partitioning if len(file_paths) == 0: return pa.schema([]) # If the dataset isn't partitioned, there's no partition schema elif partitioning is None: return pa.schema([]) first_path = file_paths[0] fields = [] parser = PathPartitionParser(partitioning) partitions = parser(first_path) for field_name in partitions: if field_name in partitioning.field_types: field_type = pa.from_numpy_dtype(partitioning.field_types[field_name]) else: field_type = pa.string() # Without this check, we would add the same partition field multiple times, # which silently fails when asking for `pa.field()`. fields.append(pa.field(field_name, field_type)) return pa.schema(fields) def _infer_data_and_partition_columns( user_specified_columns: List[str], fragment: "ParquetFileFragment", partitioning: Optional[Partitioning], ) -> Tuple[List[str], List[str]]: """Infer which columns are in the files and which columns are partition columns. This function uses the schema and path of the first file to infer what columns represent. Args: user_specified_columns: A list of column names that the user specified. fragment: The first fragment in the dataset. partitioning: The partitioning scheme used to partition the data. Returns: A tuple of lists of column names. The first list contains the columns that are in the file, and the second list contains the columns that are partition columns. """ data_columns = [ column for column in user_specified_columns if column in fragment.physical_schema.names ] if partitioning is not None: parse = PathPartitionParser(partitioning) partitions = parse(fragment.path) partition_columns = [ column for column in user_specified_columns if column in partitions ] else: partition_columns = [] return data_columns, partition_columns
_ParquetFileInfo
python
nryoung__algorithms
tests/test_data_structures.py
{ "start": 20416, "end": 20875 }
class ____(unittest.TestCase): """ Test Union Find Implementation """ def test_union_find(self): self.uf = union_find.UnionFind(4) self.uf.make_set(4) self.uf.union(1, 0) self.uf.union(3, 4) self.assertEqual(self.uf.find(1), 0) self.assertEqual(self.uf.find(3), 4) self.assertEqual(self.uf.is_connected(0, 1), True) self.assertEqual(self.uf.is_connected(3, 4), True)
TestUnionFind
python
redis__redis-py
tests/test_scenario/fault_injector_client.py
{ "start": 393, "end": 704 }
class ____(str, Enum): DMC_RESTART = "dmc_restart" FAILOVER = "failover" RESHARD = "reshard" SEQUENCE_OF_ACTIONS = "sequence_of_actions" NETWORK_FAILURE = "network_failure" EXECUTE_RLUTIL_COMMAND = "execute_rlutil_command" EXECUTE_RLADMIN_COMMAND = "execute_rladmin_command"
ActionType
python
django__django
tests/queries/models.py
{ "start": 17129, "end": 17391 }
class ____(models.Model): modela_fk = models.ForeignKey(Ticket23605A, models.CASCADE) modelc_fk = models.ForeignKey("Ticket23605C", models.CASCADE) field_b0 = models.IntegerField(null=True) field_b1 = models.BooleanField(default=False)
Ticket23605B
python
tensorflow__tensorflow
tensorflow/python/kernel_tests/check_ops_test.py
{ "start": 49422, "end": 54908 }
class ____(test.TestCase): @test_util.run_in_graph_and_eager_modes def test_rank_zero_tensor_raises_if_rank_mismatch_static_rank(self): tensor_rank0 = constant_op.constant(42, name="my_tensor") with self.assertRaisesRegex(ValueError, "fail.*must have rank.*in.*1.*2"): with ops.control_dependencies([ check_ops.assert_rank_in(tensor_rank0, (1, 2), message="fail")]): self.evaluate(array_ops.identity(tensor_rank0)) @test_util.run_deprecated_v1 def test_rank_zero_tensor_raises_if_rank_mismatch_dynamic_rank(self): with self.cached_session(): tensor_rank0 = array_ops.placeholder(dtypes.float32, name="my_tensor") with ops.control_dependencies([ check_ops.assert_rank_in(tensor_rank0, (1, 2), message="fail")]): with self.assertRaisesOpError("fail.*my_tensor.*rank"): array_ops.identity(tensor_rank0).eval(feed_dict={tensor_rank0: 42.0}) @test_util.run_in_graph_and_eager_modes def test_rank_zero_tensor_doesnt_raise_if_rank_matches_static_rank(self): tensor_rank0 = constant_op.constant(42, name="my_tensor") for desired_ranks in ((0, 1, 2), (1, 0, 2), (1, 2, 0)): with ops.control_dependencies([ check_ops.assert_rank_in(tensor_rank0, desired_ranks)]): self.evaluate(array_ops.identity(tensor_rank0)) @test_util.run_deprecated_v1 def test_rank_zero_tensor_doesnt_raise_if_rank_matches_dynamic_rank(self): with self.cached_session(): tensor_rank0 = array_ops.placeholder(dtypes.float32, name="my_tensor") for desired_ranks in ((0, 1, 2), (1, 0, 2), (1, 2, 0)): with ops.control_dependencies([ check_ops.assert_rank_in(tensor_rank0, desired_ranks)]): array_ops.identity(tensor_rank0).eval(feed_dict={tensor_rank0: 42.0}) @test_util.run_in_graph_and_eager_modes def test_rank_one_tensor_doesnt_raise_if_rank_matches_static_rank(self): tensor_rank1 = constant_op.constant([42, 43], name="my_tensor") for desired_ranks in ((0, 1, 2), (1, 0, 2), (1, 2, 0)): with ops.control_dependencies([ check_ops.assert_rank_in(tensor_rank1, desired_ranks)]): self.evaluate(array_ops.identity(tensor_rank1)) @test_util.run_deprecated_v1 def test_rank_one_tensor_doesnt_raise_if_rank_matches_dynamic_rank(self): with self.cached_session(): tensor_rank1 = array_ops.placeholder(dtypes.float32, name="my_tensor") for desired_ranks in ((0, 1, 2), (1, 0, 2), (1, 2, 0)): with ops.control_dependencies([ check_ops.assert_rank_in(tensor_rank1, desired_ranks)]): array_ops.identity(tensor_rank1).eval(feed_dict={ tensor_rank1: (42.0, 43.0) }) @test_util.run_in_graph_and_eager_modes def test_rank_one_tensor_raises_if_rank_mismatches_static_rank(self): tensor_rank1 = constant_op.constant((42, 43), name="my_tensor") with self.assertRaisesRegex(ValueError, "rank"): with ops.control_dependencies([ check_ops.assert_rank_in(tensor_rank1, (0, 2))]): self.evaluate(array_ops.identity(tensor_rank1)) @test_util.run_deprecated_v1 def test_rank_one_tensor_raises_if_rank_mismatches_dynamic_rank(self): with self.cached_session(): tensor_rank1 = array_ops.placeholder(dtypes.float32, name="my_tensor") with ops.control_dependencies([ check_ops.assert_rank_in(tensor_rank1, (0, 2))]): with self.assertRaisesOpError("my_tensor.*rank"): array_ops.identity(tensor_rank1).eval(feed_dict={ tensor_rank1: (42.0, 43.0) }) @test_util.run_in_graph_and_eager_modes def test_raises_if_rank_is_not_scalar_static(self): tensor = constant_op.constant((42, 43), name="my_tensor") desired_ranks = ( np.array(1, dtype=np.int32), np.array((2, 1), dtype=np.int32)) with self.assertRaisesRegex(ValueError, "Rank must be a scalar"): check_ops.assert_rank_in(tensor, desired_ranks) @test_util.run_deprecated_v1 def test_raises_if_rank_is_not_scalar_dynamic(self): with self.cached_session(): tensor = constant_op.constant( (42, 43), dtype=dtypes.float32, name="my_tensor") desired_ranks = ( array_ops.placeholder(dtypes.int32, name="rank0_tensor"), array_ops.placeholder(dtypes.int32, name="rank1_tensor")) with self.assertRaisesOpError("Rank must be a scalar"): with ops.control_dependencies( (check_ops.assert_rank_in(tensor, desired_ranks),)): array_ops.identity(tensor).eval(feed_dict={ desired_ranks[0]: 1, desired_ranks[1]: [2, 1], }) @test_util.run_in_graph_and_eager_modes def test_raises_if_rank_is_not_integer_static(self): tensor = constant_op.constant((42, 43), name="my_tensor") with self.assertRaisesRegex(TypeError, "must be of type tf.int32"): check_ops.assert_rank_in(tensor, (1, .5,)) @test_util.run_deprecated_v1 def test_raises_if_rank_is_not_integer_dynamic(self): with self.cached_session(): tensor = constant_op.constant( (42, 43), dtype=dtypes.float32, name="my_tensor") rank_tensor = array_ops.placeholder(dtypes.float32, name="rank_tensor") with self.assertRaisesRegex(TypeError, "must be of type tf.int32"): with ops.control_dependencies( [check_ops.assert_rank_in(tensor, (1, rank_tensor))]): array_ops.identity(tensor).eval(feed_dict={rank_tensor: .5})
AssertRankInTest
python
tiangolo__fastapi
docs_src/security/tutorial004.py
{ "start": 1121, "end": 4172 }
class ____(User): hashed_password: str password_hash = PasswordHash.recommended() oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token") app = FastAPI() def verify_password(plain_password, hashed_password): return password_hash.verify(plain_password, hashed_password) def get_password_hash(password): return password_hash.hash(password) def get_user(db, username: str): if username in db: user_dict = db[username] return UserInDB(**user_dict) def authenticate_user(fake_db, username: str, password: str): user = get_user(fake_db, username) if not user: return False if not verify_password(password, user.hashed_password): return False return user def create_access_token(data: dict, expires_delta: Union[timedelta, None] = None): to_encode = data.copy() if expires_delta: expire = datetime.now(timezone.utc) + expires_delta else: expire = datetime.now(timezone.utc) + timedelta(minutes=15) to_encode.update({"exp": expire}) encoded_jwt = jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM) return encoded_jwt async def get_current_user(token: str = Depends(oauth2_scheme)): credentials_exception = HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Could not validate credentials", headers={"WWW-Authenticate": "Bearer"}, ) try: payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM]) username = payload.get("sub") if username is None: raise credentials_exception token_data = TokenData(username=username) except InvalidTokenError: raise credentials_exception user = get_user(fake_users_db, username=token_data.username) if user is None: raise credentials_exception return user async def get_current_active_user(current_user: User = Depends(get_current_user)): if current_user.disabled: raise HTTPException(status_code=400, detail="Inactive user") return current_user @app.post("/token") async def login_for_access_token( form_data: OAuth2PasswordRequestForm = Depends(), ) -> Token: user = authenticate_user(fake_users_db, form_data.username, form_data.password) if not user: raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Incorrect username or password", headers={"WWW-Authenticate": "Bearer"}, ) access_token_expires = timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES) access_token = create_access_token( data={"sub": user.username}, expires_delta=access_token_expires ) return Token(access_token=access_token, token_type="bearer") @app.get("/users/me/", response_model=User) async def read_users_me(current_user: User = Depends(get_current_active_user)): return current_user @app.get("/users/me/items/") async def read_own_items(current_user: User = Depends(get_current_active_user)): return [{"item_id": "Foo", "owner": current_user.username}]
UserInDB
python
wandb__wandb
wandb/vendor/graphql-core-1.1/wandb_graphql/language/ast.py
{ "start": 20960, "end": 21015 }
class ____(TypeDefinition): pass
TypeSystemDefinition
python
python-markdown__markdown
markdown/inlinepatterns.py
{ "start": 26829, "end": 33159 }
class ____(InlineProcessor): """ Return a link element from the given match. """ RE_LINK = re.compile(r'''\(\s*(?:(<[^<>]*>)\s*(?:('[^']*'|"[^"]*")\s*)?\))?''', re.DOTALL | re.UNICODE) RE_TITLE_CLEAN = re.compile(r'\s') def handleMatch(self, m: re.Match[str], data: str) -> tuple[etree.Element | None, int | None, int | None]: """ Return an `a` [`Element`][xml.etree.ElementTree.Element] or `(None, None, None)`. """ text, index, handled = self.getText(data, m.end(0)) if not handled: return None, None, None href, title, index, handled = self.getLink(data, index) if not handled: return None, None, None el = etree.Element("a") el.text = text el.set("href", href) if title is not None: el.set("title", title) return el, m.start(0), index def getLink(self, data: str, index: int) -> tuple[str, str | None, int, bool]: """Parse data between `()` of `[Text]()` allowing recursive `()`. """ href = '' title: str | None = None handled = False m = self.RE_LINK.match(data, pos=index) if m and m.group(1): # Matches [Text](<link> "title") href = m.group(1)[1:-1].strip() if m.group(2): title = m.group(2)[1:-1] index = m.end(0) handled = True elif m: # Track bracket nesting and index in string bracket_count = 1 backtrack_count = 1 start_index = m.end() index = start_index last_bracket = -1 # Primary (first found) quote tracking. quote: str | None = None start_quote = -1 exit_quote = -1 ignore_matches = False # Secondary (second found) quote tracking. alt_quote = None start_alt_quote = -1 exit_alt_quote = -1 # Track last character last = '' for pos in range(index, len(data)): c = data[pos] if c == '(': # Count nested ( # Don't increment the bracket count if we are sure we're in a title. if not ignore_matches: bracket_count += 1 elif backtrack_count > 0: backtrack_count -= 1 elif c == ')': # Match nested ) to ( # Don't decrement if we are sure we are in a title that is unclosed. if ((exit_quote != -1 and quote == last) or (exit_alt_quote != -1 and alt_quote == last)): bracket_count = 0 elif not ignore_matches: bracket_count -= 1 elif backtrack_count > 0: backtrack_count -= 1 # We've found our backup end location if the title doesn't resolve. if backtrack_count == 0: last_bracket = index + 1 elif c in ("'", '"'): # Quote has started if not quote: # We'll assume we are now in a title. # Brackets are quoted, so no need to match them (except for the final one). ignore_matches = True backtrack_count = bracket_count bracket_count = 1 start_quote = index + 1 quote = c # Secondary quote (in case the first doesn't resolve): [text](link'"title") elif c != quote and not alt_quote: start_alt_quote = index + 1 alt_quote = c # Update primary quote match elif c == quote: exit_quote = index + 1 # Update secondary quote match elif alt_quote and c == alt_quote: exit_alt_quote = index + 1 index += 1 # Link is closed, so let's break out of the loop if bracket_count == 0: # Get the title if we closed a title string right before link closed if exit_quote >= 0 and quote == last: href = data[start_index:start_quote - 1] title = ''.join(data[start_quote:exit_quote - 1]) elif exit_alt_quote >= 0 and alt_quote == last: href = data[start_index:start_alt_quote - 1] title = ''.join(data[start_alt_quote:exit_alt_quote - 1]) else: href = data[start_index:index - 1] break if c != ' ': last = c # We have a scenario: `[test](link"notitle)` # When we enter a string, we stop tracking bracket resolution in the main counter, # but we do keep a backup counter up until we discover where we might resolve all brackets # if the title string fails to resolve. if bracket_count != 0 and backtrack_count == 0: href = data[start_index:last_bracket - 1] index = last_bracket bracket_count = 0 handled = bracket_count == 0 if title is not None: title = self.RE_TITLE_CLEAN.sub(' ', dequote(self.unescape(title.strip()))) href = self.unescape(href).strip() return href, title, index, handled def getText(self, data: str, index: int) -> tuple[str, int, bool]: """Parse the content between `[]` of the start of an image or link resolving nested square brackets. """ bracket_count = 1 text = [] for pos in range(index, len(data)): c = data[pos] if c == ']': bracket_count -= 1 elif c == '[': bracket_count += 1 index += 1 if bracket_count == 0: break text.append(c) return ''.join(text), index, bracket_count == 0
LinkInlineProcessor
python
pandas-dev__pandas
pandas/tests/arrays/categorical/test_repr.py
{ "start": 204, "end": 681 }
class ____: def test_print(self, using_infer_string): factor = Categorical(["a", "b", "b", "a", "a", "c", "c", "c"], ordered=True) dtype = "str" if using_infer_string else "object" expected = [ "['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']", f"Categories (3, {dtype}): ['a' < 'b' < 'c']", ] expected = "\n".join(expected) actual = repr(factor) assert actual == expected
TestCategoricalReprWithFactor
python
kamyu104__LeetCode-Solutions
Python/sum-of-nodes-with-even-valued-grandparent.py
{ "start": 191, "end": 669 }
class ____(object): def sumEvenGrandparent(self, root): """ :type root: TreeNode :rtype: int """ def sumEvenGrandparentHelper(root, p, gp): return sumEvenGrandparentHelper(root.left, root.val, p) + \ sumEvenGrandparentHelper(root.right, root.val, p) + \ (root.val if gp is not None and gp % 2 == 0 else 0) if root else 0 return sumEvenGrandparentHelper(root, None, None)
Solution
python
streamlit__streamlit
lib/streamlit/runtime/credentials.py
{ "start": 1114, "end": 3305 }
class ____(NamedTuple): email: str | None # the user's email. is_valid: bool # whether the email is valid. def email_prompt() -> str: # Emoji can cause encoding errors on non-UTF-8 terminals # (See https://github.com/streamlit/streamlit/issues/2284.) # WT_SESSION is a Windows Terminal specific environment variable. If it exists, # we are on the latest Windows Terminal that supports emojis show_emoji = sys.stdout.encoding == "utf-8" and ( not env_util.IS_WINDOWS or os.environ.get("WT_SESSION") ) # IMPORTANT: Break the text below at 80 chars. return f""" {"👋 " if show_emoji else ""}{cli_util.style_for_cli("Welcome to Streamlit!", bold=True)} If you'd like to receive helpful onboarding emails, news, offers, promotions, and the occasional swag, please enter your email address below. Otherwise, leave this field blank. {cli_util.style_for_cli("Email: ", fg="blue")}""" _TELEMETRY_HEADLESS_TEXT = """ Collecting usage statistics. To deactivate, set browser.gatherUsageStats to false. """ def _send_email(email: str | None) -> None: """Send the user's email for metrics, if submitted.""" import requests if email is None or "@" not in email: return metrics_url = "" try: response_json = requests.get( "https://data.streamlit.io/metrics.json", timeout=2 ).json() metrics_url = response_json.get("url", "") except Exception: _LOGGER.exception("Failed to fetch metrics URL") return headers = { "accept": "*/*", "accept-language": "en-US,en;q=0.9", "content-type": "application/json", "origin": "localhost:8501", "referer": "localhost:8501/", } data = { "anonymous_id": None, "messageId": str(uuid4()), "event": "submittedEmail", "author_email": email, "source": "provided_email", "type": "track", "userId": email, } response = requests.post( metrics_url, headers=headers, data=json.dumps(data).encode(), timeout=10, ) response.raise_for_status()
_Activation
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/callbackProtocol7.py
{ "start": 500, "end": 664 }
class ____(Protocol): def __call__(self, x: int, y: int = 2, /): ... def test2(p1: P1, p2: P2, p3: P3, p4: P4): x1: P1 = p2 x2: P1 = p3 x3: P1 = p4
P4
python
zarr-developers__zarr-python
src/zarr/storage/_fsspec.py
{ "start": 2101, "end": 14699 }
class ____(Store): """ Store for remote data based on FSSpec. Parameters ---------- fs : AsyncFileSystem The Async FSSpec filesystem to use with this store. read_only : bool Whether the store is read-only path : str The root path of the store. This should be a relative path and must not include the filesystem scheme. allowed_exceptions : tuple[type[Exception], ...] When fetching data, these cases will be deemed to correspond to missing keys. Attributes ---------- fs allowed_exceptions supports_writes supports_deletes supports_listing Raises ------ TypeError If the Filesystem does not support async operations. ValueError If the path argument includes a scheme. Warns ----- ZarrUserWarning If the file system (fs) was not created with `asynchronous=True`. See Also -------- FsspecStore.from_upath FsspecStore.from_url """ # based on FSSpec supports_writes: bool = True supports_deletes: bool = True supports_listing: bool = True fs: AsyncFileSystem allowed_exceptions: tuple[type[Exception], ...] path: str def __init__( self, fs: AsyncFileSystem, read_only: bool = False, path: str = "/", allowed_exceptions: tuple[type[Exception], ...] = ALLOWED_EXCEPTIONS, ) -> None: super().__init__(read_only=read_only) self.fs = fs self.path = path self.allowed_exceptions = allowed_exceptions if not self.fs.async_impl: raise TypeError("Filesystem needs to support async operations.") if not self.fs.asynchronous: warnings.warn( f"fs ({fs}) was not created with `asynchronous=True`, this may lead to surprising behavior", category=ZarrUserWarning, stacklevel=2, ) @classmethod def from_upath( cls, upath: Any, read_only: bool = False, allowed_exceptions: tuple[type[Exception], ...] = ALLOWED_EXCEPTIONS, ) -> FsspecStore: """ Create a FsspecStore from an upath object. Parameters ---------- upath : UPath The upath to the root of the store. read_only : bool Whether the store is read-only, defaults to False. allowed_exceptions : tuple, optional The exceptions that are allowed to be raised when accessing the store. Defaults to ALLOWED_EXCEPTIONS. Returns ------- FsspecStore """ return cls( fs=upath.fs, path=upath.path.rstrip("/"), read_only=read_only, allowed_exceptions=allowed_exceptions, ) @classmethod def from_mapper( cls, fs_map: FSMap, read_only: bool = False, allowed_exceptions: tuple[type[Exception], ...] = ALLOWED_EXCEPTIONS, ) -> FsspecStore: """ Create a FsspecStore from a FSMap object. Parameters ---------- fs_map : FSMap Fsspec mutable mapping object. read_only : bool Whether the store is read-only, defaults to False. allowed_exceptions : tuple, optional The exceptions that are allowed to be raised when accessing the store. Defaults to ALLOWED_EXCEPTIONS. Returns ------- FsspecStore """ fs = _make_async(fs_map.fs) return cls( fs=fs, path=fs_map.root, read_only=read_only, allowed_exceptions=allowed_exceptions, ) @classmethod def from_url( cls, url: str, storage_options: dict[str, Any] | None = None, read_only: bool = False, allowed_exceptions: tuple[type[Exception], ...] = ALLOWED_EXCEPTIONS, ) -> FsspecStore: """ Create a FsspecStore from a URL. The type of store is determined from the URL scheme. Parameters ---------- url : str The URL to the root of the store. storage_options : dict, optional The options to pass to fsspec when creating the filesystem. read_only : bool Whether the store is read-only, defaults to False. allowed_exceptions : tuple, optional The exceptions that are allowed to be raised when accessing the store. Defaults to ALLOWED_EXCEPTIONS. Returns ------- FsspecStore """ try: from fsspec import url_to_fs except ImportError: # before fsspec==2024.3.1 from fsspec.core import url_to_fs opts = storage_options or {} opts = {"asynchronous": True, **opts} fs, path = url_to_fs(url, **opts) if not fs.async_impl: fs = _make_async(fs) return cls(fs=fs, path=path, read_only=read_only, allowed_exceptions=allowed_exceptions) def with_read_only(self, read_only: bool = False) -> FsspecStore: # docstring inherited return type(self)( fs=self.fs, path=self.path, allowed_exceptions=self.allowed_exceptions, read_only=read_only, ) async def clear(self) -> None: # docstring inherited try: for subpath in await self.fs._find(self.path, withdirs=True): if subpath != self.path: await self.fs._rm(subpath, recursive=True) except FileNotFoundError: pass def __repr__(self) -> str: return f"<FsspecStore({type(self.fs).__name__}, {self.path})>" def __eq__(self, other: object) -> bool: return ( isinstance(other, type(self)) and self.path == other.path and self.read_only == other.read_only and self.fs == other.fs ) async def get( self, key: str, prototype: BufferPrototype, byte_range: ByteRequest | None = None, ) -> Buffer | None: # docstring inherited if not self._is_open: await self._open() path = _dereference_path(self.path, key) try: if byte_range is None: value = prototype.buffer.from_bytes(await self.fs._cat_file(path)) elif isinstance(byte_range, RangeByteRequest): value = prototype.buffer.from_bytes( await self.fs._cat_file( path, start=byte_range.start, end=byte_range.end, ) ) elif isinstance(byte_range, OffsetByteRequest): value = prototype.buffer.from_bytes( await self.fs._cat_file(path, start=byte_range.offset, end=None) ) elif isinstance(byte_range, SuffixByteRequest): value = prototype.buffer.from_bytes( await self.fs._cat_file(path, start=-byte_range.suffix, end=None) ) else: raise ValueError(f"Unexpected byte_range, got {byte_range}.") except self.allowed_exceptions: return None except OSError as e: if "not satisfiable" in str(e): # this is an s3-specific condition we probably don't want to leak return prototype.buffer.from_bytes(b"") raise else: return value async def set( self, key: str, value: Buffer, byte_range: tuple[int, int] | None = None, ) -> None: # docstring inherited if not self._is_open: await self._open() self._check_writable() if not isinstance(value, Buffer): raise TypeError( f"FsspecStore.set(): `value` must be a Buffer instance. Got an instance of {type(value)} instead." ) path = _dereference_path(self.path, key) # write data if byte_range: raise NotImplementedError await self.fs._pipe_file(path, value.to_bytes()) async def delete(self, key: str) -> None: # docstring inherited self._check_writable() path = _dereference_path(self.path, key) try: await self.fs._rm(path) except FileNotFoundError: pass except self.allowed_exceptions: pass async def delete_dir(self, prefix: str) -> None: # docstring inherited if not self.supports_deletes: raise NotImplementedError( "This method is only available for stores that support deletes." ) self._check_writable() path_to_delete = _dereference_path(self.path, prefix) with suppress(*self.allowed_exceptions): await self.fs._rm(path_to_delete, recursive=True) async def exists(self, key: str) -> bool: # docstring inherited path = _dereference_path(self.path, key) exists: bool = await self.fs._exists(path) return exists async def get_partial_values( self, prototype: BufferPrototype, key_ranges: Iterable[tuple[str, ByteRequest | None]], ) -> list[Buffer | None]: # docstring inherited if key_ranges: # _cat_ranges expects a list of paths, start, and end ranges, so we need to reformat each ByteRequest. key_ranges = list(key_ranges) paths: list[str] = [] starts: list[int | None] = [] stops: list[int | None] = [] for key, byte_range in key_ranges: paths.append(_dereference_path(self.path, key)) if byte_range is None: starts.append(None) stops.append(None) elif isinstance(byte_range, RangeByteRequest): starts.append(byte_range.start) stops.append(byte_range.end) elif isinstance(byte_range, OffsetByteRequest): starts.append(byte_range.offset) stops.append(None) elif isinstance(byte_range, SuffixByteRequest): starts.append(-byte_range.suffix) stops.append(None) else: raise ValueError(f"Unexpected byte_range, got {byte_range}.") else: return [] # TODO: expectations for exceptions or missing keys? res = await self.fs._cat_ranges(paths, starts, stops, on_error="return") # the following is an s3-specific condition we probably don't want to leak res = [b"" if (isinstance(r, OSError) and "not satisfiable" in str(r)) else r for r in res] for r in res: if isinstance(r, Exception) and not isinstance(r, self.allowed_exceptions): raise r return [None if isinstance(r, Exception) else prototype.buffer.from_bytes(r) for r in res] async def list(self) -> AsyncIterator[str]: # docstring inherited allfiles = await self.fs._find(self.path, detail=False, withdirs=False) for onefile in (a.removeprefix(self.path + "/") for a in allfiles): yield onefile async def list_dir(self, prefix: str) -> AsyncIterator[str]: # docstring inherited prefix = f"{self.path}/{prefix.rstrip('/')}" try: allfiles = await self.fs._ls(prefix, detail=False) except FileNotFoundError: return for onefile in (a.replace(prefix + "/", "") for a in allfiles): yield onefile.removeprefix(self.path).removeprefix("/") async def list_prefix(self, prefix: str) -> AsyncIterator[str]: # docstring inherited for onefile in await self.fs._find( f"{self.path}/{prefix}", detail=False, maxdepth=None, withdirs=False ): yield onefile.removeprefix(f"{self.path}/") async def getsize(self, key: str) -> int: path = _dereference_path(self.path, key) info = await self.fs._info(path) size = info.get("size") if size is None: # Not all filesystems support size. Fall back to reading the entire object return await super().getsize(key) else: # fsspec doesn't have typing. We'll need to assume or verify this is true return int(size)
FsspecStore
python
jina-ai__jina
jina/clients/base/stream_rpc.py
{ "start": 85, "end": 2110 }
class ____: """Class that encapsulated the methods required to run a stream rpc call from the client. Instantiate a single class for each client request. """ def __init__( self, channel, continue_on_error, metadata, on_always, on_done, on_error, p_bar, req_iter, max_attempts, backoff_multiplier, initial_backoff, max_backoff, logger, show_progress, compression, **kwargs ): self.compression = compression self.show_progress = show_progress self.logger = logger self.max_backoff = max_backoff self.initial_backoff = initial_backoff self.backoff_multiplier = backoff_multiplier self.max_attempts = max_attempts self.req_iter = req_iter self.p_bar = p_bar self.on_error = on_error self.on_done = on_done self.on_always = on_always self.metadata = metadata self.continue_on_error = continue_on_error self.channel = channel self.kwargs = kwargs async def stream_rpc_with_retry(self): """Wraps the stream rpc logic with retry loop based on the retry params. :yields: Responses received from the target. """ stub = jina_pb2_grpc.JinaRPCStub(self.channel) async for resp in stub.Call( self.req_iter, compression=self.compression, metadata=self.metadata, credentials=self.kwargs.get('credentials', None), timeout=self.kwargs.get('timeout', None), ): callback_exec( response=resp, logger=self.logger, on_error=self.on_error, on_done=self.on_done, on_always=self.on_always, continue_on_error=self.continue_on_error, ) if self.show_progress: self.p_bar.update() yield resp
StreamRpc
python
pydantic__pydantic
pydantic/plugin/__init__.py
{ "start": 4969, "end": 6291 }
class ____(BaseValidateHandlerProtocol, Protocol): """Event handler for `SchemaValidator.validate_json`.""" def on_enter( self, input: str | bytes | bytearray, *, strict: bool | None = None, extra: ExtraValues | None = None, context: Any | None = None, self_instance: Any | None = None, by_alias: bool | None = None, by_name: bool | None = None, ) -> None: """Callback to be notified of validation start, and create an instance of the event handler. Args: input: The JSON data to be validated. strict: Whether to validate the object in strict mode. extra: Whether to ignore, allow, or forbid extra data during model validation. context: The context to use for validation, this is passed to functional validators. self_instance: An instance of a model to set attributes on from validation, this is used when running validation from the `__init__` method of a model. by_alias: Whether to use the field's alias to match the input data to an attribute. by_name: Whether to use the field's name to match the input data to an attribute. """ StringInput: TypeAlias = 'dict[str, StringInput]'
ValidateJsonHandlerProtocol
python
huggingface__transformers
src/transformers/models/gemma2/modular_gemma2.py
{ "start": 18745, "end": 18807 }
class ____(GemmaPreTrainedModel): pass
Gemma2PreTrainedModel
python
anthropics__anthropic-sdk-python
src/anthropic/types/beta/skill_list_params.py
{ "start": 331, "end": 1099 }
class ____(TypedDict, total=False): limit: int """Number of results to return per page. Maximum value is 100. Defaults to 20. """ page: Optional[str] """Pagination token for fetching a specific page of results. Pass the value from a previous response's `next_page` field to get the next page of results. """ source: Optional[str] """Filter skills by source. If provided, only skills from the specified source will be returned: - `"custom"`: only return user-created skills - `"anthropic"`: only return Anthropic-created skills """ betas: Annotated[List[AnthropicBetaParam], PropertyInfo(alias="anthropic-beta")] """Optional header to specify the beta version(s) you want to use."""
SkillListParams
python
PrefectHQ__prefect
src/prefect/cli/_prompts.py
{ "start": 10528, "end": 10920 }
class ____(PromptBase[str]): response_type: type[str] = str validate_error_message = "[prompt.invalid]Please enter a valid RRule string" def process_response(self, value: str) -> str: try: RRuleSchedule.validate_rrule_str(value) return value except ValueError: raise InvalidResponse(self.validate_error_message)
RRuleStringPrompt