language
stringclasses
1 value
repo
stringclasses
346 values
path
stringlengths
6
201
class_span
dict
source
stringlengths
21
2.38M
target
stringlengths
1
96
python
tensorflow__tensorflow
tensorflow/python/kernel_tests/strings_ops/unicode_transcode_op_test.py
{ "start": 1214, "end": 16861 }
class ____(test.TestCase, parameterized.TestCase): def test_transcode_utf8_simple(self): strings = [[b"a", b"abc"], [b"ABC", b"DEF"]] with self.cached_session() as sess: outputs = string_ops.unicode_transcode( strings, input_encoding="UTF-8", output_encoding="UTF-8", errors="replace", replacement_char=ord(" "), replace_control_characters=False) values = self.evaluate(outputs) self.assertAllEqual(values, strings) outputs = string_ops.unicode_transcode( strings, input_encoding="ISO-8859-1", output_encoding="UTF-8", errors="replace", replacement_char=ord(" "), replace_control_characters=False) values = self.evaluate(outputs) self.assertAllEqual(values, strings) outputs = string_ops.unicode_transcode( strings, input_encoding="US-ASCII", output_encoding="UTF-8", errors="replace", replacement_char=ord(" "), replace_control_characters=False) values = self.evaluate(outputs) self.assertAllEqual(values, strings) def test_transcode_utf16_to_utf8(self): strings = [b"\x00a\x00b\x20\xAC", b"\xD8\x01\xDC\x37"] # U+10437 expected = [s.decode("UTF-16-BE").encode("UTF-8") for s in strings] with self.cached_session() as sess: outputs = string_ops.unicode_transcode( strings, input_encoding="UTF-16", output_encoding="UTF-8", errors="replace", replacement_char=ord(" "), replace_control_characters=False) values = self.evaluate(outputs) self.assertAllEqual(values, expected) def test_transcode_bad_utf8(self): bad_string = b"\x00\xff" with self.cached_session() as sess: outputs = string_ops.unicode_transcode( bad_string, input_encoding="UTF-8", output_encoding="UTF-8", errors="replace", replacement_char=ord(" "), replace_control_characters=True) values = self.evaluate(outputs) self.assertAllEqual(values, b" ") outputs = string_ops.unicode_transcode( bad_string, input_encoding="UTF-8", output_encoding="UTF-8", errors="replace", replacement_char=ord(" "), replace_control_characters=False) values = self.evaluate(outputs) self.assertAllEqual(values, b"\x00 ") def test_transcode_bad_utf8_with_some_good(self): bad_string = b"abc\xffabcdefg" with self.cached_session() as sess: outputs = string_ops.unicode_transcode( bad_string, input_encoding="UTF-8", output_encoding="UTF-8", errors="replace", replacement_char=ord(" "), replace_control_characters=False) values = self.evaluate(outputs) self.assertAllEqual(values, b"abc abcdefg") def test_transcode_bad_utf8_with_defaults(self): bad_string = b"\x00\xff" with self.cached_session() as sess: outputs = string_ops.unicode_transcode( bad_string, input_encoding="UTF-8", output_encoding="UTF-8") values = self.evaluate(outputs) self.assertAllEqual(values, b"\x00\xef\xbf\xbd") def test_transcode_bad_utf8_with_space_replacement(self): bad_string = b"\x00\xff" with self.cached_session() as sess: outputs = string_ops.unicode_transcode( bad_string, input_encoding="UTF-8", output_encoding="UTF-8", replacement_char=ord(" ")) values = self.evaluate(outputs) self.assertAllEqual(values, b"\x00 ") @test_util.run_deprecated_v1 def test_transcode_bad_utf8_with_strict_errors(self): bad_string = b"\x00\xff" with self.cached_session() as sess: outputs = string_ops.unicode_transcode( bad_string, input_encoding="UTF-8", output_encoding="UTF-8", errors="strict") with self.assertRaisesOpError( "Invalid formatting on input string"): self.evaluate(outputs) @test_util.run_deprecated_v1 def test_transcode_bad_utf8_start_with_strict_errors(self): bad_string = b"\xffabcd" with self.cached_session() as sess: outputs = string_ops.unicode_transcode( bad_string, input_encoding="UTF-8", output_encoding="UTF-8", errors="strict") with self.assertRaisesOpError( "Invalid formatting on input string"): self.evaluate(outputs) def test_transcode_bad_utf8_with_elision_of_malformatting(self): bad_string = b"\x00\xff" with self.cached_session() as sess: outputs = string_ops.unicode_transcode( bad_string, input_encoding="UTF-8", output_encoding="UTF-8", errors="ignore") values = self.evaluate(outputs) self.assertAllEqual(values, b"\x00") def test_transcode_bad_utf8_with_elision_including_control_chars(self): bad_string = b"\x00\xff" with self.cached_session() as sess: outputs = string_ops.unicode_transcode( bad_string, input_encoding="UTF-8", output_encoding="UTF-8", errors="ignore", replace_control_characters=True) values = self.evaluate(outputs) self.assertAllEqual(values, b"") def test_transcode_bad_utf8_termination_with_defaults(self): bad_string = b"a\xf0" with self.cached_session() as sess: outputs = string_ops.unicode_transcode( bad_string, input_encoding="UTF-8", output_encoding="UTF-8") values = self.evaluate(outputs) self.assertAllEqual(values, b"a\xef\xbf\xbd") # 0xFFFD def test_transcode_utf8_with_replacement_char(self): strings = [b"a\xef\xbf\xbd"] with self.cached_session() as sess: outputs = string_ops.unicode_transcode( strings, input_encoding="UTF-8", output_encoding="UTF-8", errors="strict") values = self.evaluate(outputs) self.assertAllEqual(values, [b"a\xef\xbf\xbd"]) outputs = string_ops.unicode_transcode( strings, input_encoding="UTF-8", output_encoding="UTF-8", errors="replace", replacement_char=ord("?")) values = self.evaluate(outputs) self.assertAllEqual(values, [b"a\xef\xbf\xbd"]) def test_transcode_utf8_to_utf16(self): strings = [b"ab\xe2\x82\xac", b"\xf0\x90\x90\xb7"] # U+10437 expected = [s.decode("UTF-8").encode("UTF-16-BE") for s in strings] with self.cached_session() as sess: outputs = string_ops.unicode_transcode( strings, input_encoding="UTF-8", output_encoding="UTF-16-BE", replacement_char=ord(" "), replace_control_characters=False) values = self.evaluate(outputs) self.assertAllEqual(values, expected) def test_transcode_utf32_to_utf8(self): strings = [ b"\x00\x00\x00a\x00\x00\x00b\x00\x00\x20\xAC", b"\x00\x01\x04\x37" ] # U+10437 expected = [s.decode("UTF-32-BE").encode("UTF-8") for s in strings] with self.cached_session() as sess: outputs = string_ops.unicode_transcode( strings, input_encoding="UTF-32", output_encoding="UTF-8", replacement_char=ord(" "), replace_control_characters=False) values = self.evaluate(outputs) self.assertAllEqual(values, expected) def test_transcode_utf8_to_utf32(self): strings = [b"ab\xe2\x82\xac", b"\xf0\x90\x90\xb7"] expected = [s.decode("UTF-8").encode("UTF-32-BE") for s in strings] with self.cached_session() as sess: outputs = string_ops.unicode_transcode( strings, input_encoding="UTF-8", output_encoding="UTF-32-BE", replacement_char=ord(" "), replace_control_characters=False) values = self.evaluate(outputs) self.assertAllEqual(values, expected) # Documentation in ICU suggests that getNextUChar may produce a different # error code if the input sequence contains particular non-coding sequences. # This test checks that condition. def test_transcode_ascii_with_shift_chars(self): strings = [b"\x0e\x0e", b"\x0f\x0f"] with self.cached_session() as sess: outputs = string_ops.unicode_transcode( strings, input_encoding="US-ASCII", output_encoding="UTF-8", replacement_char=ord(" "), replace_control_characters=False) values = self.evaluate(outputs) self.assertAllEqual(values, strings) def test_transcode_utf8_with_bom(self): bom_string = b"\xef\xbb\xbfabcdefg" with self.cached_session() as sess: outputs = string_ops.unicode_transcode( bom_string, input_encoding="UTF-8", output_encoding="UTF-8") values = self.evaluate(outputs) self.assertAllEqual(values, b"\xef\xbb\xbfabcdefg") # BOM preserved outputs = string_ops.unicode_transcode( bom_string, input_encoding="UTF-8", output_encoding="UTF-16-BE") values = self.evaluate(outputs) utf16expected = bom_string.decode("UTF-8").encode("UTF-16-BE") self.assertAllEqual(values, utf16expected) def test_transcode_utf16_le_be_with_bom(self): bom_string = b"\xfe\xff\x00\x61" # Big-endian BOM with 'a' encoded with self.cached_session() as sess: outputs = string_ops.unicode_transcode( bom_string, input_encoding="UTF-16-BE", output_encoding="UTF-8") values = self.evaluate(outputs) # BOM is preserved in output self.assertAllEqual(values, b"\xef\xbb\xbfa") outputs = string_ops.unicode_transcode( bom_string, input_encoding="UTF-16-LE", output_encoding="UTF-8") values = self.evaluate(outputs) # mangled BOM and value from (incorrect) LE encoding self.assertAllEqual(values, b"\xef\xbf\xbe\xe6\x84\x80") bom_string = b"\xff\xfe\x61\x00" # Little-endian BOM with 'a' encoded outputs = string_ops.unicode_transcode( bom_string, input_encoding="UTF-16-LE", output_encoding="UTF-8") values = self.evaluate(outputs) self.assertAllEqual(values, b"\xef\xbb\xbfa") @parameterized.parameters( # BOM is stripped if it is used to decide the byte order of the input. (b"\xfe\xff\x00*", "UTF-16", b"*"), (b"\xff\xfe*\x00", "UTF-16", b"*"), # BOM is *not* stripped if it is not used to decide the byte order of # the input. (b"\xef\xbb\xbf*", "UTF-8", b"\xef\xbb\xbf*"), (b"\xfe\xff\x00*", "UTF-16-BE", b"\xef\xbb\xbf*"), (b"\xff\xfe*\x00", "UTF-16-LE", b"\xef\xbb\xbf*"), # If the encoding is UTF-16, and no BOM is present, then UTF-16-BE # is assumed. (b"\x00*", "UTF-16", b"*"), # BOM is never stripped from any position other than the beginning of # the string, for any encoding. (b"<\xef\xbb\xbf>", "UTF-8", b"<\xef\xbb\xbf>"), (b"\x00<\xfe\xff\x00>", "UTF-16", b"<\xef\xbb\xbf>"), (b"\x00<\xfe\xff\x00>", "UTF-16-BE", b"<\xef\xbb\xbf>"), (b"<\x00\xff\xfe>\x00", "UTF-16-LE", b"<\xef\xbb\xbf>"), (b"\xfe\xff\x00<\xfe\xff\x00>", "UTF-16", b"<\xef\xbb\xbf>"), (b"\xff\xfe<\x00\xff\xfe>\x00", "UTF-16", b"<\xef\xbb\xbf>"), ) @test_util.run_deprecated_v1 def test_bom_handling(self, string, input_encoding, expected): with self.test_session(): output = string_ops.unicode_transcode( string, input_encoding=input_encoding, output_encoding="UTF-8") self.assertAllEqual(output, expected) @test_util.run_deprecated_v1 def test_invalid_encoding_causes_errors(self): strings = [[b"a", b"abc"], [b"ABC", b"DEF"]] with self.cached_session() as sess: outputs = string_ops.unicode_transcode( strings, input_encoding="invalid", output_encoding="UTF-8", errors="replace", replacement_char=ord(" "), replace_control_characters=False) with self.assertRaisesOpError( "Could not create converter for input encoding: invalid"): self.evaluate(outputs) with self.assertRaisesRegex(ValueError, "Op passed string 'invalid'"): with self.cached_session() as sess: outputs = string_ops.unicode_transcode( strings, input_encoding="UTF-8", output_encoding="invalid", errors="replace", replacement_char=ord(" "), replace_control_characters=False) self.evaluate(outputs) @test_util.run_deprecated_v1 def test_invalid_error_policy_causes_errors(self): strings = [[b"a", b"abc"], [b"ABC", b"DEF"]] with self.assertRaisesRegex( ValueError, "'invalid' not in: \"strict\", \"replace\", \"ignore\"."): with self.cached_session() as sess: outputs = string_ops.unicode_transcode( strings, input_encoding="UTF-8", output_encoding="UTF-8", errors="invalid", replacement_char=ord(" "), replace_control_characters=False) self.evaluate(outputs) def test_forwarding(self): with self.cached_session(): # Generate an input that is uniquely consumed by the transcode op. # This exercises code paths which are optimized for this case # (e.g., using forwarding). inp = string_ops.substr( constant_op.constant([b"AbCdEfG", b"HiJkLmN"], dtypes.string), pos=0, len=5) transcoded = string_ops.unicode_transcode( inp, input_encoding="UTF-8", output_encoding="UTF-8") self.assertAllEqual([b"AbCdE", b"HiJkL"], transcoded) @test_util.run_deprecated_v1 def test_cjk_encodings(self): strings_ja = [ b"\x5c\x5c", # Yen sign b"\x8f\x70", # kanji character "waza" b"\x83\x4f" ] # katakana character "gu" strings_zh_cn = [b"\xca\xf5"] # simplified "shu4" strings_zh_tw = [b"\xb3\x4e"] # traditional "shu4" strings_ko = [b"\xc7\xd1\xb9\xce"] # hangul "hanmin" expected_ja = [s.decode("shift_jis").encode("UTF-8") for s in strings_ja] expected_zh_cn = [ s.decode("gb18030").encode("UTF-8") for s in strings_zh_cn ] expected_zh_tw = [s.decode("big5").encode("UTF-8") for s in strings_zh_tw] expected_ko = [s.decode("euc_kr").encode("UTF-8") for s in strings_ko] with self.cached_session() as sess: outputs_ja = string_ops.unicode_transcode( strings_ja, input_encoding="shift_jis", output_encoding="UTF-8", replacement_char=ord(" "), replace_control_characters=False) outputs_zh_cn = string_ops.unicode_transcode( strings_zh_cn, input_encoding="gb18030", output_encoding="UTF-8", replacement_char=ord(" "), replace_control_characters=False) outputs_zh_tw = string_ops.unicode_transcode( strings_zh_tw, input_encoding="big5", output_encoding="UTF-8", replacement_char=ord(" "), replace_control_characters=False) outputs_ko = string_ops.unicode_transcode( strings_ko, input_encoding="euc_kr", output_encoding="UTF-8", replacement_char=ord(" "), replace_control_characters=False) result_ja, result_zh_cn, result_zh_tw, result_ko = sess.run( [outputs_ja, outputs_zh_cn, outputs_zh_tw, outputs_ko]) self.assertAllEqual(result_ja, expected_ja) self.assertAllEqual(result_zh_cn, expected_zh_cn) self.assertAllEqual(result_zh_tw, expected_zh_tw) self.assertAllEqual(result_ko, expected_ko) if __name__ == "__main__": test.main()
UnicodeTranscodeOpTest
python
huggingface__transformers
src/transformers/models/edgetam/modular_edgetam.py
{ "start": 6165, "end": 6235 }
class ____(Sam2VisionEncoderOutput): pass
EdgeTamVisionEncoderOutput
python
pypa__pipenv
pipenv/patched/pip/_internal/exceptions.py
{ "start": 13258, "end": 13934 }
class ____(InstallationError): """Multiple HashError instances rolled into one for reporting""" def __init__(self) -> None: self.errors: List[HashError] = [] def append(self, error: "HashError") -> None: self.errors.append(error) def __str__(self) -> str: lines = [] self.errors.sort(key=lambda e: e.order) for cls, errors_of_cls in groupby(self.errors, lambda e: e.__class__): lines.append(cls.head) lines.extend(e.body() for e in errors_of_cls) if lines: return "\n".join(lines) return "" def __bool__(self) -> bool: return bool(self.errors)
HashErrors
python
airbytehq__airbyte
airbyte-integrations/connectors/source-firebase-realtime-database/source_firebase_realtime_database/firebase_rtdb.py
{ "start": 142, "end": 1228 }
class ____: def __init__(self, path="", buffer_size=10000): self._path = path self._buffer_size = buffer_size def initialize(self, database_name, google_application_credentials): database_url = f"https://{database_name}.firebaseio.com" sa_key = json.loads(google_application_credentials) cred = credentials.Certificate(sa_key) firebase_admin.initialize_app( cred, { "databaseURL": database_url, }, ) self._ref = db.reference(self._path) def check_connection(self): self._ref.get(shallow=True) def fetch_records(self, start_key=None): if start_key: return self._ref.order_by_key().start_at(start_key).limit_to_first(self._buffer_size).get() else: return self._ref.order_by_key().limit_to_first(self._buffer_size).get() def extract(self): return Records(self) def set_records(self, records): self._ref.set(records) def delete_records(self): self._ref.delete()
Client
python
plotly__plotly.py
plotly/graph_objs/densitymap/colorbar/_title.py
{ "start": 233, "end": 3992 }
class ____(_BaseTraceHierarchyType): _parent_path_str = "densitymap.colorbar" _path_str = "densitymap.colorbar.title" _valid_props = {"font", "side", "text"} @property def font(self): """ Sets this color bar's title font. The 'font' property is an instance of Font that may be specified as: - An instance of :class:`plotly.graph_objs.densitymap.colorbar.title.Font` - A dict of string/value properties that will be passed to the Font constructor Returns ------- plotly.graph_objs.densitymap.colorbar.title.Font """ return self["font"] @font.setter def font(self, val): self["font"] = val @property def side(self): """ Determines the location of color bar's title with respect to the color bar. Defaults to "top" when `orientation` if "v" and defaults to "right" when `orientation` if "h". The 'side' property is an enumeration that may be specified as: - One of the following enumeration values: ['right', 'top', 'bottom'] Returns ------- Any """ return self["side"] @side.setter def side(self, val): self["side"] = val @property def text(self): """ Sets the title of the color bar. The 'text' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["text"] @text.setter def text(self, val): self["text"] = val @property def _prop_descriptions(self): return """\ font Sets this color bar's title font. side Determines the location of color bar's title with respect to the color bar. Defaults to "top" when `orientation` if "v" and defaults to "right" when `orientation` if "h". text Sets the title of the color bar. """ def __init__(self, arg=None, font=None, side=None, text=None, **kwargs): """ Construct a new Title object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.densitymap.colorbar.Title` font Sets this color bar's title font. side Determines the location of color bar's title with respect to the color bar. Defaults to "top" when `orientation` if "v" and defaults to "right" when `orientation` if "h". text Sets the title of the color bar. Returns ------- Title """ super().__init__("title") if "_parent" in kwargs: self._parent = kwargs["_parent"] return if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError("""\ The first argument to the plotly.graph_objs.densitymap.colorbar.Title constructor must be a dict or an instance of :class:`plotly.graph_objs.densitymap.colorbar.Title`""") self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) self._set_property("font", arg, font) self._set_property("side", arg, side) self._set_property("text", arg, text) self._process_kwargs(**dict(arg, **kwargs)) self._skip_invalid = False
Title
python
dask__dask
dask/dataframe/tseries/resample.py
{ "start": 6212, "end": 6270 }
class ____(ResampleReduction): how = "last"
ResampleLast
python
django__django
tests/m2m_through_regress/models.py
{ "start": 2296, "end": 2393 }
class ____(Competitor): person = models.ForeignKey(Person, models.CASCADE)
IndividualCompetitor
python
django__django
tests/model_fields/models.py
{ "start": 20067, "end": 20497 }
class ____(GeneratedModelVirtualBase): class Meta: required_db_features = { "supports_virtual_generated_columns", "supports_table_check_constraints", } constraints = [ models.CheckConstraint( condition=models.Q(a__gt=0), name="Generated model check constraint virtual a > 0", ) ]
GeneratedModelCheckConstraintVirtual
python
scipy__scipy
benchmarks/benchmarks/go_benchmark_functions/go_funcs_univariate.py
{ "start": 14052, "end": 14940 }
class ____(Benchmark): """ Univariate Problem20 objective function. This class defines the Univariate Problem20 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Problem20}}(x) = -[x-\\sin(x)]e^{-x^2} Bound constraints: :math:`x \\in [-10, 10]` .. figure:: figures/Problem20.png :alt: Univariate Problem20 function :align: center **Univariate Problem20 function** *Global optimum*: :math:`f(x)=-0.0634905` for :math:`x = 1.195137` """ def __init__(self, dimensions=1): Benchmark.__init__(self, dimensions) self._bounds = [(-10, 10)] self.global_optimum = 1.195137 self.fglob = -0.0634905 def fun(self, x, *args): self.nfev += 1 x = x[0] return -(x - sin(x)) * exp(-x ** 2.0)
Problem20
python
PrefectHQ__prefect
tests/server/models/test_flow_run_states.py
{ "start": 10562, "end": 11382 }
class ____: async def test_read_flow_run_state(self, flow_run, session): # create a flow run to read flow_run_state = ( await models.flow_runs.set_flow_run_state( session=session, flow_run_id=flow_run.id, state=Running(), ) ).state read_flow_run_state = await models.flow_run_states.read_flow_run_state( session=session, flow_run_state_id=flow_run_state.id ) assert flow_run_state == read_flow_run_state.as_state() async def test_read_flow_run_state_returns_none_if_does_not_exist(self, session): result = await models.flow_run_states.read_flow_run_state( session=session, flow_run_state_id=uuid4() ) assert result is None
TestReadFlowRunState
python
geekcomputers__Python
venv/Lib/site-packages/pip/_vendor/truststore/_windows.py
{ "start": 3999, "end": 17891 }
class ____(Structure): _fields_ = ( ("cbSize", DWORD), ("hRestrictedRoot", HCERTSTORE), ("hRestrictedTrust", HCERTSTORE), ("hRestrictedOther", HCERTSTORE), ("cAdditionalStore", DWORD), ("rghAdditionalStore", c_void_p), ("dwFlags", DWORD), ("dwUrlRetrievalTimeout", DWORD), ("MaximumCachedCertificates", DWORD), ("CycleDetectionModulus", DWORD), ("hExclusiveRoot", HCERTSTORE), ("hExclusiveTrustedPeople", HCERTSTORE), ("dwExclusiveFlags", DWORD), ) PCERT_CHAIN_ENGINE_CONFIG = POINTER(CERT_CHAIN_ENGINE_CONFIG) PHCERTCHAINENGINE = POINTER(HCERTCHAINENGINE) X509_ASN_ENCODING = 0x00000001 PKCS_7_ASN_ENCODING = 0x00010000 CERT_STORE_PROV_MEMORY = b"Memory" CERT_STORE_ADD_USE_EXISTING = 2 USAGE_MATCH_TYPE_OR = 1 OID_PKIX_KP_SERVER_AUTH = c_char_p(b"1.3.6.1.5.5.7.3.1") CERT_CHAIN_REVOCATION_CHECK_END_CERT = 0x10000000 CERT_CHAIN_REVOCATION_CHECK_CHAIN = 0x20000000 CERT_CHAIN_POLICY_IGNORE_ALL_NOT_TIME_VALID_FLAGS = 0x00000007 CERT_CHAIN_POLICY_IGNORE_INVALID_BASIC_CONSTRAINTS_FLAG = 0x00000008 CERT_CHAIN_POLICY_ALLOW_UNKNOWN_CA_FLAG = 0x00000010 CERT_CHAIN_POLICY_IGNORE_INVALID_NAME_FLAG = 0x00000040 CERT_CHAIN_POLICY_IGNORE_WRONG_USAGE_FLAG = 0x00000020 CERT_CHAIN_POLICY_IGNORE_INVALID_POLICY_FLAG = 0x00000080 CERT_CHAIN_POLICY_IGNORE_ALL_REV_UNKNOWN_FLAGS = 0x00000F00 CERT_CHAIN_POLICY_ALLOW_TESTROOT_FLAG = 0x00008000 CERT_CHAIN_POLICY_TRUST_TESTROOT_FLAG = 0x00004000 AUTHTYPE_SERVER = 2 CERT_CHAIN_POLICY_SSL = 4 FORMAT_MESSAGE_FROM_SYSTEM = 0x00001000 FORMAT_MESSAGE_IGNORE_INSERTS = 0x00000200 # Flags to set for SSLContext.verify_mode=CERT_NONE CERT_CHAIN_POLICY_VERIFY_MODE_NONE_FLAGS = ( CERT_CHAIN_POLICY_IGNORE_ALL_NOT_TIME_VALID_FLAGS | CERT_CHAIN_POLICY_IGNORE_INVALID_BASIC_CONSTRAINTS_FLAG | CERT_CHAIN_POLICY_ALLOW_UNKNOWN_CA_FLAG | CERT_CHAIN_POLICY_IGNORE_INVALID_NAME_FLAG | CERT_CHAIN_POLICY_IGNORE_WRONG_USAGE_FLAG | CERT_CHAIN_POLICY_IGNORE_INVALID_POLICY_FLAG | CERT_CHAIN_POLICY_IGNORE_ALL_REV_UNKNOWN_FLAGS | CERT_CHAIN_POLICY_ALLOW_TESTROOT_FLAG | CERT_CHAIN_POLICY_TRUST_TESTROOT_FLAG ) wincrypt = WinDLL("crypt32.dll") kernel32 = WinDLL("kernel32.dll") def _handle_win_error(result: bool, _: Any, args: Any) -> Any: if not result: # Note, actually raises OSError after calling GetLastError and FormatMessage raise WinError() return args CertCreateCertificateChainEngine = wincrypt.CertCreateCertificateChainEngine CertCreateCertificateChainEngine.argtypes = ( PCERT_CHAIN_ENGINE_CONFIG, PHCERTCHAINENGINE, ) CertCreateCertificateChainEngine.errcheck = _handle_win_error CertOpenStore = wincrypt.CertOpenStore CertOpenStore.argtypes = (LPCSTR, DWORD, HCRYPTPROV_LEGACY, DWORD, c_void_p) CertOpenStore.restype = HCERTSTORE CertOpenStore.errcheck = _handle_win_error CertAddEncodedCertificateToStore = wincrypt.CertAddEncodedCertificateToStore CertAddEncodedCertificateToStore.argtypes = ( HCERTSTORE, DWORD, c_char_p, DWORD, DWORD, PCCERT_CONTEXT, ) CertAddEncodedCertificateToStore.restype = BOOL CertCreateCertificateContext = wincrypt.CertCreateCertificateContext CertCreateCertificateContext.argtypes = (DWORD, c_char_p, DWORD) CertCreateCertificateContext.restype = PCERT_CONTEXT CertCreateCertificateContext.errcheck = _handle_win_error CertGetCertificateChain = wincrypt.CertGetCertificateChain CertGetCertificateChain.argtypes = ( HCERTCHAINENGINE, PCERT_CONTEXT, LPFILETIME, HCERTSTORE, PCERT_CHAIN_PARA, DWORD, c_void_p, PCCERT_CHAIN_CONTEXT, ) CertGetCertificateChain.restype = BOOL CertGetCertificateChain.errcheck = _handle_win_error CertVerifyCertificateChainPolicy = wincrypt.CertVerifyCertificateChainPolicy CertVerifyCertificateChainPolicy.argtypes = ( c_ulong, PCERT_CHAIN_CONTEXT, PCERT_CHAIN_POLICY_PARA, PCERT_CHAIN_POLICY_STATUS, ) CertVerifyCertificateChainPolicy.restype = BOOL CertCloseStore = wincrypt.CertCloseStore CertCloseStore.argtypes = (HCERTSTORE, DWORD) CertCloseStore.restype = BOOL CertCloseStore.errcheck = _handle_win_error CertFreeCertificateChain = wincrypt.CertFreeCertificateChain CertFreeCertificateChain.argtypes = (PCERT_CHAIN_CONTEXT,) CertFreeCertificateContext = wincrypt.CertFreeCertificateContext CertFreeCertificateContext.argtypes = (PCERT_CONTEXT,) CertFreeCertificateChainEngine = wincrypt.CertFreeCertificateChainEngine CertFreeCertificateChainEngine.argtypes = (HCERTCHAINENGINE,) FormatMessageW = kernel32.FormatMessageW FormatMessageW.argtypes = ( DWORD, LPCVOID, DWORD, DWORD, LPWSTR, DWORD, c_void_p, ) FormatMessageW.restype = DWORD def _verify_peercerts_impl( ssl_context: ssl.SSLContext, cert_chain: list[bytes], server_hostname: str | None = None, ) -> None: """Verify the cert_chain from the server using Windows APIs.""" # If the peer didn't send any certificates then # we can't do verification. Raise an error. if not cert_chain: raise ssl.SSLCertVerificationError("Peer sent no certificates to verify") pCertContext = None hIntermediateCertStore = CertOpenStore(CERT_STORE_PROV_MEMORY, 0, None, 0, None) try: # Add intermediate certs to an in-memory cert store for cert_bytes in cert_chain[1:]: CertAddEncodedCertificateToStore( hIntermediateCertStore, X509_ASN_ENCODING | PKCS_7_ASN_ENCODING, cert_bytes, len(cert_bytes), CERT_STORE_ADD_USE_EXISTING, None, ) # Cert context for leaf cert leaf_cert = cert_chain[0] pCertContext = CertCreateCertificateContext( X509_ASN_ENCODING | PKCS_7_ASN_ENCODING, leaf_cert, len(leaf_cert) ) # Chain params to match certs for serverAuth extended usage cert_enhkey_usage = CERT_ENHKEY_USAGE() cert_enhkey_usage.cUsageIdentifier = 1 cert_enhkey_usage.rgpszUsageIdentifier = (c_char_p * 1)(OID_PKIX_KP_SERVER_AUTH) cert_usage_match = CERT_USAGE_MATCH() cert_usage_match.Usage = cert_enhkey_usage chain_params = CERT_CHAIN_PARA() chain_params.RequestedUsage = cert_usage_match chain_params.cbSize = sizeof(chain_params) pChainPara = pointer(chain_params) if ssl_context.verify_flags & ssl.VERIFY_CRL_CHECK_CHAIN: chain_flags = CERT_CHAIN_REVOCATION_CHECK_CHAIN elif ssl_context.verify_flags & ssl.VERIFY_CRL_CHECK_LEAF: chain_flags = CERT_CHAIN_REVOCATION_CHECK_END_CERT else: chain_flags = 0 try: # First attempt to verify using the default Windows system trust roots # (default chain engine). _get_and_verify_cert_chain( ssl_context, None, hIntermediateCertStore, pCertContext, pChainPara, server_hostname, chain_flags=chain_flags, ) except ssl.SSLCertVerificationError as e: # If that fails but custom CA certs have been added # to the SSLContext using load_verify_locations, # try verifying using a custom chain engine # that trusts the custom CA certs. custom_ca_certs: list[bytes] | None = ssl_context.get_ca_certs( binary_form=True ) if custom_ca_certs: try: _verify_using_custom_ca_certs( ssl_context, custom_ca_certs, hIntermediateCertStore, pCertContext, pChainPara, server_hostname, chain_flags=chain_flags, ) # Raise the original error, not the new error. except ssl.SSLCertVerificationError: raise e from None else: raise finally: CertCloseStore(hIntermediateCertStore, 0) if pCertContext: CertFreeCertificateContext(pCertContext) def _get_and_verify_cert_chain( ssl_context: ssl.SSLContext, hChainEngine: HCERTCHAINENGINE | None, hIntermediateCertStore: HCERTSTORE, pPeerCertContext: c_void_p, pChainPara: PCERT_CHAIN_PARA, # type: ignore[valid-type] server_hostname: str | None, chain_flags: int, ) -> None: ppChainContext = None try: # Get cert chain ppChainContext = pointer(PCERT_CHAIN_CONTEXT()) CertGetCertificateChain( hChainEngine, # chain engine pPeerCertContext, # leaf cert context None, # current system time hIntermediateCertStore, # additional in-memory cert store pChainPara, # chain-building parameters chain_flags, None, # reserved ppChainContext, # the resulting chain context ) pChainContext = ppChainContext.contents # Verify cert chain ssl_extra_cert_chain_policy_para = SSL_EXTRA_CERT_CHAIN_POLICY_PARA() ssl_extra_cert_chain_policy_para.cbSize = sizeof( ssl_extra_cert_chain_policy_para ) ssl_extra_cert_chain_policy_para.dwAuthType = AUTHTYPE_SERVER ssl_extra_cert_chain_policy_para.fdwChecks = 0 if server_hostname: ssl_extra_cert_chain_policy_para.pwszServerName = c_wchar_p(server_hostname) chain_policy = CERT_CHAIN_POLICY_PARA() chain_policy.pvExtraPolicyPara = cast( pointer(ssl_extra_cert_chain_policy_para), c_void_p ) if ssl_context.verify_mode == ssl.CERT_NONE: chain_policy.dwFlags |= CERT_CHAIN_POLICY_VERIFY_MODE_NONE_FLAGS if not ssl_context.check_hostname: chain_policy.dwFlags |= CERT_CHAIN_POLICY_IGNORE_INVALID_NAME_FLAG chain_policy.cbSize = sizeof(chain_policy) pPolicyPara = pointer(chain_policy) policy_status = CERT_CHAIN_POLICY_STATUS() policy_status.cbSize = sizeof(policy_status) pPolicyStatus = pointer(policy_status) CertVerifyCertificateChainPolicy( CERT_CHAIN_POLICY_SSL, pChainContext, pPolicyPara, pPolicyStatus, ) # Check status error_code = policy_status.dwError if error_code: # Try getting a human readable message for an error code. error_message_buf = create_unicode_buffer(1024) error_message_chars = FormatMessageW( FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, None, error_code, 0, error_message_buf, sizeof(error_message_buf), None, ) # See if we received a message for the error, # otherwise we use a generic error with the # error code and hope that it's search-able. if error_message_chars <= 0: error_message = f"Certificate chain policy error {error_code:#x} [{policy_status.lElementIndex}]" else: error_message = error_message_buf.value.strip() err = ssl.SSLCertVerificationError(error_message) err.verify_message = error_message err.verify_code = error_code raise err from None finally: if ppChainContext: CertFreeCertificateChain(ppChainContext.contents) def _verify_using_custom_ca_certs( ssl_context: ssl.SSLContext, custom_ca_certs: list[bytes], hIntermediateCertStore: HCERTSTORE, pPeerCertContext: c_void_p, pChainPara: PCERT_CHAIN_PARA, # type: ignore[valid-type] server_hostname: str | None, chain_flags: int, ) -> None: hChainEngine = None hRootCertStore = CertOpenStore(CERT_STORE_PROV_MEMORY, 0, None, 0, None) try: # Add custom CA certs to an in-memory cert store for cert_bytes in custom_ca_certs: CertAddEncodedCertificateToStore( hRootCertStore, X509_ASN_ENCODING | PKCS_7_ASN_ENCODING, cert_bytes, len(cert_bytes), CERT_STORE_ADD_USE_EXISTING, None, ) # Create a custom cert chain engine which exclusively trusts # certs from our hRootCertStore cert_chain_engine_config = CERT_CHAIN_ENGINE_CONFIG() cert_chain_engine_config.cbSize = sizeof(cert_chain_engine_config) cert_chain_engine_config.hExclusiveRoot = hRootCertStore pConfig = pointer(cert_chain_engine_config) phChainEngine = pointer(HCERTCHAINENGINE()) CertCreateCertificateChainEngine( pConfig, phChainEngine, ) hChainEngine = phChainEngine.contents # Get and verify a cert chain using the custom chain engine _get_and_verify_cert_chain( ssl_context, hChainEngine, hIntermediateCertStore, pPeerCertContext, pChainPara, server_hostname, chain_flags, ) finally: if hChainEngine: CertFreeCertificateChainEngine(hChainEngine) CertCloseStore(hRootCertStore, 0) @contextlib.contextmanager def _configure_context(ctx: ssl.SSLContext) -> typing.Iterator[None]: check_hostname = ctx.check_hostname verify_mode = ctx.verify_mode ctx.check_hostname = False _set_ssl_context_verify_mode(ctx, ssl.CERT_NONE) try: yield finally: ctx.check_hostname = check_hostname _set_ssl_context_verify_mode(ctx, verify_mode)
CERT_CHAIN_ENGINE_CONFIG
python
facebook__pyre-check
client/commands/servers.py
{ "start": 1092, "end": 3682 }
class ____: pid: int version: str global_root: str flavor: str relative_local_root: Optional[str] = None @staticmethod def from_json( input_json: Dict[str, object], flavor: identifiers.PyreFlavor ) -> "RunningServerStatus": pid = input_json.get("pid", None) if not isinstance(pid, int): raise InvalidServerResponse(f"Expect `pid` to be an int but got {pid}") version = input_json.get("version", None) if not isinstance(version, str): raise InvalidServerResponse( f"Expect `version` to be a string but got {version}" ) global_root = input_json.get("global_root", None) if not isinstance(global_root, str): raise InvalidServerResponse( f"Expect `global_root` to be a string but got {global_root}" ) relative_local_root = input_json.get("relative_local_root", None) if relative_local_root is not None and not isinstance(relative_local_root, str): raise InvalidServerResponse( "Expected `relative_local_root` to be a string but got " f"{relative_local_root}" ) return RunningServerStatus( pid=pid, version=version, global_root=global_root, relative_local_root=relative_local_root, flavor=flavor.value, ) @staticmethod def from_server_response( response: str, flavor: identifiers.PyreFlavor ) -> "RunningServerStatus": try: response_json = json.loads(response) if ( not isinstance(response_json, list) or len(response_json) < 2 or response_json[0] != "Info" or not isinstance(response_json[1], dict) ): message = f"Unexpected JSON response: {response_json}" raise InvalidServerResponse(message) return RunningServerStatus.from_json(response_json[1], flavor) except json.JSONDecodeError as error: message = f"Cannot parse response as JSON: {error}" raise InvalidServerResponse(message) from error def to_json(self) -> Dict[str, object]: return { "status": "running", "pid": self.pid, "version": self.version, "global_root": self.global_root, "relative_local_root": self.relative_local_root, "flavor": self.flavor, } @dataclasses.dataclass(frozen=True)
RunningServerStatus
python
chroma-core__chroma
chromadb/utils/read_write_lock.py
{ "start": 1239, "end": 1624 }
class ____: def __init__(self, rwLock: ReadWriteLock): self.rwLock = rwLock def __enter__(self) -> None: self.rwLock.acquire_read() def __exit__( self, exc_type: Optional[Type[BaseException]], exc_value: Optional[BaseException], traceback: Optional[TracebackType], ) -> None: self.rwLock.release_read()
ReadRWLock
python
django-haystack__django-haystack
test_haystack/spatial/test_spatial.py
{ "start": 366, "end": 3602 }
class ____(TestCase): def test_ensure_geometry(self): from django.contrib.gis.geos import GEOSGeometry, Point self.assertRaises( SpatialError, ensure_geometry, [38.97127105172941, -95.23592948913574] ) ensure_geometry(GEOSGeometry("POLYGON((-95 38, -96 40, -97 42, -95 38))")) ensure_geometry(GEOSGeometry("POINT(-95.23592948913574 38.97127105172941)")) ensure_geometry(Point(-95.23592948913574, 38.97127105172941)) def test_ensure_point(self): from django.contrib.gis.geos import GEOSGeometry, Point self.assertRaises( SpatialError, ensure_point, [38.97127105172941, -95.23592948913574] ) self.assertRaises( SpatialError, ensure_point, GEOSGeometry("POLYGON((-95 38, -96 40, -97 42, -95 38))"), ) ensure_point(Point(-95.23592948913574, 38.97127105172941)) def test_ensure_wgs84(self): from django.contrib.gis.geos import GEOSGeometry, Point self.assertRaises( SpatialError, ensure_wgs84, GEOSGeometry("POLYGON((-95 38, -96 40, -97 42, -95 38))"), ) orig_pnt = Point(-95.23592948913574, 38.97127105172941) std_pnt = ensure_wgs84(orig_pnt) self.assertEqual(orig_pnt.srid, None) self.assertEqual(std_pnt.srid, 4326) self.assertEqual(std_pnt.x, -95.23592948913574) self.assertEqual(std_pnt.y, 38.97127105172941) orig_pnt = Point(-95.23592948913574, 38.97127105172941) orig_pnt.srid = 2805 std_pnt = ensure_wgs84(orig_pnt) self.assertEqual(orig_pnt.srid, 2805) self.assertEqual(std_pnt.srid, 4326) # These should be different, since it got transformed. self.assertNotEqual(std_pnt.x, -95.23592948913574) self.assertNotEqual(std_pnt.y, 38.97127105172941) def test_ensure_distance(self): self.assertRaises( SpatialError, ensure_distance, [38.97127105172941, -95.23592948913574] ) ensure_distance(D(mi=5)) def test_generate_bounding_box(self): from django.contrib.gis.geos import Point downtown_bottom_left = Point(-95.23947, 38.9637903) downtown_top_right = Point(-95.23362278938293, 38.973081081164715) ((min_lat, min_lng), (max_lat, max_lng)) = generate_bounding_box( downtown_bottom_left, downtown_top_right ) self.assertEqual(min_lat, 38.9637903) self.assertEqual(min_lng, -95.23947) self.assertEqual(max_lat, 38.973081081164715) self.assertEqual(max_lng, -95.23362278938293) def test_generate_bounding_box_crossing_line_date(self): from django.contrib.gis.geos import Point downtown_bottom_left = Point(95.23947, 38.9637903) downtown_top_right = Point(-95.23362278938293, 38.973081081164715) ((south, west), (north, east)) = generate_bounding_box( downtown_bottom_left, downtown_top_right ) self.assertEqual(south, 38.9637903) self.assertEqual(west, 95.23947) self.assertEqual(north, 38.973081081164715) self.assertEqual(east, -95.23362278938293)
SpatialUtilitiesTestCase
python
run-llama__llama_index
llama-index-integrations/vector_stores/llama-index-vector-stores-lantern/llama_index/vector_stores/lantern/base.py
{ "start": 673, "end": 3675 }
class ____(NamedTuple): node_id: str # FIXME: verify this type hint text: str metadata: dict similarity: float _logger = logging.getLogger(__name__) def get_data_model( base: Type, index_name: str, schema_name: str, hybrid_search: bool, text_search_config: str, cache_okay: bool, embed_dim: int = 1536, m: int = 16, ef_construction: int = 128, ef: int = 64, ) -> Any: """ This part create a dynamic sqlalchemy model with a new table. """ from sqlalchemy import Column, Computed from sqlalchemy.dialects.postgresql import ( ARRAY, BIGINT, JSON, REAL, TSVECTOR, VARCHAR, ) from sqlalchemy.schema import Index from sqlalchemy.types import TypeDecorator class TSVector(TypeDecorator): impl = TSVECTOR cache_ok = cache_okay tablename = "data_%s" % index_name # dynamic table name class_name = "Data%s" % index_name # dynamic class name indexname = "%s_idx" % index_name # dynamic index name hnsw_indexname = "%s_hnsw_idx" % index_name # dynamic hnsw index name if hybrid_search: class HybridAbstractData(base): # type: ignore __abstract__ = True # this line is necessary id = Column(BIGINT, primary_key=True, autoincrement=True) text = Column(VARCHAR, nullable=False) metadata_ = Column(JSON) node_id = Column(VARCHAR) embedding = Column(ARRAY(REAL, embed_dim)) # type: ignore text_search_tsv = Column( # type: ignore TSVector(), Computed( "to_tsvector('%s', text)" % text_search_config, persisted=True ), ) model = type( class_name, (HybridAbstractData,), {"__tablename__": tablename, "__table_args__": {"schema": schema_name}}, ) Index( indexname, model.text_search_tsv, # type: ignore postgresql_using="gin", ) else: class AbstractData(base): # type: ignore __abstract__ = True # this line is necessary id = Column(BIGINT, primary_key=True, autoincrement=True) text = Column(VARCHAR, nullable=False) metadata_ = Column(JSON) node_id = Column(VARCHAR) embedding = Column(ARRAY(REAL, embed_dim)) # type: ignore model = type( class_name, (AbstractData,), {"__tablename__": tablename, "__table_args__": {"schema": schema_name}}, ) Index( hnsw_indexname, model.embedding, # type: ignore postgresql_using="lantern_hnsw", postgresql_with={ "m": m, "ef_construction": ef_construction, "ef": ef, "dim": embed_dim, }, postgresql_ops={"embedding": "dist_cos_ops"}, ) return model
DBEmbeddingRow
python
pyqtgraph__pyqtgraph
pyqtgraph/parametertree/parameterTypes/action.py
{ "start": 121, "end": 1768 }
class ____(QtWidgets.QPushButton): settableAttributes = { "title", "tip", "icon", "shortcut", "enabled", "visible" } def __init__(self, parameter=None, parent=None): super().__init__(parent) if not parameter: return parameter.sigNameChanged.connect(self.onNameChange) parameter.sigOptionsChanged.connect(self.updateOpts) self.clicked.connect(parameter.activate) self.updateOpts(parameter, parameter.opts) def updateOpts(self, param, opts): # Of the attributes that can be set on a QPushButton, only the text # and tooltip attributes are different from standard pushbutton names nameMap = dict(title="text", tip="toolTip") # Special case: "title" could be none, in which case make it something # readable by the simple copy-paste logic later opts = opts.copy() if "name" in opts: opts.setdefault("title", opts["name"]) if "title" in opts and opts["title"] is None: opts["title"] = param.title() # Another special case: icons should be loaded from data before # being passed to the button if "icon" in opts: opts["icon"] = QtGui.QIcon(opts["icon"]) for attr in self.settableAttributes.intersection(opts): buttonAttr = nameMap.get(attr, attr) capitalized = buttonAttr[0].upper() + buttonAttr[1:] setter = getattr(self, f"set{capitalized}") setter(opts[attr]) def onNameChange(self, param, name): self.updateOpts(param, dict(title=param.title()))
ParameterControlledButton
python
pytorch__pytorch
torchgen/api/translate.py
{ "start": 2562, "end": 19297 }
class ____(RuntimeError): pass # Given a set of in-scope bindings and a set of target bindings, synthesize # a list of expressions that uses only the in-scope bindings (bindings) that # have all of the types of goals. You may want to use this function if # you're generating code for a function like: # # void f({args}) { # g({exprs}); // g is a different API # } # # and you need to generate "exprs". # # Typically, a list of Bindings is convenient to get (you usually call something # like arguments() to get them); but technically you only need less information: # for 'bindings' an (un-ordered) list of Exprs is sufficient; similarly, for # 'goals', an (ordered) list of NamedCType goals is sufficient. If you are doing # something more complicated, e.g., tracking the set of bindings in a context, # you may find using these smaller types more convenient. def translate( bindings: Sequence[Expr | Binding], goals: Sequence[NamedCType | Binding], *, method: bool = False, allow_expensive_conversions: bool = False, ) -> list[Expr]: binding_exprs: list[Expr] = [] for b in bindings: if isinstance(b, Binding): binding_exprs.append( Expr( expr=b.name, type=b.nctype, ) ) else: binding_exprs.append(b) goal_ctypes: list[NamedCType] = [] for g in goals: if isinstance(g, Binding): goal_ctypes.append(g.nctype) else: goal_ctypes.append(g) # Add all the bindings to the context ctx: dict[NamedCType, str] = {} for b in binding_exprs: ctx[b.type] = b.expr # While we're at it, do some simple forward inference, looking through # constructors. # # NB: When should you do forward inference versus backward inference? # The general idea: # # - Backward inference WHEN the goal gets smaller # - Forward inference WHEN the hypothesis gets smaller # # This helps ensure termination: backward inference starts with a goal # and tries to make it simpler and simpler until it's trivial; if the # goal can grow in size, we blow up to a really huge goal size. # Similarly, with forward inference we take hypotheses and decompose # them into simpler hypotheses; if hypotheses could expand in size, # we also have potential nontermination. (In the code below, forward # inference is only ever carried out at a single step, but you could # imagine repeated application of forward inference being profitable.) # # A good starting point in the literature for exploring more about proof # search are these lecture notes # https://www.cs.cmu.edu/~fp/courses/oregon-m10/04-focusing.pdf # # TODO: My kingdom for a pattern matcher # https://www.python.org/dev/peps/pep-0634/ # # TODO: This could get us in recomputation trouble if b.expr is nontrivial. # Fix this by implementing some sort of sharing so that if multiple # goals share the same expression, we only compute it once. This seems # to matter in practice as compiler is often unwilling to CSE nontrivial # expressions like scalar.to<scalar_t>() t = b.type if ( isinstance(t, ConstRefCType) and isinstance(t.elem, OptionalCType) and isinstance(t.elem.elem, BaseCType) and str(t.elem.elem.type) == "at::Tensor" ): ctx[NamedCType(t.elem.elem.name, ConstRefCType(BaseCType(tensorT)))] = ( f"({b.expr}.has_value() ? *{b.expr} : at::Tensor())" ) if t.type == ConstRefCType(OptionalCType(BaseCType(tensorT))): ctx[NamedCType(t.name, BaseCType(optionalTensorRefT))] = ( f"(({b.expr}.has_value() && (*{b.expr}).defined()) ? at::OptionalTensorRef(*{b.expr}) : at::OptionalTensorRef())" ) if t.type == ConstRefCType(BaseCType(scalarT)): ctx[NamedCType(t.name, BaseCType(opmath_t))] = f"({b.expr}).to<opmath_t>()" if t.type == ConstRefCType(OptionalCType(BaseCType(scalarT))): ctx[NamedCType(t.name, BaseCType(optionalScalarRefT))] = ( f"({b.expr}.has_value() ? at::OptionalScalarRef(&({b.expr}.value())) : at::OptionalScalarRef())" ) if t.type == BaseCType(scalar_t): ctx[NamedCType(t.name, BaseCType(opmath_t))] = ( f"static_cast<opmath_t>({b.expr})" ) # [Note: IOptTensorListRef] if t.type == ConstRefCType(ListCType(OptionalCType(BaseCType(tensorT)))): ctx[NamedCType(t.name, BaseCType(iOptTensorListRefT))] = ( f"at::IOptTensorListRef({b.expr})" ) # Add implicit bindings if the generated code is inside a Tensor method if method: ctx[NamedCType("self", MutRefCType(BaseCType(tensorT)))] = ( "const_cast<Tensor&>(*this)" ) ctx[NamedCType("self", ConstRefCType(BaseCType(tensorT)))] = ( "const_cast<Tensor&>(*this)" ) # This is better! Byte-for-byte compat # ctx[NamedCType("self", ConstRefCType(BaseCType(tensorT)))] = "*this" def unsat(goal: NamedCType) -> NoReturn: ctx_desc = "\n".join( f" {t.cpp_type()} {t.name}; // {e}" for t, e in ctx.items() ) raise UnsatError( f""" Failed to synthesize the expression "{goal.cpp_type()} {goal.name}". When I failed, the following bindings were available in the context: {ctx_desc} This probably means there is a missing rule in the rules of torchgen.api.translate. Check this module for more information. """ ) # A shitty backtracking search implementation. It's shitty because it # does backtracking via stack (bad idea!) and for the most part tries to # avoid backtracking. In particular, if # direct=True, we won't try to do any fancy synthesis, just trivial # conversions (e.g., "T a" is OK for "const T& a"). So all of the # existing rules in this function simply try to solve immediately, # and bail if things don't work out. def solve(goal: NamedCType, *, direct: bool) -> str: def direct_solve(goal: NamedCType) -> str: return solve(goal, direct=True) if goal in ctx: # Trivial return ctx[goal] # const & is satisfied with mutable & if isinstance(goal.type, ConstRefCType): try: # WARNING: not strictly decreasing; be careful not # to add a direct conversion that goes satisfies # mutable& with const& return solve( NamedCType(goal.name, MutRefCType(goal.type.elem)), direct=direct ) except UnsatError: pass # mutable & is satisfied with value if isinstance(goal.type, MutRefCType): try: return solve(NamedCType(goal.name, goal.type.elem), direct=direct) except UnsatError: pass # TODO: These are referentially equal, shouldn't have to do this; # ensuring we don't use type synonym IntArrayRef in codegen would # help if goal.type == ArrayRefCType(BaseCType(longT)): return solve(NamedCType(goal.name, BaseCType(intArrayRefT)), direct=direct) if direct: unsat(goal) # For now, all of these rules are mutually exclusive. if goal == NamedCType("memory_format", OptionalCType(BaseCType(memoryFormatT))): memory_format = direct_solve( NamedCType( SpecialArgName.possibly_redundant_memory_format, OptionalCType(BaseCType(memoryFormatT)), ) ) # No need to join "memory_format" and "options" if the target API takes "options" directly. # Otherwise it will cause the redundant memory_format error. if options_ctype in goal_ctypes: return memory_format try: options = direct_solve(options_ctype) return f"c10::impl::check_tensor_options_and_extract_memory_format({options}, {memory_format})" except UnsatError: return memory_format elif goal == NamedCType("options", BaseCType(tensorOptionsT)): dtype = direct_solve( NamedCType("dtype", OptionalCType(BaseCType(scalarTypeT))) ) pin_memory = direct_solve( NamedCType("pin_memory", OptionalCType(BaseCType(boolT))) ) device = direct_solve( NamedCType("device", OptionalCType(BaseCType(deviceT))) ) layout = direct_solve( NamedCType("layout", OptionalCType(BaseCType(layoutT))) ) return f"TensorOptions().dtype({dtype}).layout({layout}).device({device}).pinned_memory({pin_memory})" elif goal == NamedCType("dtype", OptionalCType(BaseCType(scalarTypeT))): try: options = direct_solve(options_ctype) return f"c10::optTypeMetaToScalarType({options}.dtype_opt())" except UnsatError: out_tensor = direct_solve(out_tensor_ctype) return f"{out_tensor}.scalar_type()" elif goal == NamedCType("layout", OptionalCType(BaseCType(layoutT))): try: options = direct_solve(options_ctype) return f"{options}.layout_opt()" except UnsatError: out_tensor = direct_solve(out_tensor_ctype) return f"{out_tensor}.layout()" elif goal == NamedCType("device", OptionalCType(BaseCType(deviceT))): try: options = direct_solve(options_ctype) return f"{options}.device_opt()" except UnsatError: out_tensor = direct_solve(out_tensor_ctype) return f"{out_tensor}.device()" elif goal == NamedCType("pin_memory", OptionalCType(BaseCType(boolT))): try: options = direct_solve(options_ctype) return f"{options}.pinned_memory_opt()" except UnsatError: # If we're calling a factory op from its out= variant, # We don't actually care about the value of pin_memory. out_tensor = direct_solve(out_tensor_ctype) return "::std::nullopt" # We can always do translations from value types to reference types, like vector<int> -> IntArrayRef elif goal.type == BaseCType(intArrayRefT): try: return direct_solve(NamedCType(goal.name, longVec_ctype)) except UnsatError: # We can also go SymIntArrayRef -> IntArrayRef symIntArrayRef_type = direct_solve( NamedCType(goal.name, BaseCType(symIntArrayRefT)) ) return f"C10_AS_INTARRAYREF_SLOW({symIntArrayRef_type})" elif goal.type == BaseCType(symIntArrayRefT): try: r = direct_solve(NamedCType(goal.name, BaseCType(intArrayRefT))) return f"c10::fromIntArrayRefSlow({r})" except UnsatError: return direct_solve(NamedCType(goal.name, longSymVec_ctype)) elif goal.type == BaseCType(SymIntT): return direct_solve(NamedCType(goal.name, BaseCType(longT))) elif goal.type == OptionalCType(BaseCType(SymIntT)): argname = direct_solve( NamedCType(goal.name, OptionalCType(BaseCType(longT))) ) return f"{argname}.has_value() ? ::std::make_optional(c10::SymInt(*{argname})) : ::std::nullopt" elif goal.type == BaseCType(longT): symInt_type = direct_solve(NamedCType(goal.name, BaseCType(SymIntT))) return f"{symInt_type}.guard_int(__FILE__, __LINE__)" elif goal.type == OptionalCType(BaseCType(longT)): argname = direct_solve( NamedCType(goal.name, OptionalCType(BaseCType(SymIntT))) ) return f"{argname}.has_value() ? ::std::make_optional({argname}->guard_int(__FILE__, __LINE__)) : ::std::nullopt" elif goal.type == BaseCType(optionalIntArrayRefT): try: return direct_solve(NamedCType(goal.name, optionalLongVec_ctype)) except UnsatError: argname = direct_solve( NamedCType(goal.name, BaseCType(optionalSymIntArrayRefT)) ) return f"{argname}.has_value() ? ::std::make_optional(C10_AS_INTARRAYREF_SLOW(*{argname})) : ::std::nullopt" elif goal.type == BaseCType(optionalSymIntArrayRefT): # TODO: You might also want to solve this from longSymVec_ctype or # an optional version of it argname = direct_solve( NamedCType(goal.name, BaseCType(optionalIntArrayRefT)) ) return f"{argname}.has_value() ? ::std::make_optional(c10::fromIntArrayRefSlow(*{argname})) : ::std::nullopt" elif goal.type == BaseCType(optionalScalarRefT): return direct_solve(NamedCType(goal.name, optionalScalar_ctype)) elif goal.type == BaseCType(optionalTensorRefT): return direct_solve(NamedCType(goal.name, optionalTensor_ctype)) # Note [translation from C++ reference to value types] # The below cases are all for when we have an argument with a reference type, # and a corresponding goal with a value type. # These are needed when we populate the inputs to a lambda capture and we need # to guarantee the lifetime of each captured argument. # We guard it with an explicit kwarg because converting to a value type is expensive # (O(n)) to convert from IntArrayRef to vector<int>), # so the caller of translate() should be explicit that they need it. if allow_expensive_conversions: if goal.type == VectorCType(BaseCType(longT)): intArrayRef_ctype = NamedCType(goal.name, BaseCType(intArrayRefT)) argname = direct_solve(intArrayRef_ctype) return f"{argname}.vec()" if goal.type == VectorCType(BaseCType(SymIntT)): symIntArrayRef_ctype = NamedCType(goal.name, BaseCType(symIntArrayRefT)) argname = direct_solve(symIntArrayRef_ctype) return f"{argname}.vec()" elif goal.type == OptionalCType(VectorCType(BaseCType(longT))): optionalIntArrayRef_ctype = NamedCType( goal.name, BaseCType(optionalIntArrayRefT) ) argname = direct_solve(optionalIntArrayRef_ctype) return f"{argname}.has_value() ? ::std::make_optional({argname}->vec()) : ::std::nullopt" elif goal.type == OptionalCType(BaseCType(scalarT)): optionalScalarRef_ctype = NamedCType( goal.name, BaseCType(optionalScalarRefT) ) argname = direct_solve(optionalScalarRef_ctype) return f"{argname}.has_value() ? ::std::make_optional({argname}) : ::std::nullopt" elif goal.type == OptionalCType(BaseCType(scalarT)): optionalTensorRef_ctype = NamedCType( goal.name, BaseCType(optionalTensorRefT) ) argname = direct_solve(optionalTensorRef_ctype) return f"{argname}.has_value() ? ::std::make_optional({argname}) : ::std::nullopt" # Technically, we also need to handle cases of C++ containers holding reference types. # But there currently aren't any ops that require lambda capture codegen # With arguments like ::std::vector<IntArrayRef>. # If that changes, we'll have to add the translation here. # We allow const casting on tensors, since const-correctness is a bit broken for at::Tensor. # We could probably generalize this to non-tensor types too. if goal.type == MutRefCType(BaseCType(tensorT)): const_ref_tensor_ctype = NamedCType( goal.name, ConstRefCType(BaseCType(tensorT)) ) argname = direct_solve(const_ref_tensor_ctype) return f"const_cast<Tensor&>({argname})" unsat(goal) return [Expr(solve(g, direct=False), g) for g in goal_ctypes]
UnsatError
python
run-llama__llama_index
llama-index-integrations/readers/llama-index-readers-github/llama_index/readers/github/repository/github_client.py
{ "start": 2238, "end": 2902 }
class ____(DataClassJsonMixin): """ Dataclass for the response from the Github API's getCommit endpoint. Attributes: - tree (Tree): Tree object for the commit. """ @dataclass class Commit(DataClassJsonMixin): """Dataclass for the commit object in the commit. (commit.commit).""" @dataclass class Tree(DataClassJsonMixin): """ Dataclass for the tree object in the commit. Attributes: - sha (str): SHA for the commit """ sha: str tree: Tree commit: Commit url: str sha: str @dataclass
GitCommitResponseModel
python
PyCQA__pylint
tests/pyreverse/functional/class_diagrams/relationships/comprehensions.py
{ "start": 1190, "end": 1755 }
class ____: """Comprehensions creating new objects - composition.""" def __init__(self): # Composition: comprehensions creating new objects self.components: list[Component] = [Component(f"component_{i}") for i in range(3)] self.component_dict: dict[int, Component] = {i: Component(f"dict_component_{i}") for i in range(2)} self.components_set: set[Component] = {Component(f"set_component_{i}") for i in range(2)} self.lazy_components: Generator[Component] = (Component(f"lazy_{i}") for i in range(2))
CompositionContainer
python
h5py__h5py
h5py/_hl/vds.py
{ "start": 578, "end": 2115 }
class ____(namedtuple('VDSmap', ('vspace', 'file_name', 'dset_name', 'src_space'))): '''Defines a region in a virtual dataset mapping to part of a source dataset ''' vds_support = True def _convert_space_for_key(space, key): """ Converts the space with the given key. Mainly used to allow unlimited dimensions in virtual space selection. """ key = key if isinstance(key, tuple) else (key,) type_code = space.get_select_type() # check for unlimited selections in case where selection is regular # hyperslab, which is the only allowed case for h5s.UNLIMITED to be # in the selection if type_code == h5s.SEL_HYPERSLABS and space.is_regular_hyperslab(): rank = space.get_simple_extent_ndims() nargs = len(key) idx_offset = 0 start, stride, count, block = space.get_regular_hyperslab() # iterate through keys. we ignore numeral indices. if we get a # slice, we check for an h5s.UNLIMITED value as the stop # if we get an ellipsis, we offset index by (rank - nargs) for i, sl in enumerate(key): if isinstance(sl, slice): if sl.stop == h5s.UNLIMITED: counts = list(count) idx = i + idx_offset counts[idx] = h5s.UNLIMITED count = tuple(counts) elif sl is Ellipsis: idx_offset = rank - nargs space.select_hyperslab(start, count, stride, block)
VDSmap
python
kamyu104__LeetCode-Solutions
Python/sum-of-two-integers.py
{ "start": 29, "end": 2025 }
class ____(object): def getSum(self, a, b): """ :type a: int :type b: int :rtype: int """ bit_length = 32 neg_bit, mask = (1 << bit_length) >> 1, ~(~0 << bit_length) a = (a | ~mask) if (a & neg_bit) else (a & mask) b = (b | ~mask) if (b & neg_bit) else (b & mask) while b: carry = a & b a ^= b a = (a | ~mask) if (a & neg_bit) else (a & mask) b = carry << 1 b = (b | ~mask) if (b & neg_bit) else (b & mask) return a def getSum2(self, a, b): """ :type a: int :type b: int :rtype: int """ # 32 bits integer max MAX = 0x7FFFFFFF # 32 bits interger min MIN = 0x80000000 # mask to get last 32 bits mask = 0xFFFFFFFF while b: # ^ get different bits and & gets double 1s, << moves carry a, b = (a ^ b) & mask, ((a & b) << 1) & mask # if a is negative, get a's 32 bits complement positive first # then get 32-bit positive's Python complement negative return a if a <= MAX else ~(a ^ mask) def minus(self, a, b): b = self.getSum(~b, 1) return self.getSum(a, b) def multiply(self, a, b): isNeg = (a > 0) ^ (b > 0) x = a if a > 0 else self.getSum(~a, 1) y = b if b > 0 else self.getSum(~b, 1) ans = 0 while y & 0x01: ans = self.getSum(ans, x) y >>= 1 x <<= 1 return self.getSum(~ans, 1) if isNeg else ans def divide(self, a, b): isNeg = (a > 0) ^ (b > 0) x = a if a > 0 else self.getSum(~a, 1) y = b if b > 0 else self.getSum(~b, 1) ans = 0 for i in range(31, -1, -1): if (x >> i) >= y: x = self.minus(x, y << i) ans = self.getSum(ans, 1 << i) return self.getSum(~ans, 1) if isNeg else ans
Solution
python
huggingface__transformers
tests/models/blt/test_modeling_blt.py
{ "start": 6375, "end": 8812 }
class ____(CausalLMModelTest, unittest.TestCase): model_tester_class = BltModelTester # Need to use `0.8` instead of `0.9` for `test_cpu_offload` # This is because we are hitting edge cases with the causal_mask buffer model_split_percents = [0.5, 0.7, 0.8] # used in `test_torch_compile_for_training` _torch_compile_train_cls = BltForCausalLM if is_torch_available() else None @pytest.mark.generate @parameterized.expand([("greedy", 1), ("beam search", 2)]) @unittest.skip( "Blt requires real token IDs for its hash-based embedding computation, making inputs_embeds generation incompatible with identical outputs" ) def test_generate_from_inputs_embeds(self, _, num_beams): pass @pytest.mark.generate @unittest.skip( "Blt requires real token IDs for its hash-based embedding computation, making inputs_embeds generation incompatible with identical outputs" ) def test_inputs_embeds_matches_input_ids(self): pass @parameterized.expand(TEST_EAGER_MATCHES_SDPA_INFERENCE_PARAMETERIZATION) def test_eager_matches_sdpa_inference( self, name, torch_dtype, padding_side, use_attention_mask, output_attentions, enable_kernels, ): "We need to relax a bit the `atols` for fp32 here due to the altup projections" atols = { ("cpu", False, torch.float32): 2e-2, # this was relaxed ("cpu", False, torch.float16): 5e-3, ("cpu", False, torch.bfloat16): 1e-2, ("cpu", True, torch.float32): 2e-2, # this was relaxed ("cpu", True, torch.float16): 5e-3, ("cpu", True, torch.bfloat16): 1e-2, ("cuda", False, torch.float32): 2e-2, # this was relaxed ("cuda", False, torch.bfloat16): 1e-2, ("cuda", False, torch.float16): 5e-3, ("cuda", True, torch.float32): 2e-2, # this was relaxed ("cuda", True, torch.bfloat16): 1e-2, ("cuda", True, torch.float16): 5e-3, } _test_eager_matches_sdpa_inference( self, name, torch_dtype, padding_side, use_attention_mask, output_attentions, enable_kernels, atols=atols ) @require_torch_accelerator @slow def test_sdpa_can_dispatch_on_flash(self): self.skipTest("BLT always has an attention_mask input") @require_torch_accelerator
BltModelTest
python
sqlalchemy__sqlalchemy
test/sql/test_select.py
{ "start": 17885, "end": 20554 }
class ____(fixtures.TestBase, AssertsCompiledSQL): """tests related to #8285.""" __dialect__ = "default" def test_c_collection_as_from(self): stmt = select(parent.c) # this works because _all_selected_columns expands out # ClauseList. it does so in the same way that it works for # Table already. so this is free eq_(stmt._all_selected_columns, [parent.c.id, parent.c.data]) self.assert_compile(stmt, "SELECT parent.id, parent.data FROM parent") def test_c_sub_collection_str_stmt(self): stmt = select(table1.c["myid", "description"]) self.assert_compile( stmt, "SELECT mytable.myid, mytable.description FROM mytable" ) subq = stmt.subquery() self.assert_compile( select(subq.c[0]).where(subq.c.description == "x"), "SELECT anon_1.myid FROM (SELECT mytable.myid AS myid, " "mytable.description AS description FROM mytable) AS anon_1 " "WHERE anon_1.description = :description_1", ) def test_c_sub_collection_int_stmt(self): stmt = select(table1.c[2, 0]) self.assert_compile( stmt, "SELECT mytable.description, mytable.myid FROM mytable" ) subq = stmt.subquery() self.assert_compile( select(subq.c.myid).where(subq.c[1] == "x"), "SELECT anon_1.myid FROM (SELECT mytable.description AS " "description, mytable.myid AS myid FROM mytable) AS anon_1 " "WHERE anon_1.myid = :myid_1", ) def test_c_sub_collection_str(self): coll = table1.c["myid", "description"] is_(coll.myid, table1.c.myid) eq_(list(coll), [table1.c.myid, table1.c.description]) def test_c_sub_collection_int(self): coll = table1.c[2, 0] is_(coll.myid, table1.c.myid) eq_(list(coll), [table1.c.description, table1.c.myid]) def test_c_sub_collection_positive_slice(self): coll = table1.c[0:2] is_(coll.myid, table1.c.myid) is_(coll.name, table1.c.name) eq_(list(coll), [table1.c.myid, table1.c.name]) def test_c_sub_collection_negative_slice(self): coll = table1.c[-2:] is_(coll.name, table1.c.name) is_(coll.description, table1.c.description) eq_(list(coll), [table1.c.name, table1.c.description]) def test_missing_key(self): with expect_raises_message(KeyError, "unknown"): table1.c["myid", "unknown"] def test_missing_index(self): with expect_raises_message(IndexError, "5"): table1.c["myid", 5]
ColumnCollectionAsSelectTest
python
getsentry__sentry
tests/sentry/middleware/test_health.py
{ "start": 274, "end": 1926 }
class ____(TestCase): middleware = cached_property(HealthCheck) @cached_property def factory(self): return RequestFactory() @patch("sentry.status_checks.check_all") def test_other_url(self, check_all: MagicMock) -> None: req = self.factory.get("/") resp = self.middleware.process_request(req) assert resp is None, resp assert check_all.call_count == 0 @patch("sentry.status_checks.check_all") def test_basic_health(self, check_all: MagicMock) -> None: req = self.factory.get("/_health/") resp = self.middleware.process_request(req) assert resp.status_code == 200, resp assert check_all.call_count == 0 @patch("sentry.status_checks.check_all") def test_full_health_ok(self, check_all: MagicMock) -> None: check_all.return_value = {object(): []} req = self.factory.get("/_health/?full") resp = self.middleware.process_request(req) assert resp.status_code == 200, resp body = json.loads(resp.content) assert "problems" in body assert "healthy" in body assert check_all.call_count == 1 @patch("sentry.status_checks.check_all") def test_full_health_bad(self, check_all: MagicMock) -> None: check_all.return_value = {object(): [Problem("the system is down")]} req = self.factory.get("/_health/?full") resp = self.middleware.process_request(req) assert resp.status_code == 500, resp body = json.loads(resp.content) assert "problems" in body assert "healthy" in body assert check_all.call_count == 1
HealthCheckTest
python
fastai__fastai
fastai/layers.py
{ "start": 19326, "end": 22171 }
class ____(Module): "Resnet block from `ni` to `nh` with `stride`" @delegates(ConvLayer.__init__) def __init__(self, expansion, ni, nf, stride=1, groups=1, reduction=None, nh1=None, nh2=None, dw=False, g2=1, sa=False, sym=False, norm_type=NormType.Batch, act_cls=defaults.activation, ndim=2, ks=3, pool=AvgPool, pool_first=True, **kwargs): norm2 = (NormType.BatchZero if norm_type==NormType.Batch else NormType.InstanceZero if norm_type==NormType.Instance else norm_type) if nh2 is None: nh2 = nf if nh1 is None: nh1 = nh2 nf,ni = nf*expansion,ni*expansion k0 = dict(norm_type=norm_type, act_cls=act_cls, ndim=ndim, **kwargs) k1 = dict(norm_type=norm2, act_cls=None, ndim=ndim, **kwargs) convpath = [ConvLayer(ni, nh2, ks, stride=stride, groups=ni if dw else groups, **k0), ConvLayer(nh2, nf, ks, groups=g2, **k1) ] if expansion == 1 else [ ConvLayer(ni, nh1, 1, **k0), ConvLayer(nh1, nh2, ks, stride=stride, groups=nh1 if dw else groups, **k0), ConvLayer(nh2, nf, 1, groups=g2, **k1)] if reduction: convpath.append(SEModule(nf, reduction=reduction, act_cls=act_cls)) if sa: convpath.append(SimpleSelfAttention(nf,ks=1,sym=sym)) self.convpath = nn.Sequential(*convpath) idpath = [] if ni!=nf: idpath.append(ConvLayer(ni, nf, 1, act_cls=None, ndim=ndim, **kwargs)) if stride!=1: idpath.insert((1,0)[pool_first], pool(stride, ndim=ndim, ceil_mode=True)) self.idpath = nn.Sequential(*idpath) self.act = defaults.activation(inplace=True) if act_cls is defaults.activation else act_cls() def forward(self, x): return self.act(self.convpath(x) + self.idpath(x)) # %% ../nbs/01_layers.ipynb 133 def SEBlock(expansion, ni, nf, groups=1, reduction=16, stride=1, **kwargs): return ResBlock(expansion, ni, nf, stride=stride, groups=groups, reduction=reduction, nh1=nf*2, nh2=nf*expansion, **kwargs) # %% ../nbs/01_layers.ipynb 134 def SEResNeXtBlock(expansion, ni, nf, groups=32, reduction=16, stride=1, base_width=4, **kwargs): w = math.floor(nf * (base_width / 64)) * groups return ResBlock(expansion, ni, nf, stride=stride, groups=groups, reduction=reduction, nh2=w, **kwargs) # %% ../nbs/01_layers.ipynb 135 def SeparableBlock(expansion, ni, nf, reduction=16, stride=1, base_width=4, **kwargs): return ResBlock(expansion, ni, nf, stride=stride, reduction=reduction, nh2=nf*2, dw=True, **kwargs) # %% ../nbs/01_layers.ipynb 138 def _stack_tups(tuples, stack_dim=1): "Stack tuple of tensors along `stack_dim`" return tuple(torch.stack([t[i] for t in tuples], dim=stack_dim) for i in range_of(tuples[0])) # %% ../nbs/01_layers.ipynb 139
ResBlock
python
pytorch__pytorch
torch/_inductor/select_algorithm.py
{ "start": 59950, "end": 60046 }
class ____(NamedTuple): code: str extra: str events: list[Any]
GeneratedCodeCacheEntry
python
huggingface__transformers
src/transformers/models/glm4v/modular_glm4v.py
{ "start": 30834, "end": 32982 }
class ____(GradientCheckpointingLayer): def __init__(self, config: Glm4vTextConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = Glm4vTextAttention(config, layer_idx) self.mlp = Glm4vTextMLP(config) self.input_layernorm = Glm4vRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = Glm4vRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_self_attn_layernorm = Glm4vRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_mlp_layernorm = Glm4vRMSNorm(config.hidden_size, eps=config.rms_norm_eps) @auto_docstring def forward( self, hidden_states: torch.Tensor, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, _ = self.self_attn( hidden_states=hidden_states, position_embeddings=position_embeddings, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = self.post_self_attn_layernorm(hidden_states) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = self.post_mlp_layernorm(hidden_states) hidden_states = residual + hidden_states return hidden_states
Glm4vTextDecoderLayer
python
pandas-dev__pandas
asv_bench/benchmarks/frame_methods.py
{ "start": 17852, "end": 18541 }
class ____: def setup(self): n = 1 << 20 t = date_range("2015-01-01", freq="s", periods=(n // 64)) xs = np.random.randn(n // 64).round(2) self.df = DataFrame( { "a": np.random.randint(-1 << 8, 1 << 8, n), "b": np.random.choice(t, n), "c": np.random.choice(xs, n), } ) self.df2 = DataFrame(np.random.randn(1000, 100).astype(str)).T def time_frame_duplicated(self): self.df.duplicated() def time_frame_duplicated_wide(self): self.df2.duplicated() def time_frame_duplicated_subset(self): self.df.duplicated(subset=["a"])
Duplicated
python
pyinstaller__pyinstaller
bootloader/waflib/Tools/qt5.py
{ "start": 8050, "end": 20211 }
class ____(Task.Task): color = 'BLUE' after = 'ts2qm' def run(self): txt = '\n'.join(['<file>%s</file>' % k.path_from(self.outputs[0].parent) for k in self.inputs]) code = '<!DOCTYPE RCC><RCC version="1.0">\n<qresource>\n%s\n</qresource>\n</RCC>' % txt self.outputs[0].write(code) def configure(self): self.find_qt5_binaries() self.set_qt5_libs_dir() self.set_qt5_libs_to_check() self.set_qt5_defines() self.find_qt5_libraries() self.add_qt5_rpath() self.simplify_qt5_libs() if not has_xml: Logs.error('No xml.sax support was found, rcc dependencies will be incomplete!') if 'COMPILER_CXX' not in self.env: self.fatal('No CXX compiler defined: did you forget to configure compiler_cxx first?') frag = '#include <QMap>\nint main(int argc, char **argv) {QMap<int,int> m;return m.keys().size();}\n' uses = 'QT5CORE' for flag in [[], '-fPIE', '-fPIC', '-std=c++11', ['-std=c++11', '-fPIE'], ['-std=c++11', '-fPIC']]: msg = 'See if Qt files compile ' if flag: msg += 'with %s' % flag try: self.check(features='qt5 cxx', use=uses, uselib_store='qt5', cxxflags=flag, fragment=frag, msg=msg) except self.errors.ConfigurationError: pass else: break else: self.fatal('Could not build a simple Qt application') if Utils.unversioned_sys_platform() == 'freebsd': frag = '#include <QMap>\nint main(int argc, char **argv) {QMap<int,int> m;return m.keys().size();}\n' try: self.check( features='qt5 cxx cxxprogram', use=uses, fragment=frag, msg='Can we link Qt programs on FreeBSD directly?' ) except self.errors.ConfigurationError: self.check( features='qt5 cxx cxxprogram', use=uses, uselib_store='qt5', libpath='/usr/local/lib', fragment=frag, msg='Is /usr/local/lib required?' ) @conf def find_qt5_binaries(self): env = self.env opt = Options.options qtdir = getattr(opt, 'qtdir', '') qtbin = getattr(opt, 'qtbin', '') paths = [] if qtdir: qtbin = os.path.join(qtdir, 'bin') if not qtdir: qtdir = self.environ.get('QT5_ROOT', '') qtbin = self.environ.get('QT5_BIN') or os.path.join(qtdir, 'bin') if qtbin: paths = [qtbin] if not qtdir: paths = self.environ.get('PATH', '').split(os.pathsep) paths.extend(['/usr/share/qt5/bin', '/usr/local/lib/qt5/bin']) try: lst = Utils.listdir('/usr/local/Trolltech/') except OSError: pass else: if lst: lst.sort() lst.reverse() qtdir = '/usr/local/Trolltech/%s/' % lst[0] qtbin = os.path.join(qtdir, 'bin') paths.append(qtbin) cand = None prev_ver = ['5', '0', '0'] for qmk in ('qmake-qt5', 'qmake5', 'qmake'): try: qmake = self.find_program(qmk, path_list=paths) except self.errors.ConfigurationError: pass else: try: version = self.cmd_and_log(qmake + ['-query', 'QT_VERSION']).strip() except self.errors.WafError: pass else: if version: new_ver = version.split('.') if new_ver > prev_ver: cand = qmake prev_ver = new_ver if not cand: try: self.find_program('qtchooser') except self.errors.ConfigurationError: pass else: cmd = self.env.QTCHOOSER + ['-qt=5', '-run-tool=qmake'] try: version = self.cmd_and_log(cmd + ['-query', 'QT_VERSION']) except self.errors.WafError: pass else: cand = cmd if cand: self.env.QMAKE = cand else: self.fatal('Could not find qmake for qt5') self.env.QT_HOST_BINS = qtbin = self.cmd_and_log(self.env.QMAKE + ['-query', 'QT_HOST_BINS']).strip() paths.insert(0, qtbin) def find_bin(lst, var): if var in env: return for f in lst: try: ret = self.find_program(f, path_list=paths) except self.errors.ConfigurationError: pass else: env[var] = ret break find_bin(['uic-qt5', 'uic'], 'QT_UIC') if not env.QT_UIC: self.fatal('cannot find the uic compiler for qt5') self.start_msg('Checking for uic version') uicver = self.cmd_and_log(env.QT_UIC + ['-version'], output=Context.BOTH) uicver = ''.join(uicver).strip() uicver = uicver.replace('Qt User Interface Compiler ', '').replace('User Interface Compiler for Qt', '') self.end_msg(uicver) if uicver.find(' 3.') != -1 or uicver.find(' 4.') != -1: self.fatal('this uic compiler is for qt3 or qt4, add uic for qt5 to your path') find_bin(['moc-qt5', 'moc'], 'QT_MOC') find_bin(['rcc-qt5', 'rcc'], 'QT_RCC') find_bin(['lrelease-qt5', 'lrelease'], 'QT_LRELEASE') find_bin(['lupdate-qt5', 'lupdate'], 'QT_LUPDATE') env.UIC_ST = '%s -o %s' env.MOC_ST = '-o' env.ui_PATTERN = 'ui_%s.h' env.QT_LRELEASE_FLAGS = ['-silent'] env.MOCCPPPATH_ST = '-I%s' env.MOCDEFINES_ST = '-D%s' @conf def set_qt5_libs_dir(self): env = self.env qtlibs = getattr(Options.options, 'qtlibs', None) or self.environ.get('QT5_LIBDIR') if not qtlibs: try: qtlibs = self.cmd_and_log(env.QMAKE + ['-query', 'QT_INSTALL_LIBS']).strip() except Errors.WafError: qtdir = self.cmd_and_log(env.QMAKE + ['-query', 'QT_INSTALL_PREFIX']).strip() qtlibs = os.path.join(qtdir, 'lib') self.msg('Found the Qt5 libraries in', qtlibs) env.QTLIBS = qtlibs @conf def find_single_qt5_lib(self, name, uselib, qtlibs, qtincludes, force_static): env = self.env if force_static: exts = ('.a', '.lib') prefix = 'STLIB' else: exts = ('.so', '.lib') prefix = 'LIB' def lib_names(): for x in exts: for k in ('', '5') if Utils.is_win32 else ['']: for p in ('lib', ''): yield (p, name, k, x) for tup in lib_names(): k = ''.join(tup) path = os.path.join(qtlibs, k) if os.path.exists(path): if env.DEST_OS == 'win32': libval = ''.join(tup[:-1]) else: libval = name env.append_unique(prefix + '_' + uselib, libval) env.append_unique('%sPATH_%s' % (prefix, uselib), qtlibs) env.append_unique('INCLUDES_' + uselib, qtincludes) env.append_unique('INCLUDES_' + uselib, os.path.join(qtincludes, name.replace('Qt5', 'Qt'))) return k return False @conf def find_qt5_libraries(self): env = self.env qtincludes = self.environ.get('QT5_INCLUDES') or self.cmd_and_log(env.QMAKE + ['-query', 'QT_INSTALL_HEADERS']).strip() force_static = self.environ.get('QT5_FORCE_STATIC') try: if self.environ.get('QT5_XCOMPILE'): self.fatal('QT5_XCOMPILE Disables pkg-config detection') self.check_cfg(atleast_pkgconfig_version='0.1') except self.errors.ConfigurationError: for i in self.qt5_vars: uselib = i.upper() if Utils.unversioned_sys_platform() == 'darwin': fwk = i.replace('Qt5', 'Qt') frameworkName = fwk + '.framework' qtDynamicLib = os.path.join(env.QTLIBS, frameworkName, fwk) if os.path.exists(qtDynamicLib): env.append_unique('FRAMEWORK_' + uselib, fwk) env.append_unique('FRAMEWORKPATH_' + uselib, env.QTLIBS) self.msg('Checking for %s' % i, qtDynamicLib, 'GREEN') else: self.msg('Checking for %s' % i, False, 'YELLOW') env.append_unique('INCLUDES_' + uselib, os.path.join(env.QTLIBS, frameworkName, 'Headers')) else: ret = self.find_single_qt5_lib(i, uselib, env.QTLIBS, qtincludes, force_static) if not force_static and not ret: ret = self.find_single_qt5_lib(i, uselib, env.QTLIBS, qtincludes, True) self.msg('Checking for %s' % i, ret, 'GREEN' if ret else 'YELLOW') else: path = '%s:%s:%s/pkgconfig:/usr/lib/qt5/lib/pkgconfig:/opt/qt5/lib/pkgconfig:/usr/lib/qt5/lib:/opt/qt5/lib' % ( self.environ.get('PKG_CONFIG_PATH', ''), env.QTLIBS, env.QTLIBS ) for i in self.qt5_vars: self.check_cfg( package=i, args='--cflags --libs', mandatory=False, force_static=force_static, pkg_config_path=path ) @conf def simplify_qt5_libs(self): env = self.env def process_lib(vars_, coreval): for d in vars_: var = d.upper() if var == 'QTCORE': continue value = env['LIBPATH_' + var] if value: core = env[coreval] accu = [] for lib in value: if lib in core: continue accu.append(lib) env['LIBPATH_' + var] = accu process_lib(self.qt5_vars, 'LIBPATH_QTCORE') @conf def add_qt5_rpath(self): env = self.env if getattr(Options.options, 'want_rpath', False): def process_rpath(vars_, coreval): for d in vars_: var = d.upper() value = env['LIBPATH_' + var] if value: core = env[coreval] accu = [] for lib in value: if var != 'QTCORE': if lib in core: continue accu.append('-Wl,--rpath=' + lib) env['RPATH_' + var] = accu process_rpath(self.qt5_vars, 'LIBPATH_QTCORE') @conf def set_qt5_libs_to_check(self): self.qt5_vars = Utils.to_list(getattr(self, 'qt5_vars', [])) if not self.qt5_vars: dirlst = Utils.listdir(self.env.QTLIBS) pat = self.env.cxxshlib_PATTERN if Utils.is_win32: pat = pat.replace('.dll', '.lib') if self.environ.get('QT5_FORCE_STATIC'): pat = self.env.cxxstlib_PATTERN if Utils.unversioned_sys_platform() == 'darwin': pat = r"%s\.framework" re_qt = re.compile(pat % 'Qt5?(?P<name>.*)' + '$') for x in dirlst: m = re_qt.match(x) if m: self.qt5_vars.append("Qt5%s" % m.group('name')) if not self.qt5_vars: self.fatal('cannot find any Qt5 library (%r)' % self.env.QTLIBS) qtextralibs = getattr(Options.options, 'qtextralibs', None) if qtextralibs: self.qt5_vars.extend(qtextralibs.split(',')) @conf def set_qt5_defines(self): if sys.platform != 'win32': return for x in self.qt5_vars: y = x.replace('Qt5', 'Qt')[2:].upper() self.env.append_unique('DEFINES_%s' % x.upper(), 'QT_%s_LIB' % y) def options(opt): opt.add_option( '--want-rpath', action='store_true', default=False, dest='want_rpath', help='enable the rpath for qt libraries' ) for i in 'qtdir qtbin qtlibs'.split(): opt.add_option('--' + i, type='string', default='', dest=i) opt.add_option( '--translate', action='store_true', help='collect translation strings', dest='trans_qt5', default=False ) opt.add_option( '--qtextralibs', type='string', default='', dest='qtextralibs', help='additional qt libraries on the system to add to default ones, comma separated' )
qm2rcc
python
airbytehq__airbyte
airbyte-ci/connectors/metadata_service/lib/metadata_service/models/generated/ConnectorBreakingChanges.py
{ "start": 587, "end": 785 }
class ____(BaseModel): __root__: StreamBreakingChangeScope = Field( ..., description="A scope that can be used to limit the impact of a breaking change.", )
BreakingChangeScope
python
urllib3__urllib3
test/with_dummyserver/test_https.py
{ "start": 46672, "end": 46819 }
class ____(BaseTestHTTPS): tls_protocol_name = "TLSv1.2" certs = TLSv1_2_CERTS @pytest.mark.usefixtures("requires_tlsv1_3")
TestHTTPS_TLSv1_2
python
readthedocs__readthedocs.org
readthedocs/notifications/messages.py
{ "start": 18727, "end": 19939 }
class ____: def __init__(self): self.messages = {} def add(self, messages): if not isinstance(messages, list): if not isinstance(messages, Message): raise ValueError("A message should be instance of Message or a list of Messages.") messages = [messages] for message in messages: if message.id in messages: raise ValueError("A message with the same 'id' is already registered.") self.messages[message.id] = message def get(self, message_id, format_values=None): # Copy to avoid setting format values on the static instance of the # message inside the registry, set on a per-request instance instead. message = copy.copy(self.messages.get(message_id)) if message is not None: # Always include global variables, override with provided values all_format_values = readthedocs_processor(None) all_format_values.update(format_values or {}) message.set_format_values(all_format_values) return message registry = MessagesRegistry() registry.add(BUILD_MKDOCS_MESSAGES) registry.add(BUILD_MESSAGES)
MessagesRegistry
python
huggingface__transformers
tests/models/bamba/test_modeling_bamba.py
{ "start": 21837, "end": 27861 }
class ____(unittest.TestCase): model = None tokenizer = None # This variable is used to determine which CUDA device are we using for our runners (A10 or T4) # Depending on the hardware we get different logits / generations device_properties: DeviceProperties = (None, None, None) @classmethod def setUpClass(cls): model_id = "ibm-fms/Bamba-9B" cls.model = BambaForCausalLM.from_pretrained(model_id, dtype=torch.bfloat16) cls.tokenizer = AutoTokenizer.from_pretrained(model_id) # feels a bit forced to have to do this for the generation test cls.tokenizer.pad_token_id = cls.model.config.pad_token_id cls.tokenizer.padding_side = "left" cls.device_properties = get_device_properties() def test_simple_generate(self): # fmt: off expectations = Expectations( { ("cuda", 8): "<|begin_of_text|>Hey how are you doing on this lovely evening? I hope you are all having a good time.", ("rocm", 9): "<|begin_of_text|>Hey how are you doing on this lovely evening? I hope you are doing well. I am here", ("xpu", 3): "<|begin_of_text|>Hey how are you doing on this lovely evening? I hope you are all doing well. I am", } ) # fmt: on self.model.to(torch_device) input_ids = self.tokenizer("Hey how are you doing on this lovely evening?", return_tensors="pt")[ "input_ids" ].to(torch_device) out = self.model.generate(input_ids, do_sample=False, max_new_tokens=10) output_sentence = self.tokenizer.decode(out[0, :]) expected = expectations.get_expectation() self.assertEqual(output_sentence, expected) # TODO: there are significant differences in the logits across major cuda versions, which shouldn't exist if self.device_properties[0] == "cuda" and self.device_properties[1] == 8: with torch.no_grad(): logits = self.model(input_ids=input_ids, logits_to_keep=40).logits EXPECTED_LOGITS_NO_GRAD = torch.tensor( [ 149., 142., 146., 142., 143., 144., 142., 145., 142., 146., 144., 146., 147., 147., 148., 145., 147., 145., 145., 145., 145., 144., 144., 144., 144., 145., 147., 146., 144., 144., 148., 147., 148., 147., 147., 147., 146., 146., 148., 148. ], dtype=torch.bfloat16) # fmt: skip torch.testing.assert_close(logits[0, -1, :40].cpu(), EXPECTED_LOGITS_NO_GRAD, rtol=1e-3, atol=1) @require_deterministic_for_xpu def test_simple_batched_generate_with_padding(self): # Key 9 for MI300, Key 8 for A100/A10, and Key 7 for T4. # # Note: Key 9 is currently set for MI300, but may need potential future adjustments for H100s, # considering differences in hardware processing and potential deviations in generated text. # fmt: off EXPECTED_TEXTS = Expectations( { ("cuda", 7): [], ("cuda", 8): [ "<|begin_of_text|>Hey how are you doing on this lovely evening? I hope you are doing well. I am here", "!!!<|begin_of_text|>I am late! I need to get to work! I have to get to the", ], ("rocm", 9): [ "<|begin_of_text|>Hey how are you doing on this lovely evening? I hope you are doing well. I am here", "!!!<|begin_of_text|>I am late! I need to be at the airport in 20 minutes! I", ], ("xpu", 3): [ "<|begin_of_text|>Hey how are you doing on this lovely evening? I hope you are all doing well. I am", "!!!<|begin_of_text|>I am late! I need to get to work! I have to get to the", ], } ) # fmt: on EXPECTED_TEXT = EXPECTED_TEXTS.get_expectation() self.model.to(torch_device) inputs = self.tokenizer( ["Hey how are you doing on this lovely evening?", "I am late! I need to"], padding=True, return_tensors="pt", ).to(torch_device) out = self.model.generate(**inputs, do_sample=False, max_new_tokens=10) output_sentences = self.tokenizer.batch_decode(out) self.assertEqual(output_sentences[0], EXPECTED_TEXT[0]) self.assertEqual(output_sentences[1], EXPECTED_TEXT[1]) # TODO: there are significant differences in the logits across major cuda versions, which shouldn't exist if self.device_properties[0] == "cuda" and self.device_properties[1] == 8: with torch.no_grad(): logits = self.model(input_ids=inputs["input_ids"]).logits EXPECTED_LOGITS_NO_GRAD_0 = torch.tensor( [ 149., 142., 146., 142., 143., 144., 142., 145., 142., 146., 144., 146., 147., 147., 148., 145., 147., 145., 145., 145., 145., 144., 144., 144., 144., 145., 147., 146., 144., 144., 148., 147., 148., 147., 147., 147., 146., 146., 148., 148. ], dtype=torch.bfloat16) # fmt: skip EXPECTED_LOGITS_NO_GRAD_1 = torch.tensor( [ 182., 178., 177., 174., 176., 176., 178., 178., 177., 179., 176., 183., 180., 182., 179., 174., 178., 176., 176., 175., 175., 175., 174., 173., 174., 182., 180., 176., 177., 177., 180., 176., 178., 177., 177., 175., 176., 177., 175., 177. ], dtype=torch.bfloat16) # fmt: skip torch.testing.assert_close(logits[0, -1, :40].cpu(), EXPECTED_LOGITS_NO_GRAD_0, rtol=1e-3, atol=1) torch.testing.assert_close(logits[1, -1, :40].cpu(), EXPECTED_LOGITS_NO_GRAD_1, rtol=1e-3, atol=1)
BambaModelIntegrationTest
python
huggingface__transformers
src/transformers/models/maskformer/modeling_maskformer.py
{ "start": 6082, "end": 9445 }
class ____(ModelOutput): r""" encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Last hidden states (final feature map) of the last stage of the encoder model (backbone). pixel_decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Last hidden states (final feature map) of the last stage of the pixel decoder model (FPN). transformer_decoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Last hidden states (final feature map) of the last stage of the transformer decoder model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the encoder model at the output of each stage. pixel_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the pixel decoder model at the output of each stage. transformer_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states (also called feature maps) of the transformer decoder at the output of each stage. hidden_states `tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` containing `encoder_hidden_states`, `pixel_decoder_hidden_states` and `decoder_hidden_states` """ encoder_last_hidden_state: Optional[torch.FloatTensor] = None pixel_decoder_last_hidden_state: Optional[torch.FloatTensor] = None transformer_decoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[tuple[torch.FloatTensor]] = None pixel_decoder_hidden_states: Optional[tuple[torch.FloatTensor]] = None transformer_decoder_hidden_states: Optional[tuple[torch.FloatTensor]] = None hidden_states: Optional[tuple[torch.FloatTensor]] = None attentions: Optional[tuple[torch.FloatTensor]] = None @dataclass @auto_docstring( custom_intro=""" Class for outputs of [`MaskFormerForInstanceSegmentation`]. This output can be directly passed to [`~MaskFormerImageProcessor.post_process_semantic_segmentation`] or or [`~MaskFormerImageProcessor.post_process_instance_segmentation`] or [`~MaskFormerImageProcessor.post_process_panoptic_segmentation`] depending on the task. Please, see [`~MaskFormerImageProcessor] for details regarding usage. """ )
MaskFormerModelOutput
python
django__django
django/contrib/gis/db/models/sql/conversion.py
{ "start": 1366, "end": 2433 }
class ____(models.FloatField): "Wrapper for Distance values." def __init__(self, geo_field): super().__init__() self.geo_field = geo_field def get_prep_value(self, value): if isinstance(value, Distance): return value return super().get_prep_value(value) def get_db_prep_value(self, value, connection, prepared=False): if not isinstance(value, Distance): return value distance_att = connection.ops.get_distance_att_for_field(self.geo_field) if not distance_att: raise ValueError( "Distance measure is supplied, but units are unknown for result." ) return getattr(value, distance_att) def from_db_value(self, value, expression, connection): if value is None: return distance_att = connection.ops.get_distance_att_for_field(self.geo_field) return Distance(**{distance_att: value}) if distance_att else value def get_internal_type(self): return "DistanceField"
DistanceField
python
great-expectations__great_expectations
great_expectations/expectations/core/expect_column_values_to_match_regex_list.py
{ "start": 2425, "end": 16389 }
class ____(ColumnMapExpectation): __doc__ = f"""{EXPECTATION_SHORT_DESCRIPTION} Matches can be anywhere in the string. ExpectColumnValuesToMatchRegexList is a \ Column Map Expectation. Column Map Expectations are one of the most common types of Expectation. They are evaluated for a single column and ask a yes/no question for every row in that column. Based on the result, they then calculate the percentage of rows that gave a positive answer. If the percentage is high enough, the Expectation considers that data valid. Args: column (str): \ {COLUMN_DESCRIPTION} regex_list (list): \ {REGEX_LIST_DESCRIPTION} match_on (string): \ {MATCH_ON_DESCRIPTION} Other Parameters: mostly (None or a float between 0 and 1): \ {MOSTLY_DESCRIPTION} \ For more detail, see [mostly](https://docs.greatexpectations.io/docs/reference/expectations/standard_arguments/#mostly). result_format (str or None): \ Which output mode to use: BOOLEAN_ONLY, BASIC, COMPLETE, or SUMMARY. \ For more detail, see [result_format](https://docs.greatexpectations.io/docs/reference/expectations/result_format). catch_exceptions (boolean or None): \ If True, then catch exceptions and include them as part of the result object. \ For more detail, see [catch_exceptions](https://docs.greatexpectations.io/docs/reference/expectations/standard_arguments/#catch_exceptions). meta (dict or None): \ A JSON-serializable dictionary (nesting allowed) that will be included in the output without \ modification. For more detail, see [meta](https://docs.greatexpectations.io/docs/reference/expectations/standard_arguments/#meta). severity (str or None): \ {FAILURE_SEVERITY_DESCRIPTION} \ For more detail, see [failure severity](https://docs.greatexpectations.io/docs/cloud/expectations/expectations_overview/#failure-severity). Returns: An [ExpectationSuiteValidationResult](https://docs.greatexpectations.io/docs/terms/validation_result) Exact fields vary depending on the values passed to result_format, catch_exceptions, and meta. See Also: [ExpectColumnValuesToMatchRegex](https://greatexpectations.io/expectations/expect_column_values_to_match_regex) [ExpectColumnValuesToNotMatchRegex](https://greatexpectations.io/expectations/expect_column_values_to_not_match_regex) [ExpectColumnValuesToNotMatchRegexList](https://greatexpectations.io/expectations/expect_column_values_to_not_match_regex_list) [ExpectColumnValuesToMatchLikePattern](https://greatexpectations.io/expectations/expect_column_values_to_match_like_pattern) [ExpectColumnValuesToMatchLikePatternList](https://greatexpectations.io/expectations/expect_column_values_to_match_like_pattern_list) [ExpectColumnValuesToNotMatchLikePattern](https://greatexpectations.io/expectations/expect_column_values_to_not_match_like_pattern) [ExpectColumnValuesToNotMatchLikePatternList](https://greatexpectations.io/expectations/expect_column_values_to_not_match_like_pattern_list) Supported Data Sources: [{SUPPORTED_DATA_SOURCES[0]}](https://docs.greatexpectations.io/docs/application_integration_support/) [{SUPPORTED_DATA_SOURCES[1]}](https://docs.greatexpectations.io/docs/application_integration_support/) [{SUPPORTED_DATA_SOURCES[2]}](https://docs.greatexpectations.io/docs/application_integration_support/) [{SUPPORTED_DATA_SOURCES[3]}](https://docs.greatexpectations.io/docs/application_integration_support/) [{SUPPORTED_DATA_SOURCES[4]}](https://docs.greatexpectations.io/docs/application_integration_support/) [{SUPPORTED_DATA_SOURCES[5]}](https://docs.greatexpectations.io/docs/application_integration_support/) [{SUPPORTED_DATA_SOURCES[6]}](https://docs.greatexpectations.io/docs/application_integration_support/) [{SUPPORTED_DATA_SOURCES[7]}](https://docs.greatexpectations.io/docs/application_integration_support/) [{SUPPORTED_DATA_SOURCES[8]}](https://docs.greatexpectations.io/docs/application_integration_support/) [{SUPPORTED_DATA_SOURCES[9]}](https://docs.greatexpectations.io/docs/application_integration_support/) [{SUPPORTED_DATA_SOURCES[10]}](https://docs.greatexpectations.io/docs/application_integration_support/) [{SUPPORTED_DATA_SOURCES[11]}](https://docs.greatexpectations.io/docs/application_integration_support/) Data Quality Issues: {DATA_QUALITY_ISSUES[0]} Example Data: test test2 0 "aaa" "bcc" 1 "abb" "bdd" 2 "acc" "abc" Code Examples: Passing Case: Input: ExpectColumnValuesToMatchRegexList( column="test2", regex_list=["^a.*", "^b.*"], match_on="any" ) Output: {{ "exception_info": {{ "raised_exception": false, "exception_traceback": null, "exception_message": null }}, "result": {{ "element_count": 3, "unexpected_count": 0, "unexpected_percent": 0.0, "partial_unexpected_list": [], "missing_count": 0, "missing_percent": 0.0, "unexpected_percent_total": 0.0, "unexpected_percent_nonmissing": 0.0 }}, "meta": {{}}, "success": true }} Failing Case: Input: ExpectColumnValuesToMatchRegexList( column="test", regex_list=["^a.*", "^b.*"], match_on="all" ) Output: {{ "exception_info": {{ "raised_exception": false, "exception_traceback": null, "exception_message": null }}, "result": {{ "element_count": 3, "unexpected_count": 3, "unexpected_percent": 100, "partial_unexpected_list": [ "bcc", "bdd" ], "missing_count": 0, "missing_percent": 0.0, "unexpected_percent_total": 100, "unexpected_percent_nonmissing": 100 }}, "meta": {{}}, "success": false }} """ # noqa: E501 # FIXME CoP regex_list: Union[List[str], SuiteParameterDict] = pydantic.Field( description=REGEX_LIST_DESCRIPTION ) match_on: Union[Literal["any", "all"], SuiteParameterDict] = pydantic.Field( default="any", description=MATCH_ON_DESCRIPTION ) library_metadata: ClassVar[Dict[str, Union[str, list, bool]]] = { "maturity": "production", "tags": ["core expectation", "column map expectation"], "contributors": [ "@great_expectations", ], "requirements": [], "has_full_test_suite": True, "manually_reviewed_code": True, } _library_metadata = library_metadata map_metric = "column_values.match_regex_list" success_keys = ( "regex_list", "match_on", "mostly", ) args_keys = ( "column", "regex_list", ) class Config: title = "Expect column values to match regex list" @staticmethod def schema_extra( schema: Dict[str, Any], model: Type[ExpectColumnValuesToMatchRegexList] ) -> None: ColumnMapExpectation.Config.schema_extra(schema, model) schema["properties"]["metadata"]["properties"].update( { "data_quality_issues": { "title": "Data Quality Issues", "type": "array", "const": DATA_QUALITY_ISSUES, }, "library_metadata": { "title": "Library Metadata", "type": "object", "const": model._library_metadata, }, "short_description": { "title": "Short Description", "type": "string", "const": EXPECTATION_SHORT_DESCRIPTION, }, "supported_data_sources": { "title": "Supported Data Sources", "type": "array", "const": SUPPORTED_DATA_SOURCES, }, } ) @classmethod def _prescriptive_template( cls, renderer_configuration: RendererConfiguration, ): add_param_args: AddParamArgs = ( ("column", RendererValueType.STRING), ("regex_list", RendererValueType.ARRAY), ("mostly", RendererValueType.NUMBER), ("match_on", RendererValueType.STRING), ) for name, param_type in add_param_args: renderer_configuration.add_param(name=name, param_type=param_type) params = renderer_configuration.params if not params.regex_list or not params.regex_list.value: values_string = "[ ]" else: array_param_name = "regex_list" param_prefix = "v__" renderer_configuration = cls._add_array_params( array_param_name=array_param_name, param_prefix=param_prefix, renderer_configuration=renderer_configuration, ) values_string: str = cls._get_array_string( array_param_name=array_param_name, param_prefix=param_prefix, renderer_configuration=renderer_configuration, ) if params.match_on and params.match_on.value == "all": template_str = ( "values must match all of the following regular expressions: " + values_string ) else: template_str = ( "values must match any of the following regular expressions: " + values_string ) if params.mostly and params.mostly.value < 1.0: renderer_configuration = cls._add_mostly_pct_param( renderer_configuration=renderer_configuration ) template_str += ", at least $mostly_pct % of the time." else: template_str += "." if renderer_configuration.include_column_name: template_str = f"$column {template_str}" renderer_configuration.template_str = template_str return renderer_configuration @classmethod @renderer(renderer_type=LegacyRendererType.PRESCRIPTIVE) @render_suite_parameter_string def _prescriptive_renderer( cls, configuration: Optional[ExpectationConfiguration] = None, result: Optional[ExpectationValidationResult] = None, runtime_configuration: Optional[dict] = None, **kwargs, ): runtime_configuration = runtime_configuration or {} include_column_name = runtime_configuration.get("include_column_name") is not False styling = runtime_configuration.get("styling") params = substitute_none_for_missing( configuration.kwargs, [ "column", "regex_list", "mostly", "match_on", "row_condition", "condition_parser", ], ) if not params.get("regex_list") or len(params.get("regex_list")) == 0: values_string = "[ ]" else: for i, v in enumerate(params["regex_list"]): params[f"v__{i!s}"] = v values_string = " ".join([f"$v__{i!s}" for i, v in enumerate(params["regex_list"])]) if params.get("match_on") == "all": template_str = ( "values must match all of the following regular expressions: " + values_string ) else: template_str = ( "values must match any of the following regular expressions: " + values_string ) if params["mostly"] is not None: if isinstance(params["mostly"], (int, float)) and params["mostly"] < 1.0: params["mostly_pct"] = num_to_str(params["mostly"] * 100, no_scientific=True) # params["mostly_pct"] = "{:.14f}".format(params["mostly"]*100).rstrip("0").rstrip(".") # noqa: E501 # FIXME CoP template_str += ", at least $mostly_pct % of the time." else: template_str += "." if include_column_name: template_str = f"$column {template_str}" if params["row_condition"] is not None: conditional_template_str = parse_row_condition_string(params["row_condition"]) template_str, styling = _style_row_condition( conditional_template_str, template_str, params, styling, ) return [ RenderedStringTemplateContent( **{ "content_block_type": "string_template", "string_template": { "template": template_str, "params": params, "styling": styling, }, } ) ]
ExpectColumnValuesToMatchRegexList
python
apache__airflow
providers/ftp/tests/unit/ftp/hooks/test_ftp.py
{ "start": 4722, "end": 8409 }
class ____: @pytest.fixture(autouse=True) def setup_connections(self, create_connection_without_db): from airflow.models import Connection create_connection_without_db( Connection(conn_id="ftp_passive", conn_type="ftp", host="localhost", extra='{"passive": true}') ) create_connection_without_db( Connection(conn_id="ftp_active", conn_type="ftp", host="localhost", extra='{"passive": false}') ) create_connection_without_db( Connection( conn_id="ftp_custom_port", conn_type="ftp", host="localhost", port=10000, extra='{"passive": true}', ) ) create_connection_without_db( Connection( conn_id="ftp_custom_port_and_login", conn_type="ftp", host="localhost", port=10000, login="user", password="pass123", extra='{"passive": true}', ) ) create_connection_without_db( Connection( conn_id="ftp_encoding", conn_type="ftp", host="localhost", extra='{"encoding": "cp1251"}', ) ) def _test_mode(self, hook_type, connection_id, expected_mode): hook = hook_type(connection_id) conn = hook.get_conn() conn.set_pasv.assert_called_once_with(expected_mode) @mock.patch("ftplib.FTP") def test_ftp_passive_mode(self, mock_ftp): from airflow.providers.ftp.hooks.ftp import FTPHook self._test_mode(FTPHook, "ftp_passive", True) @mock.patch("ftplib.FTP") def test_ftp_active_mode(self, mock_ftp): from airflow.providers.ftp.hooks.ftp import FTPHook self._test_mode(FTPHook, "ftp_active", False) @mock.patch("ftplib.FTP") def test_ftp_custom_port(self, mock_ftp): from airflow.providers.ftp.hooks.ftp import FTPHook hook = FTPHook("ftp_custom_port") conn = hook.get_conn() conn.connect.assert_called_once_with("localhost", 10000) conn.login.assert_not_called() conn.set_pasv.assert_called_once_with(True) @mock.patch("ftplib.FTP") def test_ftp_custom_port_and_login(self, mock_ftp): from airflow.providers.ftp.hooks.ftp import FTPHook hook = FTPHook("ftp_custom_port_and_login") conn = hook.get_conn() conn.connect.assert_called_once_with("localhost", 10000) conn.login.assert_called_once_with("user", "pass123") conn.set_pasv.assert_called_once_with(True) @mock.patch("ftplib.FTP_TLS") def test_ftps_passive_mode(self, mock_ftp): from airflow.providers.ftp.hooks.ftp import FTPSHook self._test_mode(FTPSHook, "ftp_passive", True) @mock.patch("ftplib.FTP_TLS") def test_ftps_active_mode(self, mock_ftp): from airflow.providers.ftp.hooks.ftp import FTPSHook self._test_mode(FTPSHook, "ftp_active", False) @mock.patch("ftplib.FTP") def test_ftp_encoding_extra(self, mock_ftp): from airflow.providers.ftp.hooks.ftp import FTPHook hook = FTPHook("ftp_encoding") hook.get_conn() assert mock_ftp.mock_calls[0] == mock.call(encoding="cp1251") @mock.patch("ftplib.FTP_TLS") def test_ftps_encoding_extra(self, mock_ftp_tls): from airflow.providers.ftp.hooks.ftp import FTPSHook hook = FTPSHook("ftp_encoding") hook.get_conn() assert any(call.kwargs.get("encoding") == "cp1251" for call in mock_ftp_tls.mock_calls)
TestIntegrationFTPHook
python
great-expectations__great_expectations
tests/core/test_expectation_suite.py
{ "start": 31407, "end": 34070 }
class ____: @pytest.mark.unit def test_equality_to_unsupported_class_is_false( self, suite_with_single_expectation: ExpectationSuite ): """If we are not comparing to an ExpectationSuite or dict then we should return False.""" class UnsupportedClass: pass return_value = suite_with_single_expectation == UnsupportedClass() assert not return_value @pytest.mark.unit def test_expectation_suite_equality_single_expectation_true( self, suite_with_single_expectation: ExpectationSuite ): different_but_equivalent_suite = deepcopy(suite_with_single_expectation) assert suite_with_single_expectation == different_but_equivalent_suite assert different_but_equivalent_suite == suite_with_single_expectation assert not suite_with_single_expectation != different_but_equivalent_suite assert not different_but_equivalent_suite != suite_with_single_expectation @pytest.mark.parametrize( "attribute,new_value", [ pytest.param("name", "different_name"), pytest.param( "data_context", MagicMock(), marks=pytest.mark.xfail( strict=True, raises=AssertionError, reason="Currently data_context is not considered in ExpectationSuite equality", ), ), pytest.param("expectations", []), pytest.param("suite_parameters", {"different": "suite_parameters"}), pytest.param("meta", {"notes": "Different meta."}), pytest.param( "id", "different_id", marks=pytest.mark.xfail( strict=True, raises=AssertionError, reason="Currently id is not considered in ExpectationSuite equality", ), ), ], ) @pytest.mark.unit def test_expectation_suite_equality_false( self, attribute: str, new_value: Union[str, Dict[str, str]], suite_with_single_expectation: ExpectationSuite, ): different_but_equivalent_suite = deepcopy(suite_with_single_expectation) setattr(different_but_equivalent_suite, attribute, new_value) assert suite_with_single_expectation != different_but_equivalent_suite assert different_but_equivalent_suite != suite_with_single_expectation assert suite_with_single_expectation != different_but_equivalent_suite assert different_but_equivalent_suite != suite_with_single_expectation
TestEqDunder
python
wandb__wandb
wandb/vendor/pygments/lexers/markup.py
{ "start": 3381, "end": 10588 }
class ____(RegexLexer): """ For `reStructuredText <http://docutils.sf.net/rst.html>`_ markup. .. versionadded:: 0.7 Additional options accepted: `handlecodeblocks` Highlight the contents of ``.. sourcecode:: language``, ``.. code:: language`` and ``.. code-block:: language`` directives with a lexer for the given language (default: ``True``). .. versionadded:: 0.8 """ name = 'reStructuredText' aliases = ['rst', 'rest', 'restructuredtext'] filenames = ['*.rst', '*.rest'] mimetypes = ["text/x-rst", "text/prs.fallenstein.rst"] flags = re.MULTILINE def _handle_sourcecode(self, match): from pygments.lexers import get_lexer_by_name # section header yield match.start(1), Punctuation, match.group(1) yield match.start(2), Text, match.group(2) yield match.start(3), Operator.Word, match.group(3) yield match.start(4), Punctuation, match.group(4) yield match.start(5), Text, match.group(5) yield match.start(6), Keyword, match.group(6) yield match.start(7), Text, match.group(7) # lookup lexer if wanted and existing lexer = None if self.handlecodeblocks: try: lexer = get_lexer_by_name(match.group(6).strip()) except ClassNotFound: pass indention = match.group(8) indention_size = len(indention) code = (indention + match.group(9) + match.group(10) + match.group(11)) # no lexer for this language. handle it like it was a code block if lexer is None: yield match.start(8), String, code return # highlight the lines with the lexer. ins = [] codelines = code.splitlines(True) code = '' for line in codelines: if len(line) > indention_size: ins.append((len(code), [(0, Text, line[:indention_size])])) code += line[indention_size:] else: code += line for item in do_insertions(ins, lexer.get_tokens_unprocessed(code)): yield item # from docutils.parsers.rst.states closers = u'\'")]}>\u2019\u201d\xbb!?' unicode_delimiters = u'\u2010\u2011\u2012\u2013\u2014\u00a0' end_string_suffix = (r'((?=$)|(?=[-/:.,; \n\x00%s%s]))' % (re.escape(unicode_delimiters), re.escape(closers))) tokens = { 'root': [ # Heading with overline (r'^(=+|-+|`+|:+|\.+|\'+|"+|~+|\^+|_+|\*+|\++|#+)([ \t]*\n)' r'(.+)(\n)(\1)(\n)', bygroups(Generic.Heading, Text, Generic.Heading, Text, Generic.Heading, Text)), # Plain heading (r'^(\S.*)(\n)(={3,}|-{3,}|`{3,}|:{3,}|\.{3,}|\'{3,}|"{3,}|' r'~{3,}|\^{3,}|_{3,}|\*{3,}|\+{3,}|#{3,})(\n)', bygroups(Generic.Heading, Text, Generic.Heading, Text)), # Bulleted lists (r'^(\s*)([-*+])( .+\n(?:\1 .+\n)*)', bygroups(Text, Number, using(this, state='inline'))), # Numbered lists (r'^(\s*)([0-9#ivxlcmIVXLCM]+\.)( .+\n(?:\1 .+\n)*)', bygroups(Text, Number, using(this, state='inline'))), (r'^(\s*)(\(?[0-9#ivxlcmIVXLCM]+\))( .+\n(?:\1 .+\n)*)', bygroups(Text, Number, using(this, state='inline'))), # Numbered, but keep words at BOL from becoming lists (r'^(\s*)([A-Z]+\.)( .+\n(?:\1 .+\n)+)', bygroups(Text, Number, using(this, state='inline'))), (r'^(\s*)(\(?[A-Za-z]+\))( .+\n(?:\1 .+\n)+)', bygroups(Text, Number, using(this, state='inline'))), # Line blocks (r'^(\s*)(\|)( .+\n(?:\| .+\n)*)', bygroups(Text, Operator, using(this, state='inline'))), # Sourcecode directives (r'^( *\.\.)(\s*)((?:source)?code(?:-block)?)(::)([ \t]*)([^\n]+)' r'(\n[ \t]*\n)([ \t]+)(.*)(\n)((?:(?:\8.*|)\n)+)', _handle_sourcecode), # A directive (r'^( *\.\.)(\s*)([\w:-]+?)(::)(?:([ \t]*)(.*))', bygroups(Punctuation, Text, Operator.Word, Punctuation, Text, using(this, state='inline'))), # A reference target (r'^( *\.\.)(\s*)(_(?:[^:\\]|\\.)+:)(.*?)$', bygroups(Punctuation, Text, Name.Tag, using(this, state='inline'))), # A footnote/citation target (r'^( *\.\.)(\s*)(\[.+\])(.*?)$', bygroups(Punctuation, Text, Name.Tag, using(this, state='inline'))), # A substitution def (r'^( *\.\.)(\s*)(\|.+\|)(\s*)([\w:-]+?)(::)(?:([ \t]*)(.*))', bygroups(Punctuation, Text, Name.Tag, Text, Operator.Word, Punctuation, Text, using(this, state='inline'))), # Comments (r'^ *\.\..*(\n( +.*\n|\n)+)?', Comment.Preproc), # Field list (r'^( *)(:[a-zA-Z-]+:)(\s*)$', bygroups(Text, Name.Class, Text)), (r'^( *)(:.*?:)([ \t]+)(.*?)$', bygroups(Text, Name.Class, Text, Name.Function)), # Definition list (r'^(\S.*(?<!::)\n)((?:(?: +.*)\n)+)', bygroups(using(this, state='inline'), using(this, state='inline'))), # Code blocks (r'(::)(\n[ \t]*\n)([ \t]+)(.*)(\n)((?:(?:\3.*|)\n)+)', bygroups(String.Escape, Text, String, String, Text, String)), include('inline'), ], 'inline': [ (r'\\.', Text), # escape (r'``', String, 'literal'), # code (r'(`.+?)(<.+?>)(`__?)', # reference with inline target bygroups(String, String.Interpol, String)), (r'`.+?`__?', String), # reference (r'(`.+?`)(:[a-zA-Z0-9:-]+?:)?', bygroups(Name.Variable, Name.Attribute)), # role (r'(:[a-zA-Z0-9:-]+?:)(`.+?`)', bygroups(Name.Attribute, Name.Variable)), # role (content first) (r'\*\*.+?\*\*', Generic.Strong), # Strong emphasis (r'\*.+?\*', Generic.Emph), # Emphasis (r'\[.*?\]_', String), # Footnote or citation (r'<.+?>', Name.Tag), # Hyperlink (r'[^\\\n\[*`:]+', Text), (r'.', Text), ], 'literal': [ (r'[^`]+', String), (r'``' + end_string_suffix, String, '#pop'), (r'`', String), ] } def __init__(self, **options): self.handlecodeblocks = get_bool_opt(options, 'handlecodeblocks', True) RegexLexer.__init__(self, **options) def analyse_text(text): if text[:2] == '..' and text[2:3] != '.': return 0.3 p1 = text.find("\n") p2 = text.find("\n", p1 + 1) if (p2 > -1 and # has two lines p1 * 2 + 1 == p2 and # they are the same length text[p1+1] in '-=' and # the next line both starts and ends with text[p1+1] == text[p2-1]): # ...a sufficiently high header return 0.5
RstLexer
python
pypa__pipenv
pipenv/patched/pip/_internal/metadata/base.py
{ "start": 1341, "end": 2691 }
class ____(Protocol): @property def name(self) -> str: raise NotImplementedError() @property def value(self) -> str: raise NotImplementedError() @property def group(self) -> str: raise NotImplementedError() def _convert_installed_files_path( entry: Tuple[str, ...], info: Tuple[str, ...], ) -> str: """Convert a legacy installed-files.txt path into modern RECORD path. The legacy format stores paths relative to the info directory, while the modern format stores paths relative to the package root, e.g. the site-packages directory. :param entry: Path parts of the installed-files.txt entry. :param info: Path parts of the egg-info directory relative to package root. :returns: The converted entry. For best compatibility with symlinks, this does not use ``abspath()`` or ``Path.resolve()``, but tries to work with path parts: 1. While ``entry`` starts with ``..``, remove the equal amounts of parts from ``info``; if ``info`` is empty, start appending ``..`` instead. 2. Join the two directly. """ while entry and entry[0] == "..": if not info or info[-1] == "..": info += ("..",) else: info = info[:-1] entry = entry[1:] return str(pathlib.Path(*info, *entry))
BaseEntryPoint
python
allegroai__clearml
clearml/backend_api/services/v2_9/tasks.py
{ "start": 140439, "end": 160937 }
class ____(Request): """ Edit task's details. :param task: ID of the task :type task: str :param force: If not true, call fails if the task status is not 'created' :type force: bool :param name: Task name Unique within the company. :type name: str :param tags: User-defined tags list :type tags: Sequence[str] :param system_tags: System tags list. This field is reserved for system use, please don't use it. :type system_tags: Sequence[str] :param type: Type of task :type type: TaskTypeEnum :param comment: Free text comment :type comment: str :param parent: Parent task id Must be a completed task. :type parent: str :param project: Project ID of the project to which this task is assigned Must exist[ab] :type project: str :param output_dest: Output storage id Must be a reference to an existing storage. :type output_dest: str :param execution: Task execution params :type execution: Execution :param hyperparams: Task hyper params per section :type hyperparams: dict :param configuration: Task configuration params :type configuration: dict :param script: Script info :type script: Script """ _service = "tasks" _action = "edit" _version = "2.9" _schema = { "definitions": { "artifact": { "properties": { "content_size": { "description": "Raw data length in bytes", "type": "integer", }, "display_data": { "description": "User-defined list of key/value pairs, sorted", "items": {"items": {"type": "string"}, "type": "array"}, "type": "array", }, "hash": { "description": "Hash of entire raw data", "type": "string", }, "key": {"description": "Entry key", "type": "string"}, "mode": { "default": "output", "description": "System defined input/output indication", "enum": ["input", "output"], "type": "string", }, "timestamp": { "description": "Epoch time when artifact was created", "type": "integer", }, "type": {"description": "System defined type", "type": "string"}, "type_data": { "$ref": "#/definitions/artifact_type_data", "description": "Additional fields defined by the system", }, "uri": {"description": "Raw data location", "type": "string"}, }, "required": ["key", "type"], "type": "object", }, "artifact_type_data": { "properties": { "content_type": { "description": "System defined raw data content type", "type": ["string", "null"], }, "data_hash": { "description": "Hash of raw data, without any headers or descriptive parts", "type": ["string", "null"], }, "preview": { "description": "Description or textual data", "type": ["string", "null"], }, }, "type": "object", }, "configuration_item": { "properties": { "description": { "description": "The parameter description. Optional", "type": ["string", "null"], }, "name": { "description": "Name of the parameter. Should be unique", "type": ["string", "null"], }, "type": { "description": "Type of the parameter. Optional", "type": ["string", "null"], }, "value": { "description": "Value of the parameter", "type": ["string", "null"], }, }, "type": "object", }, "execution": { "properties": { "artifacts": { "description": "Task artifacts", "items": {"$ref": "#/definitions/artifact"}, "type": ["array", "null"], }, "docker_cmd": { "description": "Command for running docker script for the execution of the task", "type": ["string", "null"], }, "framework": { "description": "Framework related to the task. Case insensitive. Mandatory for Training tasks. ", "type": ["string", "null"], }, "model": { "description": "Execution input model ID Not applicable for Register (Import) tasks", "type": ["string", "null"], }, "model_desc": { "additionalProperties": True, "description": "Json object representing the Model descriptors", "type": ["object", "null"], }, "model_labels": { "additionalProperties": {"type": "integer"}, "description": "Json object representing the ids of the labels in the model.\n The keys are the layers' names and the values are the IDs.\n Not applicable for Register (Import) tasks.\n Mandatory for Training tasks", "type": ["object", "null"], }, "parameters": { "additionalProperties": True, "description": "Json object containing the Task parameters", "type": ["object", "null"], }, "queue": { "description": "Queue ID where task was queued.", "type": ["string", "null"], }, }, "type": "object", }, "params_item": { "properties": { "description": { "description": "The parameter description. Optional", "type": ["string", "null"], }, "name": { "description": "Name of the parameter. The combination of section and name should be unique", "type": ["string", "null"], }, "section": { "description": "Section that the parameter belongs to", "type": ["string", "null"], }, "type": { "description": "Type of the parameter. Optional", "type": ["string", "null"], }, "value": { "description": "Value of the parameter", "type": ["string", "null"], }, }, "type": "object", }, "script": { "properties": { "binary": { "default": "python", "description": "Binary to use when running the script", "type": ["string", "null"], }, "branch": { "description": "Repository branch id If not provided and tag not provided, default repository branch is used.", "type": ["string", "null"], }, "diff": { "description": "Uncommitted changes found in the repository when task was run", "type": ["string", "null"], }, "entry_point": { "description": "Path to execute within the repository", "type": ["string", "null"], }, "repository": { "description": "Name of the repository where the script is located", "type": ["string", "null"], }, "requirements": { "description": "A JSON object containing requirements strings by key", "type": ["object", "null"], }, "tag": { "description": "Repository tag", "type": ["string", "null"], }, "version_num": { "description": "Version (changeset) number. Optional (default is head version) Unused if tag is provided.", "type": ["string", "null"], }, "working_dir": { "description": "Path to the folder from which to run the script Default - root folder of repository", "type": ["string", "null"], }, }, "type": "object", }, "section_params": { "additionalProperties": {"$ref": "#/definitions/params_item"}, "description": "Task section params", "type": "object", }, "task_type_enum": { "enum": [ "training", "testing", "inference", "data_processing", "application", "monitor", "controller", "optimizer", "service", "qc", "custom", ], "type": "string", }, }, "properties": { "comment": {"description": "Free text comment ", "type": "string"}, "configuration": { "additionalProperties": {"$ref": "#/definitions/configuration_item"}, "description": "Task configuration params", "type": "object", }, "execution": { "$ref": "#/definitions/execution", "description": "Task execution params", }, "force": { "default": False, "description": "If not true, call fails if the task status is not 'created'", "type": "boolean", }, "hyperparams": { "additionalProperties": {"$ref": "#/definitions/section_params"}, "description": "Task hyper params per section", "type": "object", }, "name": { "description": "Task name Unique within the company.", "type": "string", }, "output_dest": { "description": "Output storage id Must be a reference to an existing storage.", "type": "string", }, "parent": { "description": "Parent task id Must be a completed task.", "type": "string", }, "project": { "description": "Project ID of the project to which this task is assigned Must exist[ab]", "type": "string", }, "script": {"$ref": "#/definitions/script", "description": "Script info"}, "system_tags": { "description": "System tags list. This field is reserved for system use, please don't use it.", "items": {"type": "string"}, "type": "array", }, "tags": { "description": "User-defined tags list", "items": {"type": "string"}, "type": "array", }, "task": {"description": "ID of the task", "type": "string"}, "type": { "$ref": "#/definitions/task_type_enum", "description": "Type of task", }, }, "required": ["task"], "type": "object", } def __init__( self, task: str, force: Optional[bool] = False, name: Optional[str] = None, tags: Optional[List[str]] = None, system_tags: Optional[List[str]] = None, type: Any = None, comment: Optional[str] = None, parent: Optional[str] = None, project: Optional[str] = None, output_dest: Optional[str] = None, execution: Any = None, hyperparams: Optional[dict] = None, configuration: Optional[dict] = None, script: Any = None, **kwargs: Any ) -> None: super(EditRequest, self).__init__(**kwargs) self.task = task self.force = force self.name = name self.tags = tags self.system_tags = system_tags self.type = type self.comment = comment self.parent = parent self.project = project self.output_dest = output_dest self.execution = execution self.hyperparams = hyperparams self.configuration = configuration self.script = script @schema_property("task") def task(self) -> str: return self._property_task @task.setter def task(self, value: str) -> None: if value is None: self._property_task = None return self.assert_isinstance(value, "task", six.string_types) self._property_task = value @schema_property("force") def force(self) -> Optional[bool]: return self._property_force @force.setter def force(self, value: Optional[bool]) -> None: if value is None: self._property_force = None return self.assert_isinstance(value, "force", (bool,)) self._property_force = value @schema_property("name") def name(self) -> Optional[str]: return self._property_name @name.setter def name(self, value: Optional[str]) -> None: if value is None: self._property_name = None return self.assert_isinstance(value, "name", six.string_types) self._property_name = value @schema_property("tags") def tags(self) -> Optional[List[str]]: return self._property_tags @tags.setter def tags(self, value: Optional[List[str]]) -> None: if value is None: self._property_tags = None return self.assert_isinstance(value, "tags", (list, tuple)) self.assert_isinstance(value, "tags", six.string_types, is_array=True) self._property_tags = value @schema_property("system_tags") def system_tags(self) -> Optional[List[str]]: return self._property_system_tags @system_tags.setter def system_tags(self, value: Optional[List[str]]) -> None: if value is None: self._property_system_tags = None return self.assert_isinstance(value, "system_tags", (list, tuple)) self.assert_isinstance(value, "system_tags", six.string_types, is_array=True) self._property_system_tags = value @schema_property("type") def type(self) -> Any: return self._property_type @type.setter def type(self, value: Any) -> None: if value is None: self._property_type = None return if isinstance(value, six.string_types): try: value = TaskTypeEnum(value) except ValueError: pass else: self.assert_isinstance(value, "type", enum.Enum) self._property_type = value @schema_property("comment") def comment(self) -> Optional[str]: return self._property_comment @comment.setter def comment(self, value: Optional[str]) -> None: if value is None: self._property_comment = None return self.assert_isinstance(value, "comment", six.string_types) self._property_comment = value @schema_property("parent") def parent(self) -> Optional[str]: return self._property_parent @parent.setter def parent(self, value: Optional[str]) -> None: if value is None: self._property_parent = None return self.assert_isinstance(value, "parent", six.string_types) self._property_parent = value @schema_property("project") def project(self) -> Optional[str]: return self._property_project @project.setter def project(self, value: Optional[str]) -> None: if value is None: self._property_project = None return self.assert_isinstance(value, "project", six.string_types) self._property_project = value @schema_property("output_dest") def output_dest(self) -> Optional[str]: return self._property_output_dest @output_dest.setter def output_dest(self, value: Optional[str]) -> None: if value is None: self._property_output_dest = None return self.assert_isinstance(value, "output_dest", six.string_types) self._property_output_dest = value @schema_property("execution") def execution(self) -> Any: return self._property_execution @execution.setter def execution(self, value: Any) -> None: if value is None: self._property_execution = None return if isinstance(value, dict): value = Execution.from_dict(value) else: self.assert_isinstance(value, "execution", Execution) self._property_execution = value @schema_property("hyperparams") def hyperparams(self) -> Optional[dict]: return self._property_hyperparams @hyperparams.setter def hyperparams(self, value: Optional[dict]) -> None: if value is None: self._property_hyperparams = None return self.assert_isinstance(value, "hyperparams", dict) self.assert_isinstance(value.keys(), "hyperparams_keys", six.string_types, is_array=True) self.assert_isinstance(value.values(), "hyperparams_values", (SectionParams, dict), is_array=True) value = dict(((k, SectionParams(**v) if isinstance(v, dict) else v) for (k, v) in value.items())) self._property_hyperparams = value @schema_property("configuration") def configuration(self) -> Optional[dict]: return self._property_configuration @configuration.setter def configuration(self, value: Optional[dict]) -> None: if value is None: self._property_configuration = None return self.assert_isinstance(value, "configuration", dict) self.assert_isinstance(value.keys(), "configuration_keys", six.string_types, is_array=True) self.assert_isinstance( value.values(), "configuration_values", (ConfigurationItem, dict), is_array=True, ) value = dict(((k, ConfigurationItem(**v) if isinstance(v, dict) else v) for (k, v) in value.items())) self._property_configuration = value @schema_property("script") def script(self) -> Any: return self._property_script @script.setter def script(self, value: Any) -> None: if value is None: self._property_script = None return if isinstance(value, dict): value = Script.from_dict(value) else: self.assert_isinstance(value, "script", Script) self._property_script = value
EditRequest
python
huggingface__transformers
src/transformers/models/idefics3/modeling_idefics3.py
{ "start": 16784, "end": 17799 }
class ____(nn.Module): def __init__(self, config): super().__init__() self.scale_factor = config.scale_factor self.modality_projection = Idefics3SimpleMLP(config) def pixel_shuffle(self, x, scale_factor=2): bsz, seq, embed_dim = x.size() height = width = int(seq**0.5) x = x.view(bsz, height, width, embed_dim) x = x.view(bsz, height, int(width / scale_factor), embed_dim * scale_factor) x = x.permute(0, 2, 1, 3) x = x.reshape(bsz, int(width / scale_factor), int(height / scale_factor), embed_dim * (scale_factor**2)) x = x.permute(0, 2, 1, 3) x = x.reshape(bsz, int(seq / (scale_factor**2)), embed_dim * (scale_factor**2)) return x def forward(self, image_hidden_states): image_hidden_states = self.pixel_shuffle(image_hidden_states, self.scale_factor) image_hidden_states = self.modality_projection(image_hidden_states) return image_hidden_states @auto_docstring
Idefics3Connector
python
weaviate__weaviate-python-client
weaviate/collections/aggregate.py
{ "start": 499, "end": 668 }
class ____( _HybridAsync, _NearImageAsync, _NearObjectAsync, _NearTextAsync, _NearVectorAsync, _OverAllAsync, ): pass
_AggregateCollectionAsync
python
dagster-io__dagster
python_modules/dagster-graphql/dagster_graphql/schema/backfill.py
{ "start": 2965, "end": 3187 }
class ____(graphene.ObjectType): backfill_id = graphene.NonNull(graphene.String) launched_run_ids = graphene.List(graphene.String) class Meta: name = "LaunchBackfillSuccess"
GrapheneLaunchBackfillSuccess
python
kamyu104__LeetCode-Solutions
Python/remove-all-adjacent-duplicates-in-string.py
{ "start": 29, "end": 347 }
class ____(object): def removeDuplicates(self, S): """ :type S: str :rtype: str """ result = [] for c in S: if result and result[-1] == c: result.pop() else: result.append(c) return "".join(result)
Solution
python
kubernetes-client__python
kubernetes/client/models/v1alpha1_mutation.py
{ "start": 383, "end": 5570 }
class ____(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'apply_configuration': 'V1alpha1ApplyConfiguration', 'json_patch': 'V1alpha1JSONPatch', 'patch_type': 'str' } attribute_map = { 'apply_configuration': 'applyConfiguration', 'json_patch': 'jsonPatch', 'patch_type': 'patchType' } def __init__(self, apply_configuration=None, json_patch=None, patch_type=None, local_vars_configuration=None): # noqa: E501 """V1alpha1Mutation - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._apply_configuration = None self._json_patch = None self._patch_type = None self.discriminator = None if apply_configuration is not None: self.apply_configuration = apply_configuration if json_patch is not None: self.json_patch = json_patch self.patch_type = patch_type @property def apply_configuration(self): """Gets the apply_configuration of this V1alpha1Mutation. # noqa: E501 :return: The apply_configuration of this V1alpha1Mutation. # noqa: E501 :rtype: V1alpha1ApplyConfiguration """ return self._apply_configuration @apply_configuration.setter def apply_configuration(self, apply_configuration): """Sets the apply_configuration of this V1alpha1Mutation. :param apply_configuration: The apply_configuration of this V1alpha1Mutation. # noqa: E501 :type: V1alpha1ApplyConfiguration """ self._apply_configuration = apply_configuration @property def json_patch(self): """Gets the json_patch of this V1alpha1Mutation. # noqa: E501 :return: The json_patch of this V1alpha1Mutation. # noqa: E501 :rtype: V1alpha1JSONPatch """ return self._json_patch @json_patch.setter def json_patch(self, json_patch): """Sets the json_patch of this V1alpha1Mutation. :param json_patch: The json_patch of this V1alpha1Mutation. # noqa: E501 :type: V1alpha1JSONPatch """ self._json_patch = json_patch @property def patch_type(self): """Gets the patch_type of this V1alpha1Mutation. # noqa: E501 patchType indicates the patch strategy used. Allowed values are \"ApplyConfiguration\" and \"JSONPatch\". Required. # noqa: E501 :return: The patch_type of this V1alpha1Mutation. # noqa: E501 :rtype: str """ return self._patch_type @patch_type.setter def patch_type(self, patch_type): """Sets the patch_type of this V1alpha1Mutation. patchType indicates the patch strategy used. Allowed values are \"ApplyConfiguration\" and \"JSONPatch\". Required. # noqa: E501 :param patch_type: The patch_type of this V1alpha1Mutation. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and patch_type is None: # noqa: E501 raise ValueError("Invalid value for `patch_type`, must not be `None`") # noqa: E501 self._patch_type = patch_type def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1alpha1Mutation): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1alpha1Mutation): return True return self.to_dict() != other.to_dict()
V1alpha1Mutation
python
dagster-io__dagster
python_modules/dagster/dagster/_core/definitions/partitions/snap/snap.py
{ "start": 1102, "end": 2451 }
class ____(ABC): @classmethod def from_def(cls, partitions_def: "PartitionsDefinition") -> "PartitionsSnap": from dagster._core.definitions.partitions.definition import ( DynamicPartitionsDefinition, MultiPartitionsDefinition, StaticPartitionsDefinition, TimeWindowPartitionsDefinition, ) if isinstance(partitions_def, TimeWindowPartitionsDefinition): return TimeWindowPartitionsSnap.from_def(partitions_def) elif isinstance(partitions_def, StaticPartitionsDefinition): return StaticPartitionsSnap.from_def(partitions_def) elif isinstance(partitions_def, MultiPartitionsDefinition): return MultiPartitionsSnap.from_def(partitions_def) elif isinstance(partitions_def, DynamicPartitionsDefinition): return DynamicPartitionsSnap.from_def(partitions_def) else: raise DagsterInvalidDefinitionError( "Only static, time window, multi-dimensional partitions, and dynamic partitions" " definitions with a name parameter are currently supported." ) @abstractmethod def get_partitions_definition(self) -> "PartitionsDefinition": ... @whitelist_for_serdes(storage_name="ExternalTimeWindowPartitionsDefinitionData") @record
PartitionsSnap
python
django__django
tests/admin_views/admin.py
{ "start": 26078, "end": 26203 }
class ____(admin.ModelAdmin): list_display = ["choice"] readonly_fields = ["choice"] fields = ["choice"]
ChoiceList
python
prabhupant__python-ds
data_structures/graphs/two_cliques.py
{ "start": 667, "end": 2008 }
class ____: def __init__(self, vertices): self.graph = defaultdict(list) self.cgraph = defaultdict(list) self.vertices = vertices def add_edge(self, u, v): self.graph[u].append(v) self.graph[v].append(u) def is_bipartite(self): colors = [-1] * self.vertices queue = [] for v in range(self.vertices): if colors[v] == -1: colors[v] = 1 queue.append(v) while queue: s = queue.pop(0) for i in self.cgraph[s]: if colors[i] == -1: colors[i] = 1 - colors[s] queue.append(i) elif colors[i] == colors[s]: return False return True def make_complement(self): for src, dest in self.graph.items(): for v in range(self.vertices): if v not in dest and src != v: self.cgraph[src].append(v) self.cgraph[v].append(src) def two_cliques(self): self.make_complement() return self.is_bipartite() g = Graph(5) g.add_edge(0, 3) g.add_edge(3, 4) g.add_edge(0, 1) g.add_edge(1, 2) g.add_edge(2, 0) print(g.two_cliques())
Graph
python
kubernetes-client__python
kubernetes/client/models/v1_device_class_list.py
{ "start": 383, "end": 6934 }
class ____(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'api_version': 'str', 'items': 'list[V1DeviceClass]', 'kind': 'str', 'metadata': 'V1ListMeta' } attribute_map = { 'api_version': 'apiVersion', 'items': 'items', 'kind': 'kind', 'metadata': 'metadata' } def __init__(self, api_version=None, items=None, kind=None, metadata=None, local_vars_configuration=None): # noqa: E501 """V1DeviceClassList - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._api_version = None self._items = None self._kind = None self._metadata = None self.discriminator = None if api_version is not None: self.api_version = api_version self.items = items if kind is not None: self.kind = kind if metadata is not None: self.metadata = metadata @property def api_version(self): """Gets the api_version of this V1DeviceClassList. # noqa: E501 APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources # noqa: E501 :return: The api_version of this V1DeviceClassList. # noqa: E501 :rtype: str """ return self._api_version @api_version.setter def api_version(self, api_version): """Sets the api_version of this V1DeviceClassList. APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources # noqa: E501 :param api_version: The api_version of this V1DeviceClassList. # noqa: E501 :type: str """ self._api_version = api_version @property def items(self): """Gets the items of this V1DeviceClassList. # noqa: E501 Items is the list of resource classes. # noqa: E501 :return: The items of this V1DeviceClassList. # noqa: E501 :rtype: list[V1DeviceClass] """ return self._items @items.setter def items(self, items): """Sets the items of this V1DeviceClassList. Items is the list of resource classes. # noqa: E501 :param items: The items of this V1DeviceClassList. # noqa: E501 :type: list[V1DeviceClass] """ if self.local_vars_configuration.client_side_validation and items is None: # noqa: E501 raise ValueError("Invalid value for `items`, must not be `None`") # noqa: E501 self._items = items @property def kind(self): """Gets the kind of this V1DeviceClassList. # noqa: E501 Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds # noqa: E501 :return: The kind of this V1DeviceClassList. # noqa: E501 :rtype: str """ return self._kind @kind.setter def kind(self, kind): """Sets the kind of this V1DeviceClassList. Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds # noqa: E501 :param kind: The kind of this V1DeviceClassList. # noqa: E501 :type: str """ self._kind = kind @property def metadata(self): """Gets the metadata of this V1DeviceClassList. # noqa: E501 :return: The metadata of this V1DeviceClassList. # noqa: E501 :rtype: V1ListMeta """ return self._metadata @metadata.setter def metadata(self, metadata): """Sets the metadata of this V1DeviceClassList. :param metadata: The metadata of this V1DeviceClassList. # noqa: E501 :type: V1ListMeta """ self._metadata = metadata def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1DeviceClassList): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1DeviceClassList): return True return self.to_dict() != other.to_dict()
V1DeviceClassList
python
walkccc__LeetCode
solutions/1088. Confusing Number II/1088.py
{ "start": 0, "end": 536 }
class ____: def confusingNumberII(self, n: int) -> int: digitToRotated = [(0, 0), (1, 1), (6, 9), (8, 8), (9, 6)] def dfs(num: int, rotatedNum: int, unit: int) -> int: ans = 0 if num == rotatedNum else 1 # Add one more digit for digit, rotated in digitToRotated: if digit == 0 and num == 0: continue nextNum = num * 10 + digit if nextNum > n: break ans += dfs(nextNum, rotated * unit + rotatedNum, unit * 10) return ans return dfs(0, 0, 1)
Solution
python
sqlalchemy__sqlalchemy
lib/sqlalchemy/dialects/mysql/enumerated.py
{ "start": 4044, "end": 10146 }
class ____(_StringType): """MySQL SET type.""" __visit_name__ = "SET" def __init__(self, *values: str, **kw: Any): """Construct a SET. E.g.:: Column("myset", SET("foo", "bar", "baz")) The list of potential values is required in the case that this set will be used to generate DDL for a table, or if the :paramref:`.SET.retrieve_as_bitwise` flag is set to True. :param values: The range of valid values for this SET. The values are not quoted, they will be escaped and surrounded by single quotes when generating the schema. :param convert_unicode: Same flag as that of :paramref:`.String.convert_unicode`. :param collation: same as that of :paramref:`.String.collation` :param charset: same as that of :paramref:`.VARCHAR.charset`. :param ascii: same as that of :paramref:`.VARCHAR.ascii`. :param unicode: same as that of :paramref:`.VARCHAR.unicode`. :param binary: same as that of :paramref:`.VARCHAR.binary`. :param retrieve_as_bitwise: if True, the data for the set type will be persisted and selected using an integer value, where a set is coerced into a bitwise mask for persistence. MySQL allows this mode which has the advantage of being able to store values unambiguously, such as the blank string ``''``. The datatype will appear as the expression ``col + 0`` in a SELECT statement, so that the value is coerced into an integer value in result sets. This flag is required if one wishes to persist a set that can store the blank string ``''`` as a value. .. warning:: When using :paramref:`.mysql.SET.retrieve_as_bitwise`, it is essential that the list of set values is expressed in the **exact same order** as exists on the MySQL database. """ self.retrieve_as_bitwise = kw.pop("retrieve_as_bitwise", False) self.values = tuple(values) if not self.retrieve_as_bitwise and "" in values: raise exc.ArgumentError( "Can't use the blank value '' in a SET without " "setting retrieve_as_bitwise=True" ) if self.retrieve_as_bitwise: self._inversed_bitmap: dict[str, int] = { value: 2**idx for idx, value in enumerate(self.values) } self._bitmap: dict[int, str] = { 2**idx: value for idx, value in enumerate(self.values) } length = max([len(v) for v in values] + [0]) kw.setdefault("length", length) super().__init__(**kw) def column_expression( self, colexpr: ColumnElement[Any] ) -> ColumnElement[Any]: if self.retrieve_as_bitwise: return sql.type_coerce( sql.type_coerce(colexpr, sqltypes.Integer) + 0, self ) else: return colexpr def result_processor( self, dialect: Dialect, coltype: Any ) -> Optional[_ResultProcessorType[Any]]: if self.retrieve_as_bitwise: def process(value: Union[str, int, None]) -> Optional[set[str]]: if value is not None: value = int(value) return set(util.map_bits(self._bitmap.__getitem__, value)) else: return None else: super_convert = super().result_processor(dialect, coltype) def process(value: Union[str, set[str], None]) -> Optional[set[str]]: # type: ignore[misc] # noqa: E501 if isinstance(value, str): # MySQLdb returns a string, let's parse if super_convert: value = super_convert(value) assert value is not None if TYPE_CHECKING: assert isinstance(value, str) return set(re.findall(r"[^,]+", value)) else: # mysql-connector-python does a naive # split(",") which throws in an empty string if value is not None: value.discard("") return value return process def bind_processor( self, dialect: Dialect ) -> _BindProcessorType[Union[str, int]]: super_convert = super().bind_processor(dialect) if self.retrieve_as_bitwise: def process( value: Union[str, int, set[str], None], ) -> Union[str, int, None]: if value is None: return None elif isinstance(value, (int, str)): if super_convert: return super_convert(value) # type: ignore[arg-type, no-any-return] # noqa: E501 else: return value else: int_value = 0 for v in value: int_value |= self._inversed_bitmap[v] return int_value else: def process( value: Union[str, int, set[str], None], ) -> Union[str, int, None]: # accept strings and int (actually bitflag) values directly if value is not None and not isinstance(value, (int, str)): value = ",".join(value) if super_convert: return super_convert(value) # type: ignore else: return value return process def adapt(self, cls: type, **kw: Any) -> Any: kw["retrieve_as_bitwise"] = self.retrieve_as_bitwise return util.constructor_copy(self, cls, *self.values, **kw) def __repr__(self) -> str: return util.generic_repr( self, to_inspect=[SET, _StringType], additional_kw=[ ("retrieve_as_bitwise", False), ], )
SET
python
sanic-org__sanic
sanic/errorpages.py
{ "start": 1245, "end": 4326 }
class ____: """Base class that all renderers must inherit from. This class defines the structure for rendering objects, handling the core functionality that specific renderers may extend. Attributes: request (Request): The incoming request object that needs rendering. exception (Exception): Any exception that occurred and needs to be rendered. debug (bool): Flag indicating whether to render with debugging information. Methods: dumps: A static method that must be overridden by subclasses to define the specific rendering. Args: request (Request): The incoming request object that needs rendering. exception (Exception): Any exception that occurred and needs to be rendered. debug (bool): Flag indicating whether to render with debugging information. """ # noqa: E501 dumps = staticmethod(dumps) def __init__(self, request: Request, exception: Exception, debug: bool): self.request = request self.exception = exception self.debug = debug @property def headers(self) -> t.Dict[str, str]: """The headers to be used for the response.""" if isinstance(self.exception, SanicException): return getattr(self.exception, "headers", {}) return {} @property def status(self): """The status code to be used for the response.""" if isinstance(self.exception, SanicException): return getattr(self.exception, "status_code", FALLBACK_STATUS) return FALLBACK_STATUS @property def text(self): """The text to be used for the response.""" if self.debug or isinstance(self.exception, SanicException): return str(self.exception) return FALLBACK_TEXT @property def title(self): """The title to be used for the response.""" status_text = STATUS_CODES.get(self.status, b"Error Occurred").decode() return f"{self.status} — {status_text}" def render(self) -> HTTPResponse: """Outputs the exception as a response. Returns: HTTPResponse: The response object. """ output = ( self.full if self.debug and not getattr(self.exception, "quiet", False) else self.minimal )() output.status = self.status output.headers.update(self.headers) return output def minimal(self) -> HTTPResponse: # noqa """Provide a formatted message that is meant to not show any sensitive data or details. This is the default fallback for production environments. Returns: HTTPResponse: The response object. """ # noqa: E501 raise NotImplementedError def full(self) -> HTTPResponse: # noqa """Provide a formatted message that has all details and is mean to be used primarily for debugging and non-production environments. Returns: HTTPResponse: The response object. """ # noqa: E501 raise NotImplementedError
BaseRenderer
python
google__jax
jax/_src/path.py
{ "start": 730, "end": 2162 }
class ____(Protocol): """A factory that creates a PurePath.""" def __call__(self, *pathsegments: str | os.PathLike) -> pathlib.Path: ... Path: PathProtocol # If etils.epath (aka etils[epath] to pip) is present, we prefer it because it # can read and write to, e.g., GCS buckets. Otherwise we use the builtin # pathlib and can only read/write to the local filesystem. try: from etils import epath # type: ignore except ImportError: logger.debug("etils.epath was not found. Using pathlib for file I/O.") Path = pathlib.Path epath_installed = False else: logger.debug("etils.epath found. Using etils.epath for file I/O.") # Ultimately, epath.Path implements pathlib.Path. See: # https://github.com/google/etils/blob/2083f3d932a88d8a135ef57112cd1f9aff5d559e/etils/epath/abstract_path.py#L47 Path = epath.Path epath_installed = True def make_jax_dump_dir(out_dir_path: str) -> pathlib.Path | None: """Make a directory or return the undeclared outputs directory if `sponge`.""" if not out_dir_path: return None if out_dir_path == "sponge": out_dir_path = os.environ.get("TEST_UNDECLARED_OUTPUTS_DIR", "") if not out_dir_path: raise ValueError( "Got output directory (e.g., via JAX_DUMP_IR_TO) 'sponge' but" " TEST_UNDECLARED_OUTPUTS_DIR is not defined." ) out_dir = Path(out_dir_path) out_dir.mkdir(parents=True, exist_ok=True) return out_dir
PathProtocol
python
numpy__numpy
numpy/_typing/_nbit_base.py
{ "start": 228, "end": 2288 }
class ____: """ A type representing `numpy.number` precision during static type checking. Used exclusively for the purpose of static type checking, `NBitBase` represents the base of a hierarchical set of subclasses. Each subsequent subclass is herein used for representing a lower level of precision, *e.g.* ``64Bit > 32Bit > 16Bit``. .. versionadded:: 1.20 .. deprecated:: 2.3 Use ``@typing.overload`` or a ``TypeVar`` with a scalar-type as upper bound, instead. Examples -------- Below is a typical usage example: `NBitBase` is herein used for annotating a function that takes a float and integer of arbitrary precision as arguments and returns a new float of whichever precision is largest (*e.g.* ``np.float16 + np.int64 -> np.float64``). .. code-block:: python >>> from typing import TypeVar, TYPE_CHECKING >>> import numpy as np >>> import numpy.typing as npt >>> S = TypeVar("S", bound=npt.NBitBase) >>> T = TypeVar("T", bound=npt.NBitBase) >>> def add(a: np.floating[S], b: np.integer[T]) -> np.floating[S | T]: ... return a + b >>> a = np.float16() >>> b = np.int64() >>> out = add(a, b) >>> if TYPE_CHECKING: ... reveal_locals() ... # note: Revealed local types are: ... # note: a: numpy.floating[numpy.typing._16Bit*] ... # note: b: numpy.signedinteger[numpy.typing._64Bit*] ... # note: out: numpy.floating[numpy.typing._64Bit*] """ # Deprecated in NumPy 2.3, 2025-05-01 def __init_subclass__(cls) -> None: allowed_names = { "NBitBase", "_128Bit", "_96Bit", "_64Bit", "_32Bit", "_16Bit", "_8Bit" } if cls.__name__ not in allowed_names: raise TypeError('cannot inherit from final class "NBitBase"') super().__init_subclass__() @final @set_module("numpy._typing") # Silence errors about subclassing a `@final`-decorated class
NBitBase
python
pydata__xarray
xarray/tests/test_ufuncs.py
{ "start": 6524, "end": 9472 }
class ____: @pytest.fixture(autouse=True) def setUp(self): self.x = xr.DataArray([1, 2, 3]) self.xd = xr.DataArray(DuckArray([1, 2, 3])) self.xd2 = xr.DataArray(DuckArray2([1, 2, 3])) self.xt = xr.DataArray(np.datetime64("2021-01-01", "ns")) @pytest.mark.filterwarnings("ignore::RuntimeWarning") @pytest.mark.parametrize("name", xu.__all__) def test_ufuncs(self, name, request): xu_func = getattr(xu, name) np_func = getattr(np, name, None) if np_func is None and np.lib.NumpyVersion(np.__version__) < "2.0.0": pytest.skip(f"Ufunc {name} is not available in numpy {np.__version__}.") if name == "isnat": args = (self.xt,) elif hasattr(np_func, "nin") and np_func.nin == 2: # type: ignore[union-attr] args = (self.x, self.x) # type: ignore[assignment] else: args = (self.x,) expected = np_func(*args) # type: ignore[misc] actual = xu_func(*args) if name in ["angle", "iscomplex"]: np.testing.assert_equal(expected, actual.values) else: assert_identical(actual, expected) def test_ufunc_pickle(self): a = 1.0 cos_pickled = pickle.loads(pickle.dumps(xu.cos)) assert_identical(cos_pickled(a), xu.cos(a)) def test_ufunc_scalar(self): actual = xu.sin(1) assert isinstance(actual, float) def test_ufunc_duck_array_dataarray(self): actual = xu.sin(self.xd) assert isinstance(actual.data, DuckArray) def test_ufunc_duck_array_variable(self): actual = xu.sin(self.xd.variable) assert isinstance(actual.data, DuckArray) def test_ufunc_duck_array_dataset(self): ds = xr.Dataset({"a": self.xd}) actual = xu.sin(ds) assert isinstance(actual.a.data, DuckArray) @requires_dask def test_ufunc_duck_dask(self): import dask.array as da x = xr.DataArray(da.from_array(DuckArray(np.array([1, 2, 3])))) actual = xu.sin(x) assert isinstance(actual.data._meta, DuckArray) @requires_dask @pytest.mark.xfail(reason="dask ufuncs currently dispatch to numpy") def test_ufunc_duck_dask_no_array_ufunc(self): import dask.array as da # dask ufuncs currently only preserve duck arrays that implement __array_ufunc__ with patch.object(DuckArray, "__array_ufunc__", new=None, create=True): x = xr.DataArray(da.from_array(DuckArray(np.array([1, 2, 3])))) actual = xu.sin(x) assert isinstance(actual.data._meta, DuckArray) def test_ufunc_mixed_arrays_compatible(self): actual = xu.add(self.xd, self.x) assert isinstance(actual.data, DuckArray) def test_ufunc_mixed_arrays_incompatible(self): with pytest.raises(ValueError, match=r"Mixed array types"): xu.add(self.xd, self.xd2)
TestXarrayUfuncs
python
vyperlang__vyper
tests/evm_backends/base_env.py
{ "start": 863, "end": 938 }
class ____(Exception): """Exception raised when a call fails."""
EvmError
python
huggingface__transformers
tests/models/qwen2_moe/test_modeling_qwen2_moe.py
{ "start": 1338, "end": 4238 }
class ____(CausalLMModelTest, unittest.TestCase): test_all_params_have_gradient = False model_tester_class = Qwen2MoeModelTester # TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79245/workflows/9490ef58-79c2-410d-8f51-e3495156cf9c/jobs/1012146 def is_pipeline_test_to_skip( self, pipeline_test_case_name, config_class, model_architecture, tokenizer_name, image_processor_name, feature_extractor_name, processor_name, ): return True @require_flash_attn @require_torch_gpu @pytest.mark.flash_attn_test @slow def test_flash_attn_2_inference_equivalence_right_padding(self): self.skipTest(reason="Qwen2Moe flash attention does not support right padding") # Ignore copy def test_load_balancing_loss(self): r""" Let's make sure we can actually compute the loss and do a backward on it. """ config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 config.num_experts = 8 config.expert_interval = 2 config.output_router_logits = True input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) model = Qwen2MoeForCausalLM(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask) self.assertEqual(result.router_logits[0].shape, (91, config.num_experts)) torch.testing.assert_close(result.aux_loss.cpu(), torch.tensor(2, dtype=torch.float32), rtol=1e-2, atol=1e-2) # First, we make sure that adding padding tokens doesn't change the loss # loss(input_ids, attention_mask=None) == loss(input_ids + padding, attention_mask=attention_mask_with_padding) pad_length = 1000 # Add padding tokens (assume that pad_token_id=1) to input_ids padding_block = torch.ones(input_ids.shape[0], pad_length, dtype=torch.int32).to(torch_device) padded_input_ids = torch.cat((padding_block, input_ids), dim=1) # this is to simulate padding to the left padded_attention_mask = padded_input_ids.ne(1).to(torch_device) padded_result = model(padded_input_ids, attention_mask=padded_attention_mask) torch.testing.assert_close(result.aux_loss.cpu(), padded_result.aux_loss.cpu(), rtol=1e-4, atol=1e-4) # We make sure that the loss of including padding tokens != the loss without padding tokens # if attention_mask=None --> we don't exclude padding tokens include_padding_result = model(padded_input_ids, attention_mask=None) # This is to mimic torch.testing.assert_not_close self.assertNotAlmostEqual(include_padding_result.aux_loss.item(), result.aux_loss.item()) @require_torch
Qwen2MoeModelTest
python
scipy__scipy
scipy/sparse/linalg/_eigen/arpack/tests/test_arpack.py
{ "start": 8756, "end": 11014 }
class ____: def __init__(self): self.eigs = eigsh self.which = ['LM', 'SM', 'LA', 'SA', 'BE'] self.mattypes = [csr_array, aslinearoperator, np.asarray] self.sigmas_modes = {None: ['normal'], 0.5: ['normal', 'buckling', 'cayley']} # generate matrices # these should all be float32 so that the eigenvalues # are the same in float32 and float64 N = 6 rng = np.random.RandomState(2300) Ar = generate_matrix(N, hermitian=True, pos_definite=True, rng=rng).astype('f').astype('d') M = generate_matrix(N, hermitian=True, pos_definite=True, rng=rng).astype('f').astype('d') Ac = generate_matrix(N, hermitian=True, pos_definite=True, complex_=True, rng=rng).astype('F').astype('D') Mc = generate_matrix(N, hermitian=True, pos_definite=True, complex_=True, rng=rng).astype('F').astype('D') v0 = rng.random(N) # standard symmetric problem SS = DictWithRepr("std-symmetric") SS['mat'] = Ar SS['v0'] = v0 SS['eval'] = eigh(SS['mat'], eigvals_only=True) # general symmetric problem GS = DictWithRepr("gen-symmetric") GS['mat'] = Ar GS['bmat'] = M GS['v0'] = v0 GS['eval'] = eigh(GS['mat'], GS['bmat'], eigvals_only=True) # standard hermitian problem SH = DictWithRepr("std-hermitian") SH['mat'] = Ac SH['v0'] = v0 SH['eval'] = eigh(SH['mat'], eigvals_only=True) # general hermitian problem GH = DictWithRepr("gen-hermitian") GH['mat'] = Ac GH['bmat'] = M GH['v0'] = v0 GH['eval'] = eigh(GH['mat'], GH['bmat'], eigvals_only=True) # general hermitian problem with hermitian M GHc = DictWithRepr("gen-hermitian-Mc") GHc['mat'] = Ac GHc['bmat'] = Mc GHc['v0'] = v0 GHc['eval'] = eigh(GHc['mat'], GHc['bmat'], eigvals_only=True) self.real_test_cases = [SS, GS] self.complex_test_cases = [SH, GH, GHc]
SymmetricParams
python
run-llama__llama_index
llama-index-integrations/storage/docstore/llama-index-storage-docstore-redis/llama_index/storage/docstore/redis/base.py
{ "start": 244, "end": 1608 }
class ____(KVDocumentStore): """ Redis Document (Node) store. A Redis store for Document and Node objects. Args: redis_kvstore (RedisKVStore): Redis key-value store namespace (str): namespace for the docstore """ def __init__( self, redis_kvstore: RedisKVStore, namespace: Optional[str] = None, batch_size: int = DEFAULT_BATCH_SIZE, ) -> None: """Init a RedisDocumentStore.""" super().__init__(redis_kvstore, namespace=namespace, batch_size=batch_size) # avoid conflicts with redis index store self._node_collection = f"{self._namespace}/doc" @classmethod def from_redis_client( cls, redis_client: Any, namespace: Optional[str] = None, ) -> "RedisDocumentStore": """Load a RedisDocumentStore from a Redis Client.""" redis_kvstore = RedisKVStore.from_redis_client(redis_client=redis_client) return cls(redis_kvstore, namespace) @classmethod def from_host_and_port( cls, host: str, port: int, namespace: Optional[str] = None, ) -> "RedisDocumentStore": """Load a RedisDocumentStore from a Redis host and port.""" redis_kvstore = RedisKVStore.from_host_and_port(host, port) return cls(redis_kvstore, namespace)
RedisDocumentStore
python
giampaolo__psutil
tests/test_connections.py
{ "start": 20510, "end": 21136 }
class ____(PsutilTestCase): def test_net_connection_constants(self): ints = [] strs = [] for name in dir(psutil): if name.startswith('CONN_'): num = getattr(psutil, name) str_ = str(num) assert str_.isupper(), str_ assert str not in strs assert num not in ints ints.append(num) strs.append(str_) if SUNOS: psutil.CONN_IDLE # noqa: B018 psutil.CONN_BOUND # noqa: B018 if WINDOWS: psutil.CONN_DELETE_TCB # noqa: B018
TestMisc
python
getsentry__sentry
src/sentry/plugins/bases/releasetracking.py
{ "start": 45, "end": 236 }
class ____(Plugin2): def get_plugin_type(self) -> str: return "release-tracking" def get_release_doc_html(self, hook_url): raise NotImplementedError
ReleaseTrackingPlugin
python
great-expectations__great_expectations
tests/data_context/test_data_context_state_management.py
{ "start": 1082, "end": 1688 }
class ____(ExpectationsStore): def __init__(self) -> None: self.save_count = 0 super().__init__() def add(self, key, value, **kwargs): ret = super().add(key=key, value=value, **kwargs) self.save_count += 1 return ret def update(self, key, value, **kwargs): ret = super().update(key=key, value=value, **kwargs) self.save_count += 1 return ret def add_or_update(self, key, value, **kwargs): ret = super().add_or_update(key=key, value=value, **kwargs) self.save_count += 1 return ret
ExpectationsStoreSpy
python
sqlalchemy__sqlalchemy
test/orm/test_unitofwork.py
{ "start": 17825, "end": 22448 }
class ____(fixtures.MappedTest): __requires__ = ("foreign_keys",) @classmethod def define_tables(cls, metadata): Table( "mytable", metadata, Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ), Column("data", String(30)), test_needs_fk=True, ) Table( "myothertable", metadata, Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ), Column("parent_id", Integer), Column("data", String(30)), sa.ForeignKeyConstraint( ["parent_id"], ["mytable.id"], ondelete="CASCADE" ), test_needs_fk=True, ) @classmethod def setup_classes(cls): class MyClass(cls.Basic): pass class MyOtherClass(cls.Basic): pass def test_basic(self): myothertable, MyClass, MyOtherClass, mytable = ( self.tables.myothertable, self.classes.MyClass, self.classes.MyOtherClass, self.tables.mytable, ) self.mapper_registry.map_imperatively(MyOtherClass, myothertable) self.mapper_registry.map_imperatively( MyClass, mytable, properties={ "children": relationship( MyOtherClass, passive_deletes=True, cascade="all" ) }, ) with fixture_session() as session: mc = MyClass() mc.children.append(MyOtherClass()) mc.children.append(MyOtherClass()) mc.children.append(MyOtherClass()) mc.children.append(MyOtherClass()) session.add(mc) session.flush() session.expunge_all() conn = session.connection() eq_( conn.scalar(select(func.count("*")).select_from(myothertable)), 4, ) mc = session.get(MyClass, mc.id) session.delete(mc) session.flush() eq_(conn.scalar(select(func.count("*")).select_from(mytable)), 0) eq_( conn.scalar(select(func.count("*")).select_from(myothertable)), 0, ) @testing.emits_warning( r".*'passive_deletes' is normally configured on one-to-many" ) def test_backwards_pd(self): """Test that passive_deletes=True disables a delete from an m2o. This is not the usual usage and it now raises a warning, but test that it works nonetheless. """ myothertable, MyClass, MyOtherClass, mytable = ( self.tables.myothertable, self.classes.MyClass, self.classes.MyOtherClass, self.tables.mytable, ) self.mapper_registry.map_imperatively( MyOtherClass, myothertable, properties={ "myclass": relationship( MyClass, cascade="all, delete", passive_deletes=True ) }, ) self.mapper_registry.map_imperatively(MyClass, mytable) session = fixture_session() mc = MyClass() mco = MyOtherClass() mco.myclass = mc session.add(mco) session.commit() eq_(session.scalar(select(func.count("*")).select_from(mytable)), 1) eq_( session.scalar(select(func.count("*")).select_from(myothertable)), 1, ) session.expire(mco, ["myclass"]) session.delete(mco) session.commit() # mytable wasn't deleted, is the point. eq_(session.scalar(select(func.count("*")).select_from(mytable)), 1) eq_( session.scalar(select(func.count("*")).select_from(myothertable)), 0, ) def test_aaa_m2o_no_longer_emits_warning(self): myothertable, MyClass, MyOtherClass, mytable = ( self.tables.myothertable, self.classes.MyClass, self.classes.MyOtherClass, self.tables.mytable, ) self.mapper_registry.map_imperatively( MyOtherClass, myothertable, properties={ "myclass": relationship( MyClass, cascade="all, delete", passive_deletes=True ) }, ) self.mapper_registry.map_imperatively(MyClass, mytable) sa.orm.configure_mappers()
PassiveDeletesTest
python
django__django
tests/i18n/test_extraction.py
{ "start": 46148, "end": 48398 }
class ____(ExtractorTests): work_subdir = "project_dir" def test_no_locale_raises(self): msg = ( "Unable to find a locale path to store translations for file " "__init__.py. Make sure the 'locale' directory exists in an app " "or LOCALE_PATHS setting is set." ) with self.assertRaisesMessage(management.CommandError, msg): management.call_command("makemessages", locale=[LOCALE], verbosity=0) # Working files are cleaned up on an error. self.assertFalse(os.path.exists("./app_no_locale/test.html.py")) def test_project_locale_paths(self): self._test_project_locale_paths(os.path.join(self.test_dir, "project_locale")) def test_project_locale_paths_pathlib(self): self._test_project_locale_paths(Path(self.test_dir) / "project_locale") def _test_project_locale_paths(self, locale_path): """ * translations for an app containing a locale folder are stored in that folder * translations outside of that app are in LOCALE_PATHS[0] """ with override_settings(LOCALE_PATHS=[locale_path]): management.call_command("makemessages", locale=[LOCALE], verbosity=0) project_de_locale = os.path.join( self.test_dir, "project_locale", "de", "LC_MESSAGES", "django.po" ) app_de_locale = os.path.join( self.test_dir, "app_with_locale", "locale", "de", "LC_MESSAGES", "django.po", ) self.assertTrue(os.path.exists(project_de_locale)) self.assertTrue(os.path.exists(app_de_locale)) with open(project_de_locale) as fp: po_contents = fp.read() self.assertMsgId("This app has no locale directory", po_contents) self.assertMsgId("This is a project-level string", po_contents) with open(app_de_locale) as fp: po_contents = fp.read() self.assertMsgId("This app has a locale directory", po_contents) @skipUnless(has_xgettext, "xgettext is mandatory for extraction tests")
CustomLayoutExtractionTests
python
jazzband__django-simple-history
simple_history/tests/models.py
{ "start": 6792, "end": 7009 }
class ____(PollParentWithManyToMany): restaurants = models.ManyToManyField( "Restaurant", related_name="restaurants_poll_child" ) _history_m2m_fields = [restaurants]
PollChildRestaurantWithManyToMany
python
pytorch__pytorch
test/dynamo/test_metrics_context.py
{ "start": 153, "end": 4044 }
class ____(TestCase): def setUp(self): super().setUp() self.metrics = {} def _on_exit(self, start_ns, end_ns, metrics, exc_type, exc_value): # Save away the metrics to be validated in the test. self.metrics = metrics.copy() def test_context_exists(self): """ Setting a value without entering the context should raise. """ context = MetricsContext(self._on_exit) with self.assertRaisesRegex(RuntimeError, "outside of a MetricsContext"): context.increment("m", 1) with self.assertRaisesRegex(RuntimeError, "outside of a MetricsContext"): context.set("m", 1) with self.assertRaisesRegex(RuntimeError, "outside of a MetricsContext"): context.update({"m", 1}) def test_nested_context(self): """ Only the outermost context should get an on_exit call, and it should include everything. """ context = MetricsContext(self._on_exit) with context: with context: context.set("m1", 1) self.assertEqual(self.metrics, {}) context.set("m2", 2) self.assertEqual(self.metrics, {"m1": 1, "m2": 2}) def test_set(self): """ Validate various ways to set metrics. """ with MetricsContext(self._on_exit) as context: context.set("m1", 1) context.set("m2", 2) context.update({"m3": 3, "m4": 4}) self.assertEqual(self.metrics, {"m1": 1, "m2": 2, "m3": 3, "m4": 4}) def test_set_disallow_overwrite(self): """ Validate set won't overwrite. """ with MetricsContext(self._on_exit) as context: context.set("m1", 1) with self.assertRaisesRegex(RuntimeError, "already been set"): context.set("m1", 2) self.assertEqual(self.metrics, {"m1": 1}) def test_update_disallow_overwrite(self): """ Validate update won't overwrite. """ with MetricsContext(self._on_exit) as context: context.update({"m1": 1, "m2": 2}) with self.assertRaisesRegex(RuntimeError, "already been set"): context.update({"m1": 7, "m3": 3}) def test_update_allow_overwrite(self): """ Validate update will overwrite when given param. """ with MetricsContext(self._on_exit) as context: context.update({"m1": 1, "m2": 2}) context.update({"m1": 7, "m3": 3}, overwrite=True) self.assertEqual(self.metrics, {"m1": 7, "m2": 2, "m3": 3}) def test_add_to_set(self): """ Validate add_to_set. """ with MetricsContext(self._on_exit) as context: context.add_to_set("m1", 1) context.add_to_set("m1", 2) context.add_to_set("m2", 3) context.add_to_set("m2", 4) self.assertEqual(self.metrics, {"m1": {1, 2}, "m2": {3, 4}}) self.assertTrue(isinstance(self.metrics["m1"], set)) self.assertTrue(isinstance(self.metrics["m2"], set)) def test_set_key_value(self): with MetricsContext(self._on_exit) as context: context.set_key_value("feature_usage", "k", True) # Overrides allowed context.set_key_value("feature_usage", "k2", True) context.set_key_value("feature_usage", "k2", False) self.assertEqual(self.metrics, {"feature_usage": {"k": True, "k2": False}}) def test_top_n(self): top_n = TopN(3) for k, v in (("seven", 7), ("four", 4), ("five", 5), ("six", 6), ("eight", 8)): top_n.add(k, v) self.assertEqual(len(top_n), 3) print(list(top_n)) self.assertEqual(list(top_n), [("eight", 8), ("seven", 7), ("six", 6)]) if __name__ == "__main__": run_tests()
TestMetricsContext
python
Pylons__pyramid
src/pyramid/config/actions.py
{ "start": 10966, "end": 18584 }
class ____: def __init__(self): # keep a set of resolved discriminators to test against to ensure # that a new action does not conflict with something already executed self.resolved_ainfos = {} # actions left over from a previous iteration self.remaining_actions = [] # after executing an action we memoize its order to avoid any new # actions sending us backward self.min_order = None # unique tracks the index of the action so we need it to increase # monotonically across invocations to resolveConflicts self.start = 0 # this function is licensed under the ZPL (stolen from Zope) def resolveConflicts(actions, state=None): """Resolve conflicting actions Given an actions list, identify and try to resolve conflicting actions. Actions conflict if they have the same non-None discriminator. Conflicting actions can be resolved if the include path of one of the actions is a prefix of the includepaths of the other conflicting actions and is unequal to the include paths in the other conflicting actions. Actions are resolved on a per-order basis because some discriminators cannot be computed until earlier actions have executed. An action in an earlier order may execute successfully only to find out later that it was overridden by another action with a smaller include path. This will result in a conflict as there is no way to revert the original action. ``state`` may be an instance of ``ConflictResolverState`` that can be used to resume execution and resolve the new actions against the list of executed actions from a previous call. """ if state is None: state = ConflictResolverState() # pick up where we left off last time, but track the new actions as well state.remaining_actions.extend(normalize_actions(actions)) actions = state.remaining_actions def orderandpos(v): n, v = v return (v['order'] or 0, n) def orderonly(v): n, v = v return v['order'] or 0 sactions = sorted(enumerate(actions, start=state.start), key=orderandpos) for order, actiongroup in itertools.groupby(sactions, orderonly): # "order" is an integer grouping. Actions in a lower order will be # executed before actions in a higher order. All of the actions in # one grouping will be executed (its callable, if any will be called) # before any of the actions in the next. output = [] unique = {} # error out if we went backward in order if state.min_order is not None and order < state.min_order: r = [ 'Actions were added to order={} after execution had moved ' 'on to order={}. Conflicting actions: '.format( order, state.min_order ) ] for i, action in actiongroup: for line in str(action['info']).rstrip().split('\n'): r.append(" " + line) raise ConfigurationError('\n'.join(r)) for i, action in actiongroup: # Within an order, actions are executed sequentially based on # original action ordering ("i"). # "ainfo" is a tuple of (i, action) where "i" is an integer # expressing the relative position of this action in the action # list being resolved, and "action" is an action dictionary. The # purpose of an ainfo is to associate an "i" with a particular # action; "i" exists for sorting after conflict resolution. ainfo = (i, action) # wait to defer discriminators until we are on their order because # the discriminator may depend on state from a previous order discriminator = undefer(action['discriminator']) action['discriminator'] = discriminator if discriminator is None: # The discriminator is None, so this action can never conflict. # We can add it directly to the result. output.append(ainfo) continue L = unique.setdefault(discriminator, []) L.append(ainfo) # Check for conflicts conflicts = {} for discriminator, ainfos in unique.items(): # We use (includepath, i) as a sort key because we need to # sort the actions by the paths so that the shortest path with a # given prefix comes first. The "first" action is the one with the # shortest include path. We break sorting ties using "i". def bypath(ainfo): path, i = ainfo[1]['includepath'], ainfo[0] return path, order, i ainfos.sort(key=bypath) ainfo, rest = ainfos[0], ainfos[1:] _, action = ainfo # ensure this new action does not conflict with a previously # resolved action from an earlier order / invocation prev_ainfo = state.resolved_ainfos.get(discriminator) if prev_ainfo is not None: _, paction = prev_ainfo basepath, baseinfo = paction['includepath'], paction['info'] includepath = action['includepath'] # if the new action conflicts with the resolved action then # note the conflict, otherwise drop the action as it's # effectively overriden by the previous action if ( includepath[: len(basepath)] != basepath or includepath == basepath ): L = conflicts.setdefault(discriminator, [baseinfo]) L.append(action['info']) else: output.append(ainfo) basepath, baseinfo = action['includepath'], action['info'] for _, action in rest: includepath = action['includepath'] # Test whether path is a prefix of opath if ( includepath[: len(basepath)] != basepath or includepath == basepath # not a prefix ): L = conflicts.setdefault(discriminator, [baseinfo]) L.append(action['info']) if conflicts: raise ConfigurationConflictError(conflicts) # sort resolved actions by "i" and yield them one by one for i, action in sorted(output, key=operator.itemgetter(0)): # do not memoize the order until we resolve an action inside it state.min_order = action['order'] state.start = i + 1 state.remaining_actions.remove(action) state.resolved_ainfos[action['discriminator']] = (i, action) yield action def normalize_actions(actions): """Convert old-style tuple actions to new-style dicts.""" result = [] for v in actions: if not isinstance(v, dict): v = expand_action_tuple(*v) result.append(v) return result def expand_action_tuple( discriminator, callable=None, args=(), kw=None, includepath=(), info=None, order=0, introspectables=(), ): if kw is None: kw = {} return dict( discriminator=discriminator, callable=callable, args=args, kw=kw, includepath=includepath, info=info, order=order, introspectables=introspectables, ) @implementer(IActionInfo)
ConflictResolverState
python
tensorflow__tensorflow
tensorflow/python/ops/math_ops_test.py
{ "start": 1859, "end": 6757 }
class ____(test_util.TensorFlowTestCase): def testReduceAllDims(self): x = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32) with test_util.device(use_gpu=True): y_tf = self.evaluate(math_ops.reduce_sum(x)) self.assertEqual(y_tf, 21) def testReduceExtendType(self): in_f32 = np.random.randn(1000, 1000).astype(np.float32) in_bf16 = math_ops.cast(in_f32, dtypes.bfloat16) out_f32 = self.evaluate(math_ops.reduce_sum(in_f32)) out_bf16 = self.evaluate(math_ops.reduce_sum(in_bf16)) expected = math_ops.cast(out_f32, dtypes.bfloat16) self.assertAllClose(out_bf16, expected, 1e-3) def testCountNonzero(self): # simple case x = np.array([[0, -2, 0], [4, 0, 0]], dtype=np.int32) self.assertEqual(self.evaluate(math_ops.count_nonzero(x)), 2) # boolean input x = math_ops.not_equal(x, 0) self.assertEqual(self.evaluate(math_ops.count_nonzero(x)), 2) # would overflow if int8 would be used for internal calculations x = 2 * np.ones(512, dtype=np.int8) self.assertEqual(self.evaluate(math_ops.count_nonzero(x)), 512) def testReduceExplicitAxes(self): x = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32) with test_util.device(use_gpu=True): for axis in (0, -2): self.assertAllEqual( self.evaluate(math_ops.reduce_sum(x, axis=axis)), [5, 7, 9]) for axis in (1, -1): self.assertAllEqual( self.evaluate(math_ops.reduce_sum(x, axis=axis)), [6, 15]) for axis in (None, (0, 1), (1, 0), (-1, 0), (0, -1), (-2, 1), (1, -2), (-1, -2), (-2, -1)): self.assertEqual(self.evaluate(math_ops.reduce_sum(x, axis=axis)), 21) def testReduceInvalidAxis(self): if context.executing_eagerly(): # The shape check is in run a graph construction time. In eager mode, # it misses the check, magically return result given wrong shape. return x = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32) axis = np.array([[0], [1]]) with self.assertRaisesRegex(ValueError, "must be at most rank 1"): math_ops.reduce_sum(x, axis) def testReduceVar(self): x = np.array([[0, 0, 0], [0, 0, 0]], "float32") self.assertAllClose(self.evaluate(math_ops.reduce_variance(x)), 0) self.assertAllClose( self.evaluate(math_ops.reduce_variance(x, axis=0)), [0, 0, 0]) x = [[1, 2, 1, 1], [1, 1, 0, 1]] with self.assertRaisesRegex(TypeError, "must be either real or complex"): math_ops.reduce_variance(x) x = [[1., 2., 1., 1.], [1., 1., 0., 1.]] self.assertEqual(self.evaluate(math_ops.reduce_variance(x)), 0.25) x_np = np.array(x) self.assertEqual(np.var(x_np), 0.25) self.assertEqual(self.evaluate(math_ops.reduce_variance(x_np)), 0.25) x = ragged_factory_ops.constant([[5., 1., 4., 1.], [], [5., 9., 2.], [5.], []]) self.assertAllClose(math_ops.reduce_variance(x, axis=0), [0., 16., 1., 0.]) def testReduceVarComplex(self): # Ensure that complex values are handled to be consistent with numpy complex_ys = [([0 - 1j, 0 + 1j], dtypes.float64), (np.array([0 - 1j, 0 + 1j], "complex64"), dtypes.float32), (np.array([0 - 1j, 0 + 1j], "complex128"), dtypes.float64)] for y, dtype in complex_ys: y_result = math_ops.reduce_variance(y) self.assertEqual(np.var(y), 1.0) self.assertEqual(self.evaluate(y_result), 1.0) self.assertEqual(y_result.dtype, dtype) def testReduceStd(self): x = np.array([[0, 0, 0], [0, 0, 0]], "float32") self.assertAllClose(self.evaluate(math_ops.reduce_std(x)), 0) self.assertAllClose( self.evaluate(math_ops.reduce_std(x, axis=0)), [0, 0, 0]) x = [[1, 2, 1, 1], [1, 1, 0, 1]] with self.assertRaisesRegex(TypeError, "must be either real or complex"): math_ops.reduce_std(x) x = [[1., 2., 1., 1.], [1., 1., 0., 1.]] self.assertEqual(self.evaluate(math_ops.reduce_std(x)), 0.5) x_np = np.array(x) self.assertEqual(np.std(x_np), 0.5) self.assertEqual(self.evaluate(math_ops.reduce_std(x_np)), 0.5) x = ragged_factory_ops.constant([[5., 1., 4., 1.], [], [5., 9., 2.], [5.], []]) self.assertAllClose(math_ops.reduce_std(x, axis=0), [0., 4., 1., 0.]) def testReduceStdComplex(self): # Ensure that complex values are handled to be consistent with numpy complex_ys = [([0 - 1j, 0 + 1j], dtypes.float64), (np.array([0 - 1j, 0 + 1j], "complex64"), dtypes.float32), (np.array([0 - 1j, 0 + 1j], "complex128"), dtypes.float64)] for y, dtype in complex_ys: y_result = math_ops.reduce_std(y) self.assertEqual(np.std(y), 1.0) self.assertEqual(self.evaluate(y_result), 1.0) self.assertEqual(y_result.dtype, dtype) @test_util.run_all_in_graph_and_eager_modes
ReduceTest
python
explosion__spaCy
spacy/lang/ko/__init__.py
{ "start": 3327, "end": 4181 }
class ____(Language): lang = "ko" Defaults = KoreanDefaults def try_mecab_import() -> None: try: from natto import MeCab return MeCab except ImportError: raise ImportError( 'The Korean tokenizer ("spacy.ko.KoreanTokenizer") requires ' "[mecab-ko](https://bitbucket.org/eunjeon/mecab-ko/src/master/README.md), " "[mecab-ko-dic](https://bitbucket.org/eunjeon/mecab-ko-dic), " "and [natto-py](https://github.com/buruzaemon/natto-py)" ) from None def check_spaces(text, tokens): prev_end = -1 start = 0 for token in tokens: idx = text.find(token, start) if prev_end > 0: yield prev_end != idx prev_end = idx + len(token) start = prev_end if start > 0: yield False __all__ = ["Korean"]
Korean
python
pytorch__pytorch
test/dynamo/test_higher_order_ops.py
{ "start": 114816, "end": 123659 }
class ____( torch._dynamo.test_case.TestCaseWithNestedGraphBreaks, LoggingTestCase ): @make_logging_test(recompiles=True) def test_vmap_grad_guard_ok(self, records): vmap = torch.vmap grad = torch.func.grad def g(x): return vmap(grad(torch.sin))(x) @torch.compile(backend="eager") def fn(x): return vmap(g)(x) x = torch.randn(4, 5) y = fn(x) # sanity check self.assertEqual(len(records), 0) self.assertEqual(x.cos(), y) # Calling the same function again won't have any effect on guards fn(x) self.assertEqual(len(records), 0) @xfailIfTorchDynamo @make_logging_test(recompiles=True) def test_grad_guard_fail(self, records): grad = torch.func.grad @torch.compile(backend="eager") def fn(x): return grad(torch.sin)(x.sum()) x = torch.randn([]) fn(x) self.assertEqual(len(records), 0) # calling again should not invalidate the graph fn(x) self.assertEqual(len(records), 0) # call grad should retrigger compilation x = torch.randn(3) grad(fn)(x) self.assertGreater(len(records), 0) record = self.getRecord(records, "pyfunctorch") self.assertIn( """torch._functorch.pyfunctorch.compare_functorch_state([])""", munge_exc(record.getMessage()), ) @make_logging_test(recompiles=True) def test_dual_level_guard(self, records): fwAD = torch.autograd.forward_ad @torch.compile(backend="eager", fullgraph=True) def fn(foo, tangent): with fwAD.dual_level(): dual = fwAD.make_dual(foo, tangent[1:]) return dual foo = torch.rand(2) tangent = torch.rand(3) fn(foo, tangent) self.assertEqual(len(records), 0) # calling again should not invalidate the graph fn(foo, tangent) self.assertEqual(len(records), 0) # assertRaises is only here because Nested forward mode AD is not supported with self.assertRaises(torch._dynamo.exc.InternalTorchDynamoError): with fwAD.dual_level(): fn(foo, tangent) self.assertGreater(len(records), 0) record = self.getRecord(records, "forward_ad") self.assertIn( """torch.autograd.forward_ad._current_level == -1""", munge_exc(record.getMessage()), ) @xfailIfTorchDynamo @make_logging_test(recompiles=True) def test_jvp_guard_fail(self, records): jvp = torch.func.jvp vmap = torch.func.vmap @torch.compile(backend="eager") def fn(x): return jvp(torch.sin, (x,), (x,)) x = torch.randn(3, 4) fn(x) self.assertEqual(len(records), 0) # calling again should not invalidate the graph fn(x) self.assertEqual(len(records), 0) # call jvp should retrigger compilation x = torch.randn(3, 4, 5) jvp(vmap(fn), (x,), (x,)) self.assertGreater(len(records), 0) if self.hasRecord(records, "pyfunctorch"): record = self.getRecord(records, "pyfunctorch") self.assertIn( """torch._functorch.pyfunctorch.compare_functorch_state([])""", munge_exc(record.getMessage()), ) elif self.hasRecord(records, "forward_ad"): record = self.getRecord(records, "forward_ad") self.assertIn( """torch.autograd.forward_ad._current_level == -1""", munge_exc(record.getMessage()), ) @make_logging_test(recompiles=True) def test_vmap_guard_ok(self, records): @torch.compile(backend="eager") def fn(x): return torch.vmap(lambda x: x.sin())(x) x = torch.randn(3, 3, 4, 5) y = fn(x) # sanity check self.assertEqual(len(records), 0) self.assertEqual(x.sin(), y) # Calling the same function again won't have any effect on guards z = fn(x) self.assertEqual(len(records), 0) self.assertEqual(x.sin(), z) # calling with a different object will also not affect guards w = fn(z) self.assertEqual(len(records), 0) self.assertEqual(z.sin(), w) @xfailIfTorchDynamo @make_logging_test(recompiles=True) def test_vmap_guard_fail_different_state(self, records): @torch.compile(backend="eager") def fn(x): return torch.vmap(lambda x: x.sin())(x) x = torch.zeros(3, 4) y = torch.vmap(fn, randomness="same")(x) self.assertEqual(x.sin(), y) self.assertEqual(len(records), 0) # call vmap(vmap(fn))(x) should retrigger compilation y = torch.vmap(fn, randomness="different")(x) self.assertEqual(x.sin(), y) self.assertGreater(len(records), 0) record = self.getRecord(records, "pyfunctorch") self.assertIn( """torch._functorch.pyfunctorch.compare_functorch_state([('Vmap', 1, 'same')])""", record.getMessage(), ) @xfailIfTorchDynamo @make_logging_test(recompiles=True) def test_vmap_guard_fail(self, records): @torch.compile(backend="eager") def fn(x): return torch.vmap(lambda x: x.sin())(x) x = torch.zeros(3, 3, 4, 5) y = torch.vmap(fn)(x) self.assertEqual(x.sin(), y) self.assertEqual(len(records), 0) # call vmap(vmap(fn))(x) should retrigger compilation as # _functorch.current_level() is not the same x = torch.zeros(3, 3, 3, 4, 5) y = torch.vmap(torch.vmap(fn))(x) self.assertEqual(x.sin(), y) self.assertGreater(len(records), 0) record = self.getRecord(records, "pyfunctorch") self.assertIn( """torch._functorch.pyfunctorch.compare_functorch_state([('Vmap', 1, 'error')])""", record.getMessage(), ) @xfailIfTorchDynamo @make_logging_test(recompiles=True) def test_vmap_grad_vmap_guard_fail(self, records): vmap = torch.vmap grad = torch.func.grad def g(x): y = vmap(torch.sin, randomness="same")(x) return y.sum(0) @torch.compile(backend="eager") def fn(x): return grad(g)(x) x = torch.randn(3, 3) y = vmap(fn, randomness="error")(x) self.assertEqual(x.cos(), y) # previous FX graph should be invalidated x = torch.randn(3, 3, 4) y = vmap(vmap(fn, randomness="different"))(x) self.assertGreater(len(records), 0) record = self.getRecord(records, "pyfunctorch") self.assertIn( """torch._functorch.pyfunctorch.compare_functorch_state([('Vmap', 1, 'error')])""", munge_exc(record.getMessage()), ) @xfailIfTorchDynamo @make_logging_test(recompiles=True) def test_vmap_recompile_different_states(self, records): @torch.compile(backend="eager") def fn(x): return torch.vmap(lambda x: x.sin())(x) x = torch.zeros(3, 3, 4, 5) torch.vmap(fn, randomness="same")(x) self.assertEqual(len(records), 0) # sanity check torch.vmap(fn, randomness="different")(x) self.assertGreater(len(records), 0) record = self.getRecord(records, "pyfunctorch") self.assertIn( """torch._functorch.pyfunctorch.compare_functorch_state([('Vmap', 1, 'same')])""", munge_exc(record.getMessage()), ) @make_logging_test(guards=True) def test_emit_functorch_guard_if_active(self, records): @torch.compile(backend="eager") def fn(x): return torch.sin(x) x = torch.randn(3, 4) _ = fn(x) self.assertFalse(self.hasRecord(records, "pyfunctorch")) # sanity check _ = torch.vmap(fn)(x) self.assertTrue(self.hasRecord(records, "pyfunctorch")) record = self.getRecord(records, "pyfunctorch") self.assertIn( """torch._functorch.pyfunctorch.compare_functorch_state([('Vmap', 1, 'error')])""", munge_exc(record.getMessage()), ) @make_logging_test(recompiles=True) def test_linearize_recompiles(self, records): @torch.compile(backend="eager") def fn(x): out, jvp_fn = torch.func.linearize(torch.sin, x) return out, jvp_fn(x) x = torch.randn(2, 3) fn(x) self.assertEqual(len(records), 0) z = torch.randn(2, 3) fn(z) self.assertEqual(len(records), 0) y = torch.randn(3, 4) fn(y) self.assertGreater(len(records), 0)
HigherOrderOpVmapGuardTests
python
realpython__materials
python-textual/horizontal_scroll.py
{ "start": 129, "end": 513 }
class ____(App): def compose(self): with HorizontalScroll(): for i in range(NUM_BOXES): static = Static(f"Static {i + 1}") static.styles.border = ("solid", "green") static.styles.width = "10%" yield static if __name__ == "__main__": app = HorizontalScrollApp() app.run()
HorizontalScrollApp
python
getsentry__sentry
tests/apidocs/endpoints/projects/test_service_hook_details.py
{ "start": 136, "end": 1098 }
class ____(APIDocsTestCase): def setUp(self) -> None: hook = self.create_service_hook(project=self.project, events=("event.created",)) self.url = reverse( "sentry-api-0-project-service-hook-details", kwargs={ "organization_id_or_slug": self.organization.slug, "project_id_or_slug": self.project.slug, "hook_id": hook.guid, }, ) self.login_as(user=self.user) def test_get(self) -> None: response = self.client.get(self.url) request = RequestFactory().get(self.url) self.validate_schema(request, response) def test_put(self) -> None: data = {"url": "https://example.com/other-sentry-hook", "events": ["event.created"]} response = self.client.put(self.url, data) request = RequestFactory().put(self.url, data) self.validate_schema(request, response)
ProjectServiceHookDetailsDocs
python
wandb__wandb
wandb/vendor/graphql-core-1.1/wandb_graphql/language/ast.py
{ "start": 29957, "end": 31063 }
class ____(TypeDefinition): __slots__ = ('loc', 'name', 'values', 'directives',) _fields = ('name', 'values',) def __init__(self, name, values, loc=None, directives=None): self.loc = loc self.name = name self.values = values self.directives = directives def __eq__(self, other): return ( self is other or ( isinstance(other, EnumTypeDefinition) and # self.loc == other.loc and self.name == other.name and self.values == other.values and self.directives == other.directives ) ) def __repr__(self): return ('EnumTypeDefinition(' 'name={self.name!r}' ', values={self.values!r}' ', directives={self.directives!r}' ')').format(self=self) def __copy__(self): return type(self)( self.name, self.values, self.loc, self.directives, ) def __hash__(self): return id(self)
EnumTypeDefinition
python
mlflow__mlflow
mlflow/types/chat.py
{ "start": 219, "end": 939 }
class ____(BaseModel): """ Represents an image URL. Attributes: url: Either a URL of an image or base64 encoded data. https://platform.openai.com/docs/guides/vision?lang=curl#uploading-base64-encoded-images detail: The level of resolution for the image when the model receives it. For example, when set to "low", the model will see a image resized to 512x512 pixels, which consumes fewer tokens. In OpenAI, this is optional and defaults to "auto". https://platform.openai.com/docs/guides/vision?lang=curl#low-or-high-fidelity-image-understanding """ url: str detail: Literal["auto", "low", "high"] | None = None
ImageUrl
python
tensorflow__tensorflow
tensorflow/python/saved_model/load_test.py
{ "start": 123547, "end": 124018 }
class ____(module.Module): def __init__(self, rows, cols): super().__init__() self.rows = rows self.cols = cols self.table = None def __call__(self, x): with ops.device("/cpu:0"): self.table = variables.Variable( constant_op.constant(1.0, shape=[self.rows, self.cols]) ) x = math_ops.matmul(self.table, x) x = math_ops.reduce_sum(x, axis=0) return x @parameterized.named_parameters(*_test_params())
_TestModel
python
networkx__networkx
benchmarks/benchmarks/benchmark_algorithms.py
{ "start": 7060, "end": 7881 }
class ____: """Benchmark for shortest path algorithms on various weighted graphs.""" timeout = 120 _seed = 42 param_names = ["graph"] _graphs = _make_weighted_benchmark_graphs(_seed) params = list(_graphs) def setup(self, graph): f, args, kwargs = self._graphs[graph] self.G = f(*args, **kwargs) self.nodes = sorted(self.G) def time_weighted_single_source_dijkstra(self, graph): source = self.nodes[0] target = self.nodes[-1] try: _ = nx.single_source_dijkstra(self.G, source, target) except nx.NetworkXNoPath: pass def time_shortest_path(self, graph): source = self.nodes[0] target = self.nodes[-1] nx.shortest_path(self.G, source, target, weight="weight")
WeightedGraphBenchmark
python
numba__numba
numba/tests/test_parallel_backend.py
{ "start": 5593, "end": 8866 }
class ____(TestCase): """ Base class for testing the parallel backends """ all_impls = [ jit_runner(nopython=True), jit_runner(nopython=True, cache=True), jit_runner(nopython=True, nogil=True), linalg_runner(nopython=True), linalg_runner(nopython=True, nogil=True), vectorize_runner(nopython=True), vectorize_runner(nopython=True, target='parallel'), vectorize_runner(nopython=True, target='parallel', cache=True), guvectorize_runner(nopython=True), guvectorize_runner(nopython=True, target='parallel'), guvectorize_runner(nopython=True, target='parallel', cache=True), ] if not _parfors_unsupported: parfor_impls = [ jit_runner(nopython=True, parallel=True), jit_runner(nopython=True, parallel=True, cache=True), linalg_runner(nopython=True, parallel=True), linalg_runner(nopython=True, parallel=True, cache=True), ] all_impls.extend(parfor_impls) if config.NUMBA_NUM_THREADS < 2: # Not enough cores masks = [] else: masks = [1, 2] mask_impls = [] for impl in all_impls: for mask in masks: mask_impls.append(mask_runner(impl, mask)) parallelism = ['threading', 'random'] parallelism.append('multiprocessing_spawn') if _HAVE_OS_FORK: parallelism.append('multiprocessing_fork') parallelism.append('multiprocessing_forkserver') runners = { 'concurrent_jit': [ jit_runner(nopython=True, parallel=(not _parfors_unsupported)), ], 'concurrent_vectorize': [ vectorize_runner(nopython=True, target='parallel'), ], 'concurrent_guvectorize': [ guvectorize_runner(nopython=True, target='parallel'), ], 'concurrent_mix_use': all_impls, 'concurrent_mix_use_masks': mask_impls, } safe_backends = {'omp', 'tbb'} def run_compile(self, fnlist, parallelism='threading'): self._cache_dir = temp_directory(self.__class__.__name__) with override_config('CACHE_DIR', self._cache_dir): if parallelism == 'threading': thread_impl(fnlist) elif parallelism == 'multiprocessing_fork': fork_proc_impl(fnlist) elif parallelism == 'multiprocessing_forkserver': forkserver_proc_impl(fnlist) elif parallelism == 'multiprocessing_spawn': spawn_proc_impl(fnlist) elif parallelism == 'multiprocessing_default': default_proc_impl(fnlist) elif parallelism == 'random': ps = [thread_impl, spawn_proc_impl] if _HAVE_OS_FORK: ps.append(fork_proc_impl) ps.append(forkserver_proc_impl) random.shuffle(ps) for impl in ps: impl(fnlist) else: raise ValueError( 'Unknown parallelism supplied %s' % parallelism) _specific_backends = config.THREADING_LAYER in ('omp', 'tbb', 'workqueue') @unittest.skipUnless(_specific_backends, "Threading layer not explicit")
TestParallelBackendBase
python
numba__numba
numba/core/typeinfer.py
{ "start": 15480, "end": 16214 }
class ____(object): def __init__(self, target, pair, loc): self.target = target self.pair = pair self.loc = loc def __call__(self, typeinfer): with new_error_context("typing of pair-first at {loc}", loc=self.loc): typevars = typeinfer.typevars for tp in typevars[self.pair.name].get(): if not isinstance(tp, types.Pair): # XXX is this an error? continue assert (isinstance(tp.first_type, types.UndefinedFunctionType) or tp.first_type.is_precise()) typeinfer.add_type(self.target, tp.first_type, loc=self.loc)
PairFirstConstraint
python
microsoft__pyright
packages/pyright-internal/src/tests/samples/isinstance6.py
{ "start": 532, "end": 591 }
class ____(Protocol): def other(self) -> None: ...
Proto2
python
PrefectHQ__prefect
src/integrations/prefect-github/prefect_github/schemas/graphql_schema.py
{ "start": 588086, "end": 588503 }
class ____(sgqlc.types.Type): """ See source code for more info. """ __schema__ = graphql_schema __field_names__ = ("about", "name", "url") about = sgqlc.types.Field(sgqlc.types.non_null(String), graphql_name="about") name = sgqlc.types.Field(sgqlc.types.non_null(String), graphql_name="name") url = sgqlc.types.Field(sgqlc.types.non_null(URI), graphql_name="url")
RepositoryContactLink
python
huggingface__transformers
src/transformers/models/hgnet_v2/modular_hgnet_v2.py
{ "start": 21188, "end": 24392 }
class ____(HGNetV2PreTrainedModel): def __init__(self, config: HGNetV2Config): super().__init__(config) self.num_labels = config.num_labels self.embedder = HGNetV2Embeddings(config) self.encoder = HGNetV2Encoder(config) self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) self.flatten = nn.Flatten() self.fc = nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity() # classification head self.classifier = nn.ModuleList([self.avg_pool, self.flatten]) # initialize weights and apply final processing self.post_init() @auto_docstring def forward( self, pixel_values: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> ImageClassifierOutputWithNoAttention: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Examples: ```python >>> import torch >>> import requests >>> from transformers import HGNetV2ForImageClassification, AutoImageProcessor >>> from PIL import Image >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> model = HGNetV2ForImageClassification.from_pretrained("ustc-community/hgnet-v2") >>> processor = AutoImageProcessor.from_pretrained("ustc-community/hgnet-v2") >>> inputs = processor(images=image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> outputs.logits.shape torch.Size([1, 2]) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) embedding_output = self.embedder(pixel_values) outputs = self.encoder(embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict) last_hidden_state = outputs[0] for layer in self.classifier: last_hidden_state = layer(last_hidden_state) logits = self.fc(last_hidden_state) loss = None if labels is not None: loss = self.loss_function(labels, logits, self.config) if not return_dict: output = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states) __all__ = ["HGNetV2Config", "HGNetV2Backbone", "HGNetV2PreTrainedModel", "HGNetV2ForImageClassification"]
HGNetV2ForImageClassification
python
ray-project__ray
release/ray_release/tests/test_cluster_manager.py
{ "start": 30477, "end": 31671 }
class ____(unittest.TestCase): def setUp(self) -> None: self.sdk = get_anyscale_sdk() self.cluster_compute = TEST_CLUSTER_COMPUTE self.cluster_manager = FullClusterManager( project_id=UNIT_TEST_PROJECT_ID, sdk=self.sdk, test_name=f"unit_test__{self.__class__.__name__}__endToEnd", ) def tearDown(self) -> None: self.cluster_manager.terminate_cluster() self.cluster_manager.delete_configs() def testSessionEndToEnd(self): self.cluster_manager.set_cluster_env(self.cluster_env) self.cluster_manager.set_cluster_compute(self.cluster_compute) self.cluster_manager.build_configs(timeout=1200) # Reset, so that we fetch them again and test that code path self.cluster_manager.cluster_compute_id = None self.cluster_manager.cluster_env_id = None self.cluster_manager.cluster_env_build_id = None self.cluster_manager.build_configs(timeout=1200) # Start cluster self.cluster_manager.start_cluster(timeout=1200) if __name__ == "__main__": import pytest sys.exit(pytest.main(["-v", __file__]))
LiveSessionManagerTest
python
google__jax
jax/_src/sharding_impls.py
{ "start": 18265, "end": 19169 }
class ____: """A hardware axis context for parallel computations that use the GSPMD partitioner. This includes the mesh that will later by used to execute this computation, as well as a set of mesh axes that are currently lowered in the MANUAL sharding mode. """ mesh: mesh_lib.Mesh manual_axes: frozenset[MeshAxisName] = frozenset() @property def axis_env(self): # All collectives that touch axis_env should remember to set use_global_device_ids # when this context is enabled! return self.unsafe_axis_env @property def unsafe_axis_env(self): return AxisEnv( nreps=self.mesh.size, names=self.mesh.axis_names, sizes=tuple(self.mesh.shape.values())) def extend_manual(self, axes: frozenset[MeshAxisName]) -> SPMDAxisContext: return SPMDAxisContext(self.mesh, self.manual_axes | axes) @dataclasses.dataclass(frozen=True)
SPMDAxisContext
python
automl__auto-sklearn
autosklearn/pipeline/components/data_preprocessing/categorical_encoding/__init__.py
{ "start": 949, "end": 4429 }
class ____(AutoSklearnChoice): @classmethod def get_components(cls: BaseEstimator) -> Dict[str, BaseEstimator]: components: Dict[str, BaseEstimator] = OrderedDict() components.update(_ohes) components.update(additional_components.components) return components def get_hyperparameter_search_space( self, feat_type: Optional[FEAT_TYPE_TYPE] = None, dataset_properties: Optional[DATASET_PROPERTIES_TYPE] = None, default: Optional[str] = None, include: Optional[Dict[str, str]] = None, exclude: Optional[Dict[str, str]] = None, ) -> ConfigurationSpace: cs = ConfigurationSpace() if dataset_properties is None: dataset_properties = {} # Compile a list of legal preprocessors for this problem available_preprocessors = self.get_available_components( dataset_properties=dataset_properties, include=include, exclude=exclude ) if len(available_preprocessors) == 0: raise ValueError( "No ohe hot encoders found, please add any one hot encoder " "component." ) if default is None: defaults = ["one_hot_encoding", "no_encoding"] for default_ in defaults: if default_ in available_preprocessors: default = default_ break preprocessor = CategoricalHyperparameter( "__choice__", list(available_preprocessors.keys()), default_value=default ) cs.add_hyperparameter(preprocessor) for name in available_preprocessors: preprocessor_configuration_space = available_preprocessors[ name ].get_hyperparameter_search_space(dataset_properties=dataset_properties) parent_hyperparameter = {"parent": preprocessor, "value": name} cs.add_configuration_space( name, preprocessor_configuration_space, parent_hyperparameter=parent_hyperparameter, ) self.configuration_space = cs self.dataset_properties = dataset_properties return cs def set_hyperparameters( self, feat_type: FEAT_TYPE_TYPE, configuration: Configuration, init_params: Optional[Dict[str, Any]] = None, ) -> "OHEChoice": new_params = {} params = configuration.get_dictionary() choice = params["__choice__"] del params["__choice__"] for param, value in params.items(): param = param.replace(choice, "").replace(":", "") new_params[param] = value if init_params is not None: for param, value in init_params.items(): # These next two lines are different than in the base class - # they allow removing the categorical feature indicator array # in order to not pass it to the no encoding if choice not in param: continue param = param.replace(choice, "").replace(":", "") new_params[param] = value new_params["random_state"] = self.random_state self.new_params = new_params self.choice = self.get_components()[choice](**new_params) return self def transform(self, X: PIPELINE_DATA_DTYPE) -> PIPELINE_DATA_DTYPE: return self.choice.transform(X)
OHEChoice
python
pyinstaller__pyinstaller
PyInstaller/depend/imphook.py
{ "start": 938, "end": 9732 }
class ____(dict): """ Cache of lazily loadable hook script objects. This cache is implemented as a `dict` subclass mapping from the fully-qualified names of all modules with at least one hook script to lists of `ModuleHook` instances encapsulating these scripts. As a `dict` subclass, all cached module names and hook scripts are accessible via standard dictionary operations. Attributes ---------- module_graph : ModuleGraph Current module graph. _hook_module_name_prefix : str String prefixing the names of all in-memory modules lazily loaded from cached hook scripts. See also the `hook_module_name_prefix` parameter passed to the `ModuleHook.__init__()` method. """ _cache_id_next = 0 """ 0-based identifier unique to the next `ModuleHookCache` to be instantiated. This identifier is incremented on each instantiation of a new `ModuleHookCache` to isolate in-memory modules of lazily loaded hook scripts in that cache to the same cache-specific namespace, preventing edge-case collisions with existing in-memory modules in other caches. """ def __init__(self, module_graph, hook_dirs): """ Cache all hook scripts in the passed directories. **Order of caching is significant** with respect to hooks for the same module, as the values of this dictionary are lists. Hooks for the same module will be run in the order in which they are cached. Previously cached hooks are always preserved rather than overridden. By default, official hooks are cached _before_ user-defined hooks. For modules with both official and user-defined hooks, this implies that the former take priority over and hence will be loaded _before_ the latter. Parameters ---------- module_graph : ModuleGraph Current module graph. hook_dirs : list List of the absolute or relative paths of all directories containing **hook scripts** (i.e., Python scripts with filenames matching `hook-{module_name}.py`, where `{module_name}` is the module hooked by that script) to be cached. """ super().__init__() # To avoid circular references and hence increased memory consumption, a weak rather than strong reference is # stored to the passed graph. Since this graph is guaranteed to live longer than this cache, # this is guaranteed to be safe. self.module_graph = weakref.proxy(module_graph) # String unique to this cache prefixing the names of all in-memory modules lazily loaded from cached hook # scripts, privatized for safety. self._hook_module_name_prefix = '__PyInstaller_hooks_{}_'.format(ModuleHookCache._cache_id_next) ModuleHookCache._cache_id_next += 1 # Cache all hook scripts in the passed directories. self._cache_hook_dirs(hook_dirs) def _cache_hook_dirs(self, hook_dirs): """ Cache all hook scripts in the passed directories. Parameters ---------- hook_dirs : list List of the absolute or relative paths of all directories containing hook scripts to be cached. """ for hook_dir, default_priority in hook_dirs: # Canonicalize this directory's path and validate its existence. hook_dir = os.path.abspath(hook_dir) if not os.path.isdir(hook_dir): raise FileNotFoundError('Hook directory "{}" not found.'.format(hook_dir)) # For each hook script in this directory... hook_filenames = glob.glob(os.path.join(hook_dir, 'hook-*.py')) for hook_filename in hook_filenames: # Fully-qualified name of this hook's corresponding module, constructed by removing the "hook-" prefix # and ".py" suffix. module_name = os.path.basename(hook_filename)[5:-3] # Lazily loadable hook object. module_hook = ModuleHook( module_graph=self.module_graph, module_name=module_name, hook_filename=hook_filename, hook_module_name_prefix=self._hook_module_name_prefix, default_priority=default_priority, ) # Add this hook to this module's list of hooks. module_hooks = self.setdefault(module_name, []) module_hooks.append(module_hook) # Post-processing: we allow only one instance of hook per module. Currently, the priority order is defined # implicitly, via order of hook directories, so the first hook in the list has the highest priority. for module_name in self.keys(): hooks = self[module_name] if len(hooks) == 1: self[module_name] = hooks[0] else: # Order by priority value, in descending order. sorted_hooks = sorted(hooks, key=lambda hook: hook.priority, reverse=True) self[module_name] = sorted_hooks[0] def remove_modules(self, *module_names): """ Remove the passed modules and all hook scripts cached for these modules from this cache. Parameters ---------- module_names : list List of all fully-qualified module names to be removed. """ for module_name in module_names: # Unload this module's hook script modules from memory. Since these are top-level pure-Python modules cached # only in the "sys.modules" dictionary, popping these modules from this dictionary suffices to garbage # collect them. module_hook = self.pop(module_name, None) # Remove our reference, if available. if module_hook is not None: sys.modules.pop(module_hook.hook_module_name, None) def _module_collection_mode_sanitizer(value): if isinstance(value, dict): # Hook set a dictionary; use it as-is return value elif isinstance(value, str): # Hook set a mode string; convert to a dictionary and assign the string to `None` (= the hooked module). return {None: value} raise ValueError(f"Invalid module collection mode setting value: {value!r}") def _bindepend_symlink_suppression_sanitizer(value): if isinstance(value, (list, set)): # Hook set a list or a set; use it as-is return set(value) elif isinstance(value, str): # Hook set a string; create a set with single element. return set([value]) raise ValueError(f"Invalid value for bindepend_symlink_suppression: {value!r}") # Dictionary mapping the names of magic attributes required by the "ModuleHook" class to 2-tuples "(default_type, # sanitizer_func)", where: # # * "default_type" is the type to which that attribute will be initialized when that hook is lazily loaded. # * "sanitizer_func" is the callable sanitizing the original value of that attribute defined by that hook into a # safer value consumable by "ModuleHook" callers if any or "None" if the original value requires no sanitization. # # To avoid subtleties in the ModuleHook.__getattr__() method, this dictionary is declared as a module rather than a # class attribute. If declared as a class attribute and then undefined (...for whatever reason), attempting to access # this attribute from that method would produce infinite recursion. _MAGIC_MODULE_HOOK_ATTRS = { # Collections in which order is insignificant. This includes: # # * "datas", sanitized from hook-style 2-tuple lists defined by hooks into TOC-style 2-tuple sets consumable by # "ModuleHook" callers. # * "binaries", sanitized in the same way. 'datas': (set, format_binaries_and_datas), 'binaries': (set, format_binaries_and_datas), 'excludedimports': (set, None), # Collections in which order is significant. This includes: # # * "hiddenimports", as order of importation is significant. On module importation, hook scripts are loaded and hook # functions declared by these scripts are called. As these scripts and functions can have side effects dependent # on module importation order, module importation itself can have side effects dependent on this order! 'hiddenimports': (list, None), # Flags 'warn_on_missing_hiddenimports': (lambda: True, bool), # Package/module collection mode dictionary. 'module_collection_mode': (dict, _module_collection_mode_sanitizer), # Path patterns for suppression of symbolic links created by binary dependency analysis. 'bindepend_symlink_suppression': (set, _bindepend_symlink_suppression_sanitizer), }
ModuleHookCache
python
tornadoweb__tornado
tornado/test/websocket_test.py
{ "start": 26886, "end": 27539 }
class ____(WebSocketBaseTestCase): def get_app(self): class PingHandler(TestWebSocketHandler): def on_pong(self, data): self.write_message("got pong") return Application( [("/", PingHandler)], websocket_ping_interval=0.01, websocket_ping_timeout=0, ) @gen_test def test_server_ping(self): ws = yield self.ws_connect("/") for i in range(3): response = yield ws.read_message() self.assertEqual(response, "got pong") # TODO: test that the connection gets closed if ping responses stop.
ServerPeriodicPingTest
python
doocs__leetcode
solution/2800-2899/2867.Count Valid Paths in a Tree/Solution.py
{ "start": 0, "end": 750 }
class ____: def __init__(self, n): self.p = list(range(n)) self.size = [1] * n def find(self, x): if self.p[x] != x: self.p[x] = self.find(self.p[x]) return self.p[x] def union(self, a, b): pa, pb = self.find(a), self.find(b) if pa == pb: return False if self.size[pa] > self.size[pb]: self.p[pb] = pa self.size[pa] += self.size[pb] else: self.p[pa] = pb self.size[pb] += self.size[pa] return True mx = 10**5 + 10 prime = [True] * (mx + 1) prime[0] = prime[1] = False for i in range(2, mx + 1): if prime[i]: for j in range(i * i, mx + 1, i): prime[j] = False
UnionFind
python
scipy__scipy
benchmarks/benchmarks/stats.py
{ "start": 28817, "end": 29185 }
class ____(Benchmark): param_names = ["size", "d"] params = [ [10_000, 100_000, 1_000_000], [1, 100] ] def setup(self, size, d): self.rng = np.random.default_rng(2475928) n = size // d self.x = self.rng.uniform(size=(d, n)) def time_quantile(self, size, d): stats.quantile(self.x, 0.5, axis=1)
Quantile
python
readthedocs__readthedocs.org
readthedocs/projects/migrations/0085_subscribe_old_webhooks_to_events.py
{ "start": 698, "end": 918 }
class ____(migrations.Migration): safe = Safe.after_deploy() dependencies = [ ("projects", "0084_create_webhook_events"), ] operations = [ migrations.RunPython(forwards_func), ]
Migration
python
sqlalchemy__sqlalchemy
test/ext/test_extendedattr.py
{ "start": 17131, "end": 18598 }
class ____(_ExtBase, fixtures.ORMTest): def test_standard(self): class A: pass register_class(A) eq_(type(manager_of_class(A)), instrumentation.ClassManager) def test_nativeext_interfaceexact(self): class A: __sa_instrumentation_manager__ = ( instrumentation.InstrumentationManager ) register_class(A) ne_( type(attributes.opt_manager_of_class(A)), instrumentation.ClassManager, ) def test_nativeext_submanager(self): class Mine(instrumentation.ClassManager): pass class A: __sa_instrumentation_manager__ = Mine register_class(A) eq_(type(manager_of_class(A)), Mine) @modifies_instrumentation_finders def test_customfinder_greedy(self): class Mine(instrumentation.ClassManager): pass class A: pass def find(cls): return Mine instrumentation.instrumentation_finders.insert(0, find) register_class(A) eq_(type(manager_of_class(A)), Mine) @modifies_instrumentation_finders def test_customfinder_pass(self): class A: pass def find(cls): return None instrumentation.instrumentation_finders.insert(0, find) register_class(A) eq_(type(manager_of_class(A)), instrumentation.ClassManager)
FinderTest
python
PrefectHQ__prefect
src/prefect/server/database/orm_models.py
{ "start": 52805, "end": 53202 }
class ____(BaseORMConfiguration): """SQLite specific orm configuration""" @property def versions_dir(self) -> Path: """Directory containing migrations""" import prefect.server.database return ( Path(prefect.server.database.__file__).parent / "_migrations" / "versions" / "sqlite" )
AioSqliteORMConfiguration
python
PyCQA__pylint
tests/functional/r/regression/regression_4680.py
{ "start": 223, "end": 311 }
class ____(metaclass=foo.sob.Metaclass): pass assert foo.sub.value is None
FailedThree
python
docker__docker-py
tests/integration/api_client_test.py
{ "start": 912, "end": 1569 }
class ____(unittest.TestCase): def setUp(self): self.timeout = 0.5 self.client = docker.api.APIClient( version=docker.constants.MINIMUM_DOCKER_API_VERSION, base_url='http://192.168.10.2:4243', timeout=self.timeout ) def test_timeout(self): start = time.time() res = None # This call isn't supposed to complete, and it should fail fast. try: res = self.client.inspect_container('id') except Exception: pass end = time.time() assert res is None assert end - start < 2 * self.timeout
ConnectionTimeoutTest
python
coleifer__peewee
peewee.py
{ "start": 185872, "end": 187159 }
class ____(Field): _unresolved = set() def __init__(self, rel_model_name, **kwargs): self.field_kwargs = kwargs self.rel_model_name = rel_model_name.lower() DeferredForeignKey._unresolved.add(self) super(DeferredForeignKey, self).__init__( column_name=kwargs.get('column_name'), null=kwargs.get('null'), primary_key=kwargs.get('primary_key')) __hash__ = object.__hash__ def __deepcopy__(self, memo=None): return DeferredForeignKey(self.rel_model_name, **self.field_kwargs) def set_model(self, rel_model): field = ForeignKeyField(rel_model, _deferred=True, **self.field_kwargs) if field.primary_key: # NOTE: this calls add_field() under-the-hood. self.model._meta.set_primary_key(self.name, field) else: self.model._meta.add_field(self.name, field) @staticmethod def resolve(model_cls): unresolved = sorted(DeferredForeignKey._unresolved, key=operator.attrgetter('_order')) for dr in unresolved: if dr.rel_model_name == model_cls.__name__.lower(): dr.set_model(model_cls) DeferredForeignKey._unresolved.discard(dr)
DeferredForeignKey
python
numba__numba
numba/tests/test_array_exprs.py
{ "start": 19182, "end": 20934 }
class ____(MemoryLeakMixin, unittest.TestCase): # same as above, but the Optional resolves to None and TypeError's def test_optional_scalar_type_exception_on_none(self): self.disable_leak_check() @njit def arr_expr(x, y): return x + y @njit def do_call(x, y): if y > 0: z = None else: z = y return arr_expr(x, z) args = (np.arange(5), 1.0) # check result with self.assertRaises(TypeError) as raises: do_call(*args) self.assertIn("expected float64, got None", str(raises.exception)) # check type s = arr_expr.signatures oty = s[0][1] self.assertTrue(isinstance(oty, types.Optional)) self.assertTrue(isinstance(oty.type, types.Float)) def test_optional_array_type_exception_on_none(self): self.disable_leak_check() @njit def arr_expr(x, y): return x + y @njit def do_call(x, y): if y[0] > 0: z = None else: z = y return arr_expr(x, z) args = (np.arange(5), np.arange(1., 5.)) # check result with self.assertRaises(TypeError) as raises: do_call(*args) excstr = str(raises.exception) self.assertIn("expected array(float64,", excstr) self.assertIn("got None", excstr) # check type s = arr_expr.signatures oty = s[0][1] self.assertTrue(isinstance(oty, types.Optional)) self.assertTrue(isinstance(oty.type, types.Array)) self.assertTrue(isinstance(oty.type.dtype, types.Float))
TestOptionalsExceptions
python
huggingface__transformers
src/transformers/models/superglue/modeling_superglue.py
{ "start": 20137, "end": 32583 }
class ____(SuperGluePreTrainedModel): """SuperGlue feature matching middle-end Given two sets of keypoints and locations, we determine the correspondences by: 1. Keypoint Encoding (normalization + visual feature and location fusion) 2. Graph Neural Network with multiple self and cross-attention layers 3. Final projection layer 4. Optimal Transport Layer (a differentiable Hungarian matching algorithm) 5. Thresholding matrix based on mutual exclusivity and a match_threshold The correspondence ids use -1 to indicate non-matching points. Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. SuperGlue: Learning Feature Matching with Graph Neural Networks. In CVPR, 2020. https://huggingface.co/papers/1911.11763 """ def __init__(self, config: SuperGlueConfig) -> None: super().__init__(config) self.keypoint_detector = AutoModelForKeypointDetection.from_config(config.keypoint_detector_config) self.keypoint_encoder = SuperGlueKeypointEncoder(config) self.gnn = SuperGlueAttentionalGNN(config) self.final_projection = SuperGlueFinalProjection(config) bin_score = torch.nn.Parameter(torch.tensor(1.0)) self.register_parameter("bin_score", bin_score) self.post_init() def _match_image_pair( self, keypoints: torch.Tensor, descriptors: torch.Tensor, scores: torch.Tensor, height: int, width: int, mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> tuple[torch.Tensor, torch.Tensor, tuple, tuple]: """ Perform keypoint matching between two images. Args: keypoints (`torch.Tensor` of shape `(batch_size, 2, num_keypoints, 2)`): Keypoints detected in the pair of image. descriptors (`torch.Tensor` of shape `(batch_size, 2, descriptor_dim, num_keypoints)`): Descriptors of the keypoints detected in the image pair. scores (`torch.Tensor` of shape `(batch_size, 2, num_keypoints)`): Confidence scores of the keypoints detected in the image pair. height (`int`): Image height. width (`int`): Image width. mask (`torch.Tensor` of shape `(batch_size, 2, num_keypoints)`, *optional*): Mask indicating which values in the keypoints, matches and matching_scores tensors are keypoint matching information. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors. Default to `config.output_attentions`. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. Default to `config.output_hidden_states`. Returns: matches (`torch.Tensor` of shape `(batch_size, 2, num_keypoints)`): For each image pair, for each keypoint in image0, the index of the keypoint in image1 that was matched with. And for each keypoint in image1, the index of the keypoint in image0 that was matched with. matching_scores (`torch.Tensor` of shape `(batch_size, 2, num_keypoints)`): Scores of predicted matches for each image pair all_hidden_states (`tuple(torch.FloatTensor)`, *optional*): Tuple of `torch.FloatTensor` (one for the output of each stage) of shape `(1, 2, num_keypoints, num_channels)`. all_attentions (`tuple(torch.FloatTensor)`, *optional*): Tuple of `torch.FloatTensor` (one for each layer) of shape `(1, 2, num_heads, num_keypoints, num_keypoints)`. """ all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None if keypoints.shape[2] == 0: # no keypoints shape = keypoints.shape[:-1] return ( keypoints.new_full(shape, -1, dtype=torch.int), keypoints.new_zeros(shape), all_hidden_states, all_attentions, ) batch_size, _, num_keypoints, _ = keypoints.shape # (batch_size, 2, num_keypoints, 2) -> (batch_size * 2, num_keypoints, 2) keypoints = keypoints.reshape(batch_size * 2, num_keypoints, 2) descriptors = descriptors.reshape(batch_size * 2, num_keypoints, self.config.hidden_size) scores = scores.reshape(batch_size * 2, num_keypoints) mask = mask.reshape(batch_size * 2, num_keypoints) if mask is not None else None # Keypoint normalization keypoints = normalize_keypoints(keypoints, height, width) encoded_keypoints = self.keypoint_encoder(keypoints, scores, output_hidden_states=output_hidden_states) last_hidden_state = encoded_keypoints[0] # Keypoint MLP encoder. descriptors = descriptors + last_hidden_state if mask is not None: input_shape = descriptors.size() extended_attention_mask = self.get_extended_attention_mask(mask, input_shape) else: extended_attention_mask = torch.ones((batch_size, num_keypoints), device=keypoints.device) # Multi-layer Transformer network. gnn_outputs = self.gnn( descriptors, mask=extended_attention_mask, output_hidden_states=output_hidden_states, output_attentions=output_attentions, ) descriptors = gnn_outputs[0] # Final MLP projection. projected_descriptors = self.final_projection(descriptors) # (batch_size * 2, num_keypoints, descriptor_dim) -> (batch_size, 2, num_keypoints, descriptor_dim) final_descriptors = projected_descriptors.reshape(batch_size, 2, num_keypoints, self.config.hidden_size) final_descriptors0 = final_descriptors[:, 0] final_descriptors1 = final_descriptors[:, 1] # Compute matching descriptor distance. scores = final_descriptors0 @ final_descriptors1.transpose(1, 2) scores = scores / self.config.hidden_size**0.5 if mask is not None: mask = mask.reshape(batch_size, 2, num_keypoints) mask0 = mask[:, 0].unsqueeze(2) mask1 = mask[:, 1].unsqueeze(1) mask = torch.logical_and(mask0, mask1) scores = scores.masked_fill(mask == 0, torch.finfo(scores.dtype).min) # Run the optimal transport. scores = log_optimal_transport(scores, self.bin_score, iterations=self.config.sinkhorn_iterations) # Get the matches with score above "match_threshold". max0 = scores[:, :-1, :-1].max(2) max1 = scores[:, :-1, :-1].max(1) indices0 = max0.indices indices1 = max1.indices mutual0 = arange_like(indices0, 1)[None] == indices1.gather(1, indices0) mutual1 = arange_like(indices1, 1)[None] == indices0.gather(1, indices1) zero = scores.new_tensor(0) matching_scores0 = torch.where(mutual0, max0.values.exp(), zero) matching_scores0 = torch.where(matching_scores0 > self.config.matching_threshold, matching_scores0, zero) matching_scores1 = torch.where(mutual1, matching_scores0.gather(1, indices1), zero) valid0 = mutual0 & (matching_scores0 > zero) valid1 = mutual1 & valid0.gather(1, indices1) matches0 = torch.where(valid0, indices0, indices0.new_tensor(-1)) matches1 = torch.where(valid1, indices1, indices1.new_tensor(-1)) matches = torch.cat([matches0, matches1], dim=1).reshape(batch_size, 2, -1) matching_scores = torch.cat([matching_scores0, matching_scores1], dim=1).reshape(batch_size, 2, -1) if output_hidden_states: all_hidden_states = all_hidden_states + encoded_keypoints[1] all_hidden_states = all_hidden_states + gnn_outputs[1] all_hidden_states = all_hidden_states + (projected_descriptors,) all_hidden_states = tuple( x.reshape(batch_size, 2, num_keypoints, -1).transpose(-1, -2) for x in all_hidden_states ) if output_attentions: all_attentions = all_attentions + gnn_outputs[2] all_attentions = tuple(x.reshape(batch_size, 2, -1, num_keypoints, num_keypoints) for x in all_attentions) return ( matches, matching_scores, all_hidden_states, all_attentions, ) @auto_docstring def forward( self, pixel_values: torch.FloatTensor, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, SuperGlueKeypointMatchingOutput]: r""" Examples: ```python >>> from transformers import AutoImageProcessor, AutoModel >>> import torch >>> from PIL import Image >>> import requests >>> url = "https://github.com/magicleap/SuperGluePretrainedNetwork/blob/master/assets/phototourism_sample_images/london_bridge_78916675_4568141288.jpg?raw=true" >>> image1 = Image.open(requests.get(url, stream=True).raw) >>> url = "https://github.com/magicleap/SuperGluePretrainedNetwork/blob/master/assets/phototourism_sample_images/london_bridge_19481797_2295892421.jpg?raw=true" >>> image2 = Image.open(requests.get(url, stream=True).raw) >>> images = [image1, image2] >>> processor = AutoImageProcessor.from_pretrained("magic-leap-community/superglue_outdoor") >>> model = AutoModel.from_pretrained("magic-leap-community/superglue_outdoor") >>> with torch.no_grad(): >>> inputs = processor(images, return_tensors="pt") >>> outputs = model(**inputs) ```""" loss = None if labels is not None: raise ValueError("SuperGlue is not trainable, no labels should be provided.") output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values.ndim != 5 or pixel_values.size(1) != 2: raise ValueError("Input must be a 5D tensor of shape (batch_size, 2, num_channels, height, width)") batch_size, _, channels, height, width = pixel_values.shape pixel_values = pixel_values.reshape(batch_size * 2, channels, height, width) keypoint_detections = self.keypoint_detector(pixel_values) keypoints, scores, descriptors, mask = keypoint_detections[:4] keypoints = keypoints.reshape(batch_size, 2, -1, 2).to(pixel_values) scores = scores.reshape(batch_size, 2, -1).to(pixel_values) descriptors = descriptors.reshape(batch_size, 2, -1, self.config.hidden_size).to(pixel_values) mask = mask.reshape(batch_size, 2, -1) absolute_keypoints = keypoints.clone() absolute_keypoints[:, :, :, 0] = absolute_keypoints[:, :, :, 0] * width absolute_keypoints[:, :, :, 1] = absolute_keypoints[:, :, :, 1] * height matches, matching_scores, hidden_states, attentions = self._match_image_pair( absolute_keypoints, descriptors, scores, height, width, mask=mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) if not return_dict: return tuple( v for v in [loss, matches, matching_scores, keypoints, mask, hidden_states, attentions] if v is not None ) return SuperGlueKeypointMatchingOutput( loss=loss, matches=matches, matching_scores=matching_scores, keypoints=keypoints, mask=mask, hidden_states=hidden_states, attentions=attentions, ) __all__ = ["SuperGluePreTrainedModel", "SuperGlueForKeypointMatching"]
SuperGlueForKeypointMatching
python
plotly__plotly.py
_plotly_utils/basevalidators.py
{ "start": 19758, "end": 20531 }
class ____(BaseValidator): """ "boolean": { "description": "A boolean (true/false) value.", "requiredOpts": [], "otherOpts": [ "dflt" ] }, """ def __init__(self, plotly_name, parent_name, **kwargs): super(BooleanValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs ) def description(self): return """\ The '{plotly_name}' property must be specified as a bool (either True, or False)""".format(plotly_name=self.plotly_name) def validate_coerce(self, v): if is_none_or_typed_array_spec(v): pass elif not isinstance(v, bool): self.raise_invalid_val(v) return v
BooleanValidator
python
walkccc__LeetCode
solutions/61. Rotate List/61.py
{ "start": 0, "end": 414 }
class ____: def rotateRight(self, head: ListNode, k: int) -> ListNode: if not head or not head.next or k == 0: return head tail = head length = 1 while tail.next: tail = tail.next length += 1 tail.next = head # Circle the list. t = length - k % length for _ in range(t): tail = tail.next newHead = tail.next tail.next = None return newHead
Solution
python
kubernetes-client__python
kubernetes/client/models/v1_non_resource_policy_rule.py
{ "start": 383, "end": 5783 }
class ____(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'non_resource_ur_ls': 'list[str]', 'verbs': 'list[str]' } attribute_map = { 'non_resource_ur_ls': 'nonResourceURLs', 'verbs': 'verbs' } def __init__(self, non_resource_ur_ls=None, verbs=None, local_vars_configuration=None): # noqa: E501 """V1NonResourcePolicyRule - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._non_resource_ur_ls = None self._verbs = None self.discriminator = None self.non_resource_ur_ls = non_resource_ur_ls self.verbs = verbs @property def non_resource_ur_ls(self): """Gets the non_resource_ur_ls of this V1NonResourcePolicyRule. # noqa: E501 `nonResourceURLs` is a set of url prefixes that a user should have access to and may not be empty. For example: - \"/healthz\" is legal - \"/hea*\" is illegal - \"/hea\" is legal but matches nothing - \"/hea/*\" also matches nothing - \"/healthz/*\" matches all per-component health checks. \"*\" matches all non-resource urls. if it is present, it must be the only entry. Required. # noqa: E501 :return: The non_resource_ur_ls of this V1NonResourcePolicyRule. # noqa: E501 :rtype: list[str] """ return self._non_resource_ur_ls @non_resource_ur_ls.setter def non_resource_ur_ls(self, non_resource_ur_ls): """Sets the non_resource_ur_ls of this V1NonResourcePolicyRule. `nonResourceURLs` is a set of url prefixes that a user should have access to and may not be empty. For example: - \"/healthz\" is legal - \"/hea*\" is illegal - \"/hea\" is legal but matches nothing - \"/hea/*\" also matches nothing - \"/healthz/*\" matches all per-component health checks. \"*\" matches all non-resource urls. if it is present, it must be the only entry. Required. # noqa: E501 :param non_resource_ur_ls: The non_resource_ur_ls of this V1NonResourcePolicyRule. # noqa: E501 :type: list[str] """ if self.local_vars_configuration.client_side_validation and non_resource_ur_ls is None: # noqa: E501 raise ValueError("Invalid value for `non_resource_ur_ls`, must not be `None`") # noqa: E501 self._non_resource_ur_ls = non_resource_ur_ls @property def verbs(self): """Gets the verbs of this V1NonResourcePolicyRule. # noqa: E501 `verbs` is a list of matching verbs and may not be empty. \"*\" matches all verbs. If it is present, it must be the only entry. Required. # noqa: E501 :return: The verbs of this V1NonResourcePolicyRule. # noqa: E501 :rtype: list[str] """ return self._verbs @verbs.setter def verbs(self, verbs): """Sets the verbs of this V1NonResourcePolicyRule. `verbs` is a list of matching verbs and may not be empty. \"*\" matches all verbs. If it is present, it must be the only entry. Required. # noqa: E501 :param verbs: The verbs of this V1NonResourcePolicyRule. # noqa: E501 :type: list[str] """ if self.local_vars_configuration.client_side_validation and verbs is None: # noqa: E501 raise ValueError("Invalid value for `verbs`, must not be `None`") # noqa: E501 self._verbs = verbs def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1NonResourcePolicyRule): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1NonResourcePolicyRule): return True return self.to_dict() != other.to_dict()
V1NonResourcePolicyRule