Commit
·
c2e5397
0
Parent(s):
Update files from the datasets library (from 1.0.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.0.0
- .gitattributes +27 -0
- dataset_infos.json +1 -0
- dummy/de/1.0.0/dummy_data.zip +3 -0
- dummy/es/1.0.0/dummy_data.zip +3 -0
- dummy/fr/1.0.0/dummy_data.zip +3 -0
- dummy/ru/1.0.0/dummy_data.zip +3 -0
- dummy/tu/1.0.0/dummy_data.zip +3 -0
- mlsum.py +119 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"de": {"description": "We present MLSUM, the first large-scale MultiLingual SUMmarization dataset. \nObtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish. \nTogether with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community. \nWe report cross-lingual comparative analyses based on state-of-the-art systems. \nThese highlight existing biases which motivate the use of a multi-lingual dataset. \n", "citation": "@article{scialom2020mlsum,\n title={MLSUM: The Multilingual Summarization Corpus},\n author={Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo},\n journal={arXiv preprint arXiv:2004.14900},\n year={2020}\n}\n", "homepage": "", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "summary": {"dtype": "string", "id": null, "_type": "Value"}, "topic": {"dtype": "string", "id": null, "_type": "Value"}, "url": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "date": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "mlsum", "config_name": "de", "version": {"version_str": "1.0.0", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 846960392, "num_examples": 220887, "dataset_name": "mlsum"}, "validation": {"name": "validation", "num_bytes": 47119589, "num_examples": 11394, "dataset_name": "mlsum"}, "test": {"name": "test", "num_bytes": 46847660, "num_examples": 10701, "dataset_name": "mlsum"}}, "download_checksums": {"https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/de_test.zip": {"num_bytes": 17741147, "checksum": "447e3b1839ab94d5700cc2aedc0b52521404865b2589656acc90a654ed0de4ff"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/de_train.zip": {"num_bytes": 311059697, "checksum": "88e788437bae48af6b3d18a554af4b2794cc6143a137df3f56daa91a37e3ea7e"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/de_val.zip": {"num_bytes": 17771216, "checksum": "732620c32e1d3f393ee3193f57f1217d8549499eb4906e144252aaab39aa910b"}}, "download_size": 346572060, "dataset_size": 940927641, "size_in_bytes": 1287499701}, "es": {"description": "We present MLSUM, the first large-scale MultiLingual SUMmarization dataset. \nObtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish. \nTogether with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community. \nWe report cross-lingual comparative analyses based on state-of-the-art systems. \nThese highlight existing biases which motivate the use of a multi-lingual dataset. \n", "citation": "@article{scialom2020mlsum,\n title={MLSUM: The Multilingual Summarization Corpus},\n author={Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo},\n journal={arXiv preprint arXiv:2004.14900},\n year={2020}\n}\n", "homepage": "", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "summary": {"dtype": "string", "id": null, "_type": "Value"}, "topic": {"dtype": "string", "id": null, "_type": "Value"}, "url": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "date": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "mlsum", "config_name": "es", "version": {"version_str": "1.0.0", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1214558950, "num_examples": 266367, "dataset_name": "mlsum"}, "validation": {"name": "validation", "num_bytes": 50643448, "num_examples": 10358, "dataset_name": "mlsum"}, "test": {"name": "test", "num_bytes": 71263713, "num_examples": 13920, "dataset_name": "mlsum"}}, "download_checksums": {"https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/es_test.zip": {"num_bytes": 27386169, "checksum": "177cfcf358bc4aa9bce2753b8e9de4f6eb41d2c30b1a99ef29d64e70537a1c0d"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/es_train.zip": {"num_bytes": 466443036, "checksum": "a01f4b4b873aa6cdeae15952a22ede2146734d0b60e7297470a35956507c863a"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/es_val.zip": {"num_bytes": 19483214, "checksum": "e38fce9950008ec4b48963692891c4c94d51a1e307286fb596e093aeb1230c92"}}, "download_size": 513312419, "dataset_size": 1336466111, "size_in_bytes": 1849778530}, "fr": {"description": "We present MLSUM, the first large-scale MultiLingual SUMmarization dataset. \nObtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish. \nTogether with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community. \nWe report cross-lingual comparative analyses based on state-of-the-art systems. \nThese highlight existing biases which motivate the use of a multi-lingual dataset. \n", "citation": "@article{scialom2020mlsum,\n title={MLSUM: The Multilingual Summarization Corpus},\n author={Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo},\n journal={arXiv preprint arXiv:2004.14900},\n year={2020}\n}\n", "homepage": "", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "summary": {"dtype": "string", "id": null, "_type": "Value"}, "topic": {"dtype": "string", "id": null, "_type": "Value"}, "url": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "date": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "mlsum", "config_name": "fr", "version": {"version_str": "1.0.0", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1471965974, "num_examples": 392902, "dataset_name": "mlsum"}, "validation": {"name": "validation", "num_bytes": 70413260, "num_examples": 16059, "dataset_name": "mlsum"}, "test": {"name": "test", "num_bytes": 69660336, "num_examples": 15828, "dataset_name": "mlsum"}}, "download_checksums": {"https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/fr_test.zip": {"num_bytes": 26753725, "checksum": "7954f97de0f3839421e7c4aba38c72cc052771bc795cbca211ca2faea7d7d3b8"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/fr_train.zip": {"num_bytes": 566354864, "checksum": "0ac483d3722219ca633c0f614622d64bc4c71e05f1bfb576a9e99b08de5801ba"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/fr_val.zip": {"num_bytes": 26879418, "checksum": "755956e3ee4ae7c5da388286e7226a55bf5a0802482dee241899af319394300d"}}, "download_size": 619988007, "dataset_size": 1612039570, "size_in_bytes": 2232027577}, "ru": {"description": "We present MLSUM, the first large-scale MultiLingual SUMmarization dataset. \nObtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish. \nTogether with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community. \nWe report cross-lingual comparative analyses based on state-of-the-art systems. \nThese highlight existing biases which motivate the use of a multi-lingual dataset. \n", "citation": "@article{scialom2020mlsum,\n title={MLSUM: The Multilingual Summarization Corpus},\n author={Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo},\n journal={arXiv preprint arXiv:2004.14900},\n year={2020}\n}\n", "homepage": "", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "summary": {"dtype": "string", "id": null, "_type": "Value"}, "topic": {"dtype": "string", "id": null, "_type": "Value"}, "url": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "date": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "mlsum", "config_name": "ru", "version": {"version_str": "1.0.0", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 257389569, "num_examples": 25556, "dataset_name": "mlsum"}, "validation": {"name": "validation", "num_bytes": 9128521, "num_examples": 750, "dataset_name": "mlsum"}, "test": {"name": "test", "num_bytes": 9656422, "num_examples": 757, "dataset_name": "mlsum"}}, "download_checksums": {"https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/ru_test.zip": {"num_bytes": 3710826, "checksum": "769e009716f952cffb9cd6b722b8606cdd620e43a6559f1f05b1f0626d43b979"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/ru_train.zip": {"num_bytes": 98998463, "checksum": "225cd04763d6d1d760d9819e9808b052cd6e45fa94ed5e1950c67fa7cf997a72"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/ru_val.zip": {"num_bytes": 3506501, "checksum": "afd47b28ba023450669ed96029295027dc32dc8c71507e9c27748bb89a3924bb"}}, "download_size": 106215790, "dataset_size": 276174512, "size_in_bytes": 382390302}, "tu": {"description": "We present MLSUM, the first large-scale MultiLingual SUMmarization dataset. \nObtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish. \nTogether with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community. \nWe report cross-lingual comparative analyses based on state-of-the-art systems. \nThese highlight existing biases which motivate the use of a multi-lingual dataset. \n", "citation": "@article{scialom2020mlsum,\n title={MLSUM: The Multilingual Summarization Corpus},\n author={Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo},\n journal={arXiv preprint arXiv:2004.14900},\n year={2020}\n}\n", "homepage": "", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "summary": {"dtype": "string", "id": null, "_type": "Value"}, "topic": {"dtype": "string", "id": null, "_type": "Value"}, "url": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "date": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "mlsum", "config_name": "tu", "version": {"version_str": "1.0.0", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 641623383, "num_examples": 249277, "dataset_name": "mlsum"}, "validation": {"name": "validation", "num_bytes": 25530709, "num_examples": 11565, "dataset_name": "mlsum"}, "test": {"name": "test", "num_bytes": 27830260, "num_examples": 12775, "dataset_name": "mlsum"}}, "download_checksums": {"https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/tu_test.zip": {"num_bytes": 9525991, "checksum": "31ea869addf0dd483ef7446bdd1167b25a890d1ed1f9a48e74a67eebc731f463"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/tu_train.zip": {"num_bytes": 229214838, "checksum": "cc8daf8a104fd362296276744d5a5b304c4e21aff7b4ffa761be2f3b7f531f8a"}, "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/tu_val.zip": {"num_bytes": 8751987, "checksum": "b39680a7dd648c970e03a7abf2c63b569c23f2b3f09dc0ae2fca8b7ad8f08b12"}}, "download_size": 247492816, "dataset_size": 694984352, "size_in_bytes": 942477168}}
|
dummy/de/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7cadc08524dacf9f056faba873e8fec41ea56917817a084f28abcbc0d30ffef4
|
3 |
+
size 1624
|
dummy/es/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:389de7907667221cda2ee9b7a8776202782a29f61bc967c4d492b3ad713311d3
|
3 |
+
size 1624
|
dummy/fr/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2320b620711a4e87c4199a2fd27946f0bfc030b74b9a1e7c50a617b65338cd83
|
3 |
+
size 1624
|
dummy/ru/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b108a64791dc81653da0b25d8cad78fc32ee9e592609de9cc2b8030af99a49a
|
3 |
+
size 1624
|
dummy/tu/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e340cb9e19b52325d0b206317d051ddd5b7eb9ae2edd6767667a636f78f3ab51
|
3 |
+
size 1624
|
mlsum.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import absolute_import, division, print_function
|
2 |
+
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
|
8 |
+
|
9 |
+
_CITATION = """\
|
10 |
+
@article{scialom2020mlsum,
|
11 |
+
title={MLSUM: The Multilingual Summarization Corpus},
|
12 |
+
author={Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo},
|
13 |
+
journal={arXiv preprint arXiv:2004.14900},
|
14 |
+
year={2020}
|
15 |
+
}
|
16 |
+
"""
|
17 |
+
|
18 |
+
_DESCRIPTION = """\
|
19 |
+
We present MLSUM, the first large-scale MultiLingual SUMmarization dataset.
|
20 |
+
Obtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish.
|
21 |
+
Together with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community.
|
22 |
+
We report cross-lingual comparative analyses based on state-of-the-art systems.
|
23 |
+
These highlight existing biases which motivate the use of a multi-lingual dataset.
|
24 |
+
"""
|
25 |
+
_URL = "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/"
|
26 |
+
_LANG = ["de", "es", "fr", "ru", "tu"]
|
27 |
+
|
28 |
+
|
29 |
+
class Mlsum(datasets.GeneratorBasedBuilder):
|
30 |
+
|
31 |
+
BUILDER_CONFIGS = [
|
32 |
+
datasets.BuilderConfig(
|
33 |
+
name=lang,
|
34 |
+
version=datasets.Version("1.0.0"),
|
35 |
+
description="",
|
36 |
+
)
|
37 |
+
for lang in _LANG
|
38 |
+
]
|
39 |
+
|
40 |
+
def _info(self):
|
41 |
+
return datasets.DatasetInfo(
|
42 |
+
# This is the description that will appear on the datasets page.
|
43 |
+
description=_DESCRIPTION,
|
44 |
+
# datasets.features.FeatureConnectors
|
45 |
+
features=datasets.Features(
|
46 |
+
{
|
47 |
+
"text": datasets.Value("string"),
|
48 |
+
"summary": datasets.Value("string"),
|
49 |
+
"topic": datasets.Value("string"),
|
50 |
+
"url": datasets.Value("string"),
|
51 |
+
"title": datasets.Value("string"),
|
52 |
+
"date": datasets.Value("string")
|
53 |
+
# These are the features of your dataset like images, labels ...
|
54 |
+
}
|
55 |
+
),
|
56 |
+
# If there's a common (input, target) tuple from the features,
|
57 |
+
# specify them here. They'll be used if as_supervised=True in
|
58 |
+
# builder.as_dataset.
|
59 |
+
supervised_keys=None,
|
60 |
+
# Homepage of the dataset for documentation
|
61 |
+
homepage="",
|
62 |
+
citation=_CITATION,
|
63 |
+
)
|
64 |
+
|
65 |
+
def _split_generators(self, dl_manager):
|
66 |
+
"""Returns SplitGenerators."""
|
67 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to
|
68 |
+
# download and extract URLs
|
69 |
+
|
70 |
+
lang = str(self.config.name)
|
71 |
+
urls_to_download = {
|
72 |
+
"test": os.path.join(_URL, lang + "_test.zip"),
|
73 |
+
"train": os.path.join(_URL, lang + "_train.zip"),
|
74 |
+
"validation": os.path.join(_URL, lang + "_val.zip"),
|
75 |
+
}
|
76 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
77 |
+
|
78 |
+
return [
|
79 |
+
datasets.SplitGenerator(
|
80 |
+
name=datasets.Split.TRAIN,
|
81 |
+
# These kwargs will be passed to _generate_examples
|
82 |
+
gen_kwargs={
|
83 |
+
"filepath": os.path.join(downloaded_files["train"], lang + "_train.jsonl"),
|
84 |
+
"lang": lang,
|
85 |
+
},
|
86 |
+
),
|
87 |
+
datasets.SplitGenerator(
|
88 |
+
name=datasets.Split.VALIDATION,
|
89 |
+
# These kwargs will be passed to _generate_examples
|
90 |
+
gen_kwargs={
|
91 |
+
"filepath": os.path.join(downloaded_files["validation"], lang + "_val.jsonl"),
|
92 |
+
"lang": lang,
|
93 |
+
},
|
94 |
+
),
|
95 |
+
datasets.SplitGenerator(
|
96 |
+
name=datasets.Split.TEST,
|
97 |
+
# These kwargs will be passed to _generate_examples
|
98 |
+
gen_kwargs={
|
99 |
+
"filepath": os.path.join(downloaded_files["test"], lang + "_test.jsonl"),
|
100 |
+
"lang": lang,
|
101 |
+
},
|
102 |
+
),
|
103 |
+
]
|
104 |
+
|
105 |
+
def _generate_examples(self, filepath, lang):
|
106 |
+
"""Yields examples."""
|
107 |
+
with open(filepath, encoding="utf-8") as f:
|
108 |
+
i = 0
|
109 |
+
for line in f:
|
110 |
+
data = json.loads(line)
|
111 |
+
i += 1
|
112 |
+
yield i, {
|
113 |
+
"text": data["text"],
|
114 |
+
"summary": data["summary"],
|
115 |
+
"topic": data["topic"],
|
116 |
+
"url": data["url"],
|
117 |
+
"title": data["title"],
|
118 |
+
"date": data["date"],
|
119 |
+
}
|