|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@article{scialom2020mlsum, |
|
title={MLSUM: The Multilingual Summarization Corpus}, |
|
author={Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo}, |
|
journal={arXiv preprint arXiv:2004.14900}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
We present MLSUM, the first large-scale MultiLingual SUMmarization dataset. |
|
Obtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish. |
|
Together with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community. |
|
We report cross-lingual comparative analyses based on state-of-the-art systems. |
|
These highlight existing biases which motivate the use of a multi-lingual dataset. |
|
""" |
|
_URL = "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/" |
|
_LANG = ["de", "es", "fr", "ru", "tu"] |
|
|
|
|
|
class Mlsum(datasets.GeneratorBasedBuilder): |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name=lang, |
|
version=datasets.Version("1.0.0"), |
|
description="", |
|
) |
|
for lang in _LANG |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"summary": datasets.Value("string"), |
|
"topic": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"date": datasets.Value("string") |
|
|
|
} |
|
), |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage="", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
|
|
|
|
lang = str(self.config.name) |
|
urls_to_download = { |
|
"test": _URL + lang + "_test.zip", |
|
"train": _URL + lang + "_train.zip", |
|
"validation": _URL + lang + "_val.zip", |
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(downloaded_files["train"], lang + "_train.jsonl"), |
|
"lang": lang, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(downloaded_files["validation"], lang + "_val.jsonl"), |
|
"lang": lang, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(downloaded_files["test"], lang + "_test.jsonl"), |
|
"lang": lang, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, lang): |
|
"""Yields examples.""" |
|
with open(filepath, encoding="utf-8") as f: |
|
i = 0 |
|
for line in f: |
|
data = json.loads(line) |
|
i += 1 |
|
yield i, { |
|
"text": data["text"], |
|
"summary": data["summary"], |
|
"topic": data["topic"], |
|
"url": data["url"], |
|
"title": data["title"], |
|
"date": data["date"], |
|
} |
|
|