Datasets:
rcds
/

ArXiv:
License:
ninabaum commited on
Commit
04e3fb4
1 Parent(s): 0a42884

Upload 10 files

Browse files

# Update Swiss Judgment Prediction (Lower Court Insertion and Occlusion)

This PR contains the all datasets for the SwissJudgmentPrediction task (data folder) and a updated version of the dataset card.
In addition we added test sets to perform the LowerCourtInsertion and Occlusion.

Lower-Court-Insertion-Swiss-Judgment-Prediction and Occlusion-Swiss-Judgment-Prediction
extend Swiss-Judgment-Prediction by adding lower court insertion and sentence splitting with explainability label.
The annotations for the Lower-Court-Insertion-Swiss-Judgment-Prediction and Occlusion-Swiss-Judgment-Prediction were performed by legal experts.
The test sets should be used in combination with the Swiss-Judgment-Prediction training and validation sets.
The dataset was curated by Niklaus et al. (2021) and Nina Baumgartner.
Additional Information
This PR is done in agreement with Joel Niklaus.

Other additional information was added to the dataset card.

README.md CHANGED
@@ -1,338 +1,843 @@
1
  ---
2
  pretty_name: Swiss-Judgment-Prediction
3
  annotations_creators:
4
- - found
 
5
  language_creators:
6
- - found
7
  language:
8
- - de
9
- - fr
10
- - it
11
- - en
12
  license:
13
- - cc-by-sa-4.0
14
  multilinguality:
15
- - multilingual
16
  size_categories:
17
- - 10K<n<100K
18
  source_datasets:
19
- - original
20
  task_categories:
21
- - text-classification
22
  task_ids: []
23
  tags:
24
- - judgement-prediction
 
25
  dataset_info:
26
- - config_name: de
27
- features:
28
- - name: id
29
- dtype: int32
30
- - name: year
31
- dtype: int32
32
- - name: text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  dtype: string
34
- - name: label
35
- dtype:
36
- class_label:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  names:
38
- 0: dismissal
39
- 1: approval
40
- - name: language
 
 
 
 
 
 
 
 
 
 
41
  dtype: string
42
- - name: region
43
- dtype: string
44
- - name: canton
45
- dtype: string
46
- - name: legal area
47
- dtype: string
48
- - name: source_language
49
- dtype: string
50
- splits:
51
- - name: train
52
- num_bytes: 104270719
53
- num_examples: 35458
54
- - name: validation
55
- num_bytes: 12131878
56
- num_examples: 4705
57
- - name: test
58
- num_bytes: 26056177
59
- num_examples: 9725
60
- download_size: 1000382331
61
- dataset_size: 142458774
62
- - config_name: fr
63
- features:
64
- - name: id
65
- dtype: int32
66
- - name: year
67
- dtype: int32
68
- - name: text
69
- dtype: string
70
- - name: label
71
- dtype:
72
- class_label:
 
 
 
 
 
 
 
 
 
 
 
 
73
  names:
74
- 0: dismissal
75
- 1: approval
76
- - name: language
77
- dtype: string
78
- - name: region
79
- dtype: string
80
- - name: canton
81
- dtype: string
82
- - name: legal area
83
- dtype: string
84
- - name: source_language
 
 
85
  dtype: string
86
- splits:
87
- - name: train
88
- num_bytes: 96807957
89
- num_examples: 21179
90
- - name: validation
91
- num_bytes: 13031904
92
- num_examples: 3095
93
- - name: test
94
- num_bytes: 33318359
95
- num_examples: 6820
96
- download_size: 1000382331
97
- dataset_size: 143158220
98
- - config_name: it
99
- features:
100
- - name: id
101
- dtype: int32
102
- - name: year
103
- dtype: int32
104
- - name: text
105
- dtype: string
106
- - name: label
107
- dtype:
108
- class_label:
109
  names:
110
- 0: dismissal
111
- 1: approval
112
- - name: language
113
- dtype: string
114
- - name: region
115
- dtype: string
116
- - name: canton
117
- dtype: string
118
- - name: legal area
119
- dtype: string
120
- - name: source_language
121
- dtype: string
122
- splits:
123
- - name: train
124
- num_bytes: 10773516
125
- num_examples: 3072
126
- - name: validation
127
- num_bytes: 1045551
128
- num_examples: 408
129
- - name: test
130
- num_bytes: 2474761
131
- num_examples: 812
132
- download_size: 1000382331
133
- dataset_size: 14293828
134
- - config_name: mt_de
135
- features:
136
- - name: id
137
- dtype: int32
138
- - name: year
139
- dtype: int32
140
- - name: text
141
- dtype: string
142
- - name: label
143
- dtype:
144
- class_label:
145
  names:
146
- 0: dismissal
147
- 1: approval
148
- - name: language
149
- dtype: string
150
- - name: region
151
- dtype: string
152
- - name: canton
153
- dtype: string
154
- - name: legal area
155
- dtype: string
156
- - name: source_language
157
- dtype: string
158
- splits:
159
- - name: train
160
- num_bytes: 106990696
161
- num_examples: 24251
162
- - name: validation
163
- - name: test
164
- download_size: 1000382331
165
- dataset_size: 106990696
166
- - config_name: mt_fr
167
- features:
168
- - name: id
169
- dtype: int32
170
- - name: year
171
- dtype: int32
172
- - name: text
173
- dtype: string
174
- - name: label
175
- dtype:
176
- class_label:
177
  names:
178
- 0: dismissal
179
- 1: approval
180
- - name: language
181
- dtype: string
182
- - name: region
183
- dtype: string
184
- - name: canton
185
- dtype: string
186
- - name: legal area
187
- dtype: string
188
- - name: source_language
189
- dtype: string
190
- splits:
191
- - name: train
192
- num_bytes: 117932134
193
- num_examples: 38524
194
- - name: validation
195
- - name: test
196
- download_size: 1000382331
197
- dataset_size: 117932134
198
- - config_name: mt_it
199
- features:
200
- - name: id
201
- dtype: int32
202
- - name: year
203
- dtype: int32
204
- - name: text
205
- dtype: string
206
- - name: label
207
- dtype:
208
- class_label:
209
- names:
210
- 0: dismissal
211
- 1: approval
212
- - name: language
213
- dtype: string
214
- - name: region
215
- dtype: string
216
- - name: canton
217
- dtype: string
218
- - name: legal area
219
- dtype: string
220
- - name: source_language
221
- dtype: string
222
- splits:
223
- - name: train
224
- num_bytes: 201749076
225
- num_examples: 56631
226
- - name: validation
227
- - name: test
228
- download_size: 1000382331
229
- dataset_size: 201749076
230
- - config_name: mt_en
231
- features:
232
- - name: id
233
- dtype: int32
234
- - name: year
235
- dtype: int32
236
- - name: text
237
- dtype: string
238
- - name: label
239
- dtype:
240
- class_label:
241
  names:
242
- 0: dismissal
243
- 1: approval
244
- - name: language
245
- dtype: string
246
- - name: region
247
- dtype: string
248
- - name: canton
249
- dtype: string
250
- - name: legal area
251
- dtype: string
252
- - name: source_language
253
- dtype: string
254
- splits:
255
- - name: train
256
- num_bytes: 196352783
257
- num_examples: 59703
258
- - name: validation
259
- - name: test
260
- download_size: 1000382331
261
- dataset_size: 196352783
262
- - config_name: all
263
- features:
264
- - name: id
265
- dtype: int32
266
- - name: year
267
- dtype: int32
268
- - name: text
269
- dtype: string
270
- - name: label
271
- dtype:
272
- class_label:
273
  names:
274
- 0: dismissal
275
- 1: approval
276
- - name: language
277
- dtype: string
278
- - name: region
279
- dtype: string
280
- - name: canton
281
- dtype: string
282
- - name: legal area
283
- dtype: string
284
- - name: source_language
285
- dtype: string
286
- splits:
287
- - name: train
288
- num_bytes: 211852192
289
- num_examples: 59709
290
- - name: validation
291
- num_bytes: 26209333
292
- num_examples: 8208
293
- - name: test
294
- num_bytes: 61849297
295
- num_examples: 17357
296
- download_size: 1000382331
297
- dataset_size: 299910822
298
- - config_name: all+mt
299
- features:
300
- - name: id
301
- dtype: int32
302
- - name: year
303
- dtype: int32
304
- - name: text
305
- dtype: string
306
- - name: label
307
- dtype:
308
- class_label:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
309
  names:
310
- 0: dismissal
311
- 1: approval
312
- - name: language
313
- dtype: string
314
- - name: region
315
- dtype: string
316
- - name: canton
317
- dtype: string
318
- - name: legal area
319
- dtype: string
320
- - name: source_language
321
- dtype: string
322
- splits:
323
- - name: train
324
- num_bytes: 834876881
325
- num_examples: 238818
326
- - name: validation
327
- num_bytes: 26209333
328
- num_examples: 8208
329
- - name: test
330
- num_bytes: 61849297
331
- num_examples: 17357
332
- download_size: 1000382331
333
- dataset_size: 922935511
334
- ---
335
 
 
336
  # Dataset Card for "SwissJudgmentPrediction"
337
 
338
  ## Table of Contents
@@ -373,11 +878,16 @@ dataset_info:
373
 
374
  Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, to promote robustness and fairness studies on the critical area of legal NLP.
375
 
 
376
  ### Supported Tasks and Leaderboards
377
 
378
  SwissJudgmentPrediction can be used for the legal judgment prediction task.
379
 
380
- The dataset is not yet part of an established benchmark.
 
 
 
 
381
 
382
  ### Languages
383
 
@@ -385,7 +895,8 @@ Switzerland has four official languages with 3 languages (German, French and Ita
385
 
386
  ## Dataset Structure
387
 
388
- In version 2 we added machine translated data using [EasyNMT](https://github.com/UKPLab/EasyNMT) for all documents into German, French, Italian and English as an additional training set.
 
389
 
390
  ### Data Instances
391
 
@@ -446,11 +957,11 @@ The following data fields are provided for documents (`train`, `validation`, `te
446
  `language`: (**str**) one of (de, fr, it) \
447
  `region`: (**str**) the region of the lower court \
448
  `canton`: (**str**) the canton of the lower court \
449
- `legal area`: (**str**) the legal area of the case
450
 
451
 
452
 
453
- **Monolingual use of the dataset**
454
 
455
  The following data fields are provided for documents (`train`, `validation`, `test`):
456
 
@@ -461,12 +972,45 @@ The following data fields are provided for documents (`train`, `validation`, `te
461
  `language`: (**str**) one of (de, fr, it) \
462
  `region`: (**str**) the region of the lower court \
463
  `canton`: (**str**) the canton of the lower court \
464
- `legal area`: (**str**) the legal area of the case
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
465
 
466
 
467
  ### Data Splits
468
 
469
- | Language | Subset | Number of Documents (Training/Validation/Test) |
470
  |------------|------------|------------------------------------------------|
471
  | German | **de** | 35'452 / 4'705 / 9'725 |
472
  | French | **fr** | 21'179 / 3'095 / 6'820 |
@@ -476,18 +1020,36 @@ The following data fields are provided for documents (`train`, `validation`, `te
476
  | MT French | **mt_fr** | 38'524 / 0 / 0 |
477
  | MT Italian | **mt_it** | 56'631 / 0 / 0 |
478
  | MT All | **all+mt** | 238'818 / 8'208 / 17'357 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
479
 
480
  ## Dataset Creation
481
 
482
  ### Curation Rationale
483
 
484
- The dataset was curated by Niklaus et al. (2021).
485
 
486
  ### Source Data
487
 
488
  #### Initial Data Collection and Normalization
489
 
490
- The original data are available at the Swiss Federal Supreme Court (https://www.bger.ch) in unprocessed formats (HTML). The documents were downloaded from the Entscheidsuche portal (https://entscheidsuche.ch) in HTML.
491
 
492
  #### Who are the source language producers?
493
 
@@ -497,12 +1059,13 @@ Switzerland has four official languages with 3 languages (German, French and Ita
497
 
498
  #### Annotation process
499
 
500
- The decisions have been annotated with the binarized judgment outcome using parsers and regular expressions.
501
 
502
  #### Who are the annotators?
503
 
504
  Joel Niklaus and Adrian Jörg annotated the binarized judgment outcomes.
505
  Metadata is published by the Swiss Federal Supreme Court (https://www.bger.ch).
 
506
 
507
  ### Personal and Sensitive Information
508
 
@@ -568,6 +1131,17 @@ and the new citation
568
  }
569
  ```
570
 
 
 
 
 
 
 
 
 
 
 
 
571
  ### Contributions
572
 
573
- Thanks to [@joelniklaus](https://github.com/joelniklaus) for adding this dataset.
 
1
  ---
2
  pretty_name: Swiss-Judgment-Prediction
3
  annotations_creators:
4
+ - found
5
+ - expert-generated
6
  language_creators:
7
+ - found
8
  language:
9
+ - de
10
+ - fr
11
+ - it
12
+ - en
13
  license:
14
+ - cc-by-sa-4.0
15
  multilinguality:
16
+ - multilingual
17
  size_categories:
18
+ - 100K<n<1M
19
  source_datasets:
20
+ - original
21
  task_categories:
22
+ - text-classification
23
  task_ids: []
24
  tags:
25
+ - judgement-prediction
26
+ - explainability-judgment-prediction
27
  dataset_info:
28
+ - config_name: de
29
+ features:
30
+ - name: id
31
+ dtype: int32
32
+ - name: year
33
+ dtype: int32
34
+ - name: text
35
+ dtype: string
36
+ - name: label
37
+ dtype:
38
+ class_label:
39
+ names:
40
+ "0": dismissal
41
+ "1": approval
42
+ - name: language
43
+ dtype: string
44
+ - name: region
45
+ dtype: string
46
+ - name: canton
47
+ dtype: string
48
+ - name: legal area
49
+ dtype: string
50
+ - name: source_language
51
+ dtype: string
52
+ splits:
53
+ - name: train
54
+ num_bytes: 104270719
55
+ num_examples: 35458
56
+ - name: validation
57
+ num_bytes: 12131878
58
+ num_examples: 4705
59
+ - name: test
60
+ num_bytes: 26056177
61
+ num_examples: 9725
62
+ download_size: 1000382331
63
+ dataset_size: 142458774
64
+ - config_name: fr
65
+ features:
66
+ - name: id
67
+ dtype: int32
68
+ - name: year
69
+ dtype: int32
70
+ - name: text
71
+ dtype: string
72
+ - name: label
73
+ dtype:
74
+ class_label:
75
+ names:
76
+ "0": dismissal
77
+ "1": approval
78
+ - name: language
79
+ dtype: string
80
+ - name: region
81
+ dtype: string
82
+ - name: canton
83
+ dtype: string
84
+ - name: legal area
85
+ dtype: string
86
+ - name: source_language
87
+ dtype: string
88
+ splits:
89
+ - name: train
90
+ num_bytes: 96807957
91
+ num_examples: 21179
92
+ - name: validation
93
+ num_bytes: 13031904
94
+ num_examples: 3095
95
+ - name: test
96
+ num_bytes: 33318359
97
+ num_examples: 6820
98
+ download_size: 1000382331
99
+ dataset_size: 143158220
100
+ - config_name: it
101
+ features:
102
+ - name: id
103
+ dtype: int32
104
+ - name: year
105
+ dtype: int32
106
+ - name: text
107
+ dtype: string
108
+ - name: label
109
+ dtype:
110
+ class_label:
111
+ names:
112
+ "0": dismissal
113
+ "1": approval
114
+ - name: language
115
+ dtype: string
116
+ - name: region
117
+ dtype: string
118
+ - name: canton
119
+ dtype: string
120
+ - name: legal area
121
+ dtype: string
122
+ - name: source_language
123
+ dtype: string
124
+ splits:
125
+ - name: train
126
+ num_bytes: 10773516
127
+ num_examples: 3072
128
+ - name: validation
129
+ num_bytes: 1045551
130
+ num_examples: 408
131
+ - name: test
132
+ num_bytes: 2474761
133
+ num_examples: 812
134
+ download_size: 1000382331
135
+ dataset_size: 14293828
136
+ - config_name: mt_de
137
+ features:
138
+ - name: id
139
+ dtype: int32
140
+ - name: year
141
+ dtype: int32
142
+ - name: text
143
+ dtype: string
144
+ - name: label
145
+ dtype:
146
+ class_label:
147
+ names:
148
+ "0": dismissal
149
+ "1": approval
150
+ - name: language
151
+ dtype: string
152
+ - name: region
153
+ dtype: string
154
+ - name: canton
155
+ dtype: string
156
+ - name: legal area
157
+ dtype: string
158
+ - name: source_language
159
+ dtype: string
160
+ splits:
161
+ - name: train
162
+ num_bytes: 106990696
163
+ num_examples: 24251
164
+ - name: validation
165
+ - name: test
166
+ download_size: 1000382331
167
+ dataset_size: 106990696
168
+ - config_name: mt_fr
169
+ features:
170
+ - name: id
171
+ dtype: int32
172
+ - name: year
173
+ dtype: int32
174
+ - name: text
175
+ dtype: string
176
+ - name: label
177
+ dtype:
178
+ class_label:
179
+ names:
180
+ "0": dismissal
181
+ "1": approval
182
+ - name: language
183
+ dtype: string
184
+ - name: region
185
+ dtype: string
186
+ - name: canton
187
+ dtype: string
188
+ - name: legal area
189
+ dtype: string
190
+ - name: source_language
191
+ dtype: string
192
+ splits:
193
+ - name: train
194
+ num_bytes: 117932134
195
+ num_examples: 38524
196
+ - name: validation
197
+ - name: test
198
+ download_size: 1000382331
199
+ dataset_size: 117932134
200
+ - config_name: mt_it
201
+ features:
202
+ - name: id
203
+ dtype: int32
204
+ - name: year
205
+ dtype: int32
206
+ - name: text
207
+ dtype: string
208
+ - name: label
209
+ dtype:
210
+ class_label:
211
+ names:
212
+ "0": dismissal
213
+ "1": approval
214
+ - name: language
215
+ dtype: string
216
+ - name: region
217
+ dtype: string
218
+ - name: canton
219
+ dtype: string
220
+ - name: legal area
221
+ dtype: string
222
+ - name: source_language
223
+ dtype: string
224
+ splits:
225
+ - name: train
226
+ num_bytes: 201749076
227
+ num_examples: 56631
228
+ - name: validation
229
+ - name: test
230
+ download_size: 1000382331
231
+ dataset_size: 201749076
232
+ - config_name: mt_en
233
+ features:
234
+ - name: id
235
+ dtype: int32
236
+ - name: year
237
+ dtype: int32
238
+ - name: text
239
+ dtype: string
240
+ - name: label
241
+ dtype:
242
+ class_label:
243
+ names:
244
+ "0": dismissal
245
+ "1": approval
246
+ - name: language
247
+ dtype: string
248
+ - name: region
249
+ dtype: string
250
+ - name: canton
251
+ dtype: string
252
+ - name: legal area
253
+ dtype: string
254
+ - name: source_language
255
+ dtype: string
256
+ splits:
257
+ - name: train
258
+ num_bytes: 196352783
259
+ num_examples: 59703
260
+ - name: validation
261
+ - name: test
262
+ download_size: 1000382331
263
+ dataset_size: 196352783
264
+ - config_name: lci_de
265
+ features:
266
+ - name: id
267
+ dtype: int32
268
+ - name: year
269
+ dtype: int32
270
+ - name: text
271
+ dtype: string
272
+ - name: label
273
+ dtype:
274
+ class_label:
275
+ names:
276
+ "0": dismissal
277
+ "1": approval
278
+ - name: language
279
+ dtype: string
280
+ - name: region
281
+ dtype: string
282
+ - name: canton
283
+ dtype: string
284
+ - name: legal area
285
+ dtype: string
286
+ - name: explainability_label
287
+ dtype: string
288
+ - name: lower_court
289
+ dtype: string
290
+ splits:
291
+ - name: test
292
+ num_examples: 378
293
+ - config_name: lci_fr
294
+ features:
295
+ - name: id
296
+ dtype: int32
297
+ - name: year
298
+ dtype: int32
299
+ - name: text
300
+ dtype: string
301
+ - name: label
302
+ dtype:
303
+ class_label:
304
+ names:
305
+ "0": dismissal
306
+ "1": approval
307
+ - name: language
308
+ dtype: string
309
+ - name: region
310
+ dtype: string
311
+ - name: canton
312
+ dtype: string
313
+ - name: legal area
314
+ dtype: string
315
+ - name: source_language
316
+ dtype: string
317
+ - name: explainability_label
318
+ dtype: string
319
+ - name: lower_court
320
+ dtype: string
321
+ splits:
322
+ - name: test
323
+ num_examples: 414
324
+ - config_name: lci_it
325
+ features:
326
+ - name: id
327
+ dtype: int32
328
+ - name: year
329
+ dtype: int32
330
+ - name: text
331
+ dtype: string
332
+ - name: label
333
+ dtype: null
334
+ class_label:
335
+ names:
336
+ "0": dismissal
337
+ "1": approval
338
+ - name: language
339
+ dtype: string
340
+ - name: region
341
+ dtype: string
342
+ - name: canton
343
+ dtype: string
344
+ - name: legal area
345
+ dtype: string
346
+ - name: explainability_label
347
+ dtype: string
348
+ - name: lower_court
349
  dtype: string
350
+ splits:
351
+ - name: test
352
+ num_examples: 335
353
+ - config_name: occ_de_1
354
+ features:
355
+ - name: id
356
+ dtype: int32
357
+ - name: year
358
+ dtype: int32
359
+ - name: text
360
+ dtype: string
361
+ - name: label
362
+ dtype: null
363
+ class_label:
364
+ names:
365
+ "0": dismissal
366
+ "1": approval
367
+ - name: language
368
+ dtype: string
369
+ - name: region
370
+ dtype: string
371
+ - name: canton
372
+ dtype: string
373
+ - name: legal area
374
+ dtype: string
375
+ - name: explainability_label
376
+ dtype: string
377
+ - name: occluded_text
378
+ dtype: string
379
+ splits:
380
+ - name: test
381
+ num_examples: 427
382
+ - config_name: occ_fr_1
383
+ features:
384
+ - name: id
385
+ dtype: int32
386
+ - name: year
387
+ dtype: int32
388
+ - name: text
389
+ dtype: string
390
+ - name: label
391
+ dtype: null
392
+ class_label: null
393
  names:
394
+ "0": dismissal
395
+ "1": approval
396
+ - name: language
397
+ dtype: string
398
+ - name: region
399
+ dtype: string
400
+ - name: canton
401
+ dtype: string
402
+ - name: legal area
403
+ dtype: string
404
+ - name: explainability_label
405
+ dtype: string
406
+ - name: occluded_text
407
  dtype: string
408
+ splits:
409
+ - name: test
410
+ num_examples: 307
411
+ - config_name: occ_it_1
412
+ features:
413
+ - name: id
414
+ dtype: int32
415
+ - name: year
416
+ dtype: int32
417
+ - name: text
418
+ dtype: string
419
+ - name: label
420
+ dtype: null
421
+ class_label:
422
+ names:
423
+ "0": dismissal
424
+ "1": approval
425
+ - name: language
426
+ dtype: string
427
+ - name: region
428
+ dtype: string
429
+ - name: canton
430
+ dtype: string
431
+ - name: legal area
432
+ dtype: string
433
+ - name: explainability_label
434
+ dtype: string
435
+ - name: occluded_text
436
+ dtype: string
437
+ splits:
438
+ - name: test
439
+ num_examples: 299
440
+ - config_name: occ_de_2
441
+ features:
442
+ - name: id
443
+ dtype: int32
444
+ - name: year
445
+ dtype: int32
446
+ - name: text
447
+ dtype: string
448
+ - name: label
449
+ dtype: null
450
+ class_label: null
451
  names:
452
+ "0": dismissal
453
+ "1": approval
454
+ - name: language
455
+ dtype: string
456
+ - name: region
457
+ dtype: string
458
+ - name: canton
459
+ dtype: string
460
+ - name: legal area
461
+ dtype: string
462
+ - name: explainability_label
463
+ dtype: string
464
+ - name: occluded_text
465
  dtype: string
466
+ splits:
467
+ - name: test
468
+ num_examples: 1366
469
+ - config_name: occ_fr_2
470
+ features:
471
+ - name: id
472
+ dtype: int32
473
+ - name: year
474
+ dtype: int32
475
+ - name: text
476
+ dtype: string
477
+ - name: label
478
+ dtype: null
479
+ class_label: null
 
 
 
 
 
 
 
 
 
480
  names:
481
+ "0": dismissal
482
+ "1": approval
483
+ - name: language
484
+ dtype: string
485
+ - name: region
486
+ dtype: string
487
+ - name: canton
488
+ dtype: string
489
+ - name: legal area
490
+ dtype: string
491
+ - name: explainability_label
492
+ dtype: string
493
+ - name: occluded_text
494
+ dtype: string
495
+ splits: null
496
+ - name: test
497
+ num_examples: 854
498
+ - config_name: occ_it_2
499
+ features:
500
+ - name: id
501
+ dtype: int32
502
+ - name: year
503
+ dtype: int32
504
+ - name: text
505
+ dtype: string
506
+ - name: label
507
+ dtype: null
508
+ class_label: null
 
 
 
 
 
 
 
509
  names:
510
+ "0": dismissal
511
+ "1": approval
512
+ - name: language
513
+ dtype: string
514
+ - name: region
515
+ dtype: string
516
+ - name: canton
517
+ dtype: string
518
+ - name: legal area
519
+ dtype: string
520
+ - name: explainability_label
521
+ dtype: string
522
+ - name: occluded_text
523
+ dtype: string
524
+ splits:
525
+ - name: test
526
+ num_examples: 919
527
+ - config_name: occ_de_3
528
+ features:
529
+ - name: id
530
+ dtype: int32
531
+ - name: year
532
+ dtype: int32
533
+ - name: text
534
+ dtype: string
535
+ - name: label
536
+ dtype: null
537
+ class_label: null
 
 
 
538
  names:
539
+ "0": dismissal
540
+ "1": approval
541
+ - name: language
542
+ dtype: string
543
+ - name: region
544
+ dtype: string
545
+ - name: canton
546
+ dtype: string
547
+ - name: legal area
548
+ dtype: string
549
+ - name: explainability_label
550
+ dtype: string
551
+ - name: occluded_text
552
+ dtype: string
553
+ splits:
554
+ - name: test
555
+ num_examples: 3567
556
+ - config_name: occ_fr_3
557
+ features:
558
+ - name: id
559
+ dtype: int32
560
+ - name: year
561
+ dtype: int32
562
+ - name: text
563
+ dtype: string
564
+ - name: label
565
+ dtype: null
566
+ class_label: null
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
567
  names:
568
+ "0": dismissal
569
+ "1": approval
570
+ - name: language
571
+ dtype: string
572
+ - name: region
573
+ dtype: string
574
+ - name: canton
575
+ dtype: string
576
+ - name: legal area
577
+ dtype: string
578
+ - name: explainability_label
579
+ dtype: string
580
+ - name: occluded_text
581
+ dtype: string
582
+ splits:
583
+ - name: test
584
+ num_examples: 1926
585
+ - config_name: occ_it_3
586
+ features:
587
+ - name: id
588
+ dtype: int32
589
+ - name: year
590
+ dtype: int32
591
+ - name: text
592
+ dtype: string
593
+ - name: label
594
+ dtype: null
595
+ class_label: null
 
 
 
596
  names:
597
+ "0": dismissal
598
+ "1": approval
599
+ - name: language
600
+ dtype: string
601
+ - name: region
602
+ dtype: string
603
+ - name: canton
604
+ dtype: string
605
+ - name: legal area
606
+ dtype: string
607
+ - name: explainability_label
608
+ dtype: string
609
+ - name: occluded_text
610
+ dtype: string
611
+ splits:
612
+ - name: test
613
+ num_examples: 2493
614
+ - config_name: occ_de_4
615
+ features:
616
+ - name: id
617
+ dtype: int32
618
+ - name: year
619
+ dtype: int32
620
+ - name: text
621
+ dtype: string
622
+ - name: label
623
+ dtype:
624
+ class_label: null
625
+ names:
626
+ "0": dismissal
627
+ "1": approval
628
+ - name: language
629
+ dtype: string
630
+ - name: region
631
+ dtype: string
632
+ - name: canton
633
+ dtype: string
634
+ - name: legal area
635
+ dtype: string
636
+ - name: explainability_label
637
+ dtype: string
638
+ - name: occluded_text
639
+ dtype: string
640
+ splits:
641
+ - name: test
642
+ num_examples: 7235
643
+ - config_name: occ_fr_4
644
+ features:
645
+ - name: id
646
+ dtype: int32
647
+ - name: year
648
+ dtype: int32
649
+ - name: text
650
+ dtype: string
651
+ - name: label
652
+ dtype: null
653
+ class_label:
654
+ names:
655
+ "0": dismissal
656
+ "1": approval
657
+ - name: language
658
+ dtype: string
659
+ - name: region
660
+ dtype: string
661
+ - name: canton
662
+ dtype: string
663
+ - name: legal area
664
+ dtype: string
665
+ - name: explainability_label
666
+ dtype: string
667
+ - name: occluded_text
668
+ dtype: string
669
+ splits:
670
+ - name: test
671
+ num_examples: 3279
672
+ - config_name: occ_it_4
673
+ features:
674
+ - name: id
675
+ dtype: int32
676
+ - name: year
677
+ dtype: int32
678
+ - name: text
679
+ dtype: string
680
+ - name: label
681
+ dtype: null
682
+ class_label:
683
+ names:
684
+ "0": dismissal
685
+ "1": approval
686
+ - name: language
687
+ dtype: string
688
+ - name: region
689
+ dtype: string
690
+ - name: canton
691
+ dtype: string
692
+ - name: legal area
693
+ dtype: string
694
+ - name: explainability_label
695
+ dtype: string
696
+ - name: occluded_text
697
+ dtype: string
698
+ splits:
699
+ - name: test
700
+ num_examples: 5733
701
+ - config_name: all
702
+ features:
703
+ - name: id
704
+ dtype: int32
705
+ - name: year
706
+ dtype: int32
707
+ - name: text
708
+ dtype: string
709
+ - name: label
710
+ dtype:
711
+ class_label:
712
+ names:
713
+ "0": dismissal
714
+ "1": approval
715
+ - name: language
716
+ dtype: string
717
+ - name: region
718
+ dtype: string
719
+ - name: canton
720
+ dtype: string
721
+ - name: legal area
722
+ dtype: string
723
+ - name: source_language
724
+ dtype: string
725
+ splits:
726
+ - name: train
727
+ num_bytes: 211852192
728
+ num_examples: 59709
729
+ - name: validation
730
+ num_bytes: 26209333
731
+ num_examples: 8208
732
+ - name: test
733
+ num_bytes: 61849297
734
+ num_examples: 17357
735
+ download_size: 1000382331
736
+ dataset_size: 299910822
737
+ - config_name: all+mt
738
+ features:
739
+ - name: id
740
+ dtype: int32
741
+ - name: year
742
+ dtype: int32
743
+ - name: text
744
+ dtype: string
745
+ - name: label
746
+ dtype:
747
+ class_label:
748
+ names:
749
+ "0": dismissal
750
+ "1": approval
751
+ - name: language
752
+ dtype: string
753
+ - name: region
754
+ dtype: string
755
+ - name: canton
756
+ dtype: string
757
+ - name: legal area
758
+ dtype: string
759
+ - name: source_language
760
+ dtype: string
761
+ splits:
762
+ - name: train
763
+ num_bytes: 834876881
764
+ num_examples: 238818
765
+ - name: validation
766
+ num_bytes: 26209333
767
+ num_examples: 8208
768
+ - name: test
769
+ num_bytes: 61849297
770
+ num_examples: 17357
771
+ download_size: 1000382331
772
+ dataset_size: 922935511
773
+ - config_name: all+lci
774
+ features:
775
+ - name: id
776
+ dtype: int32
777
+ - name: year
778
+ dtype: int32
779
+ - name: text
780
+ dtype: string
781
+ - name: label
782
+ dtype:
783
+ class_label:
784
+ names:
785
+ "0": dismissal
786
+ "1": approval
787
+ - name: language
788
+ dtype: string
789
+ - name: region
790
+ dtype: string
791
+ - name: canton
792
+ dtype: string
793
+ - name: legal area
794
+ dtype: string
795
+ - name: explainability_label
796
+ dtype: string
797
+ - name: lower_court
798
+ dtype: string
799
+ splits:
800
+ - name: train
801
+ num_examples: 59709
802
+ - name: validation
803
+ num_examples: 8208
804
+ - name: test
805
+ num_examples: 1127
806
+ - config_name: all+occ
807
+ features:
808
+ - name: id
809
+ dtype: int32
810
+ - name: year
811
+ dtype: int32
812
+ - name: text
813
+ dtype: string
814
+ - name: label
815
+ dtype: null
816
+ class_label: null
817
  names:
818
+ "0": dismissal
819
+ "1": approval
820
+ - name: language
821
+ dtype: string
822
+ - name: region
823
+ dtype: string
824
+ - name: canton
825
+ dtype: string
826
+ - name: legal area
827
+ dtype: string
828
+ - name: explainability_label
829
+ dtype: string
830
+ - name: occluded_text
831
+ dtype: string
832
+ splits:
833
+ - name: train
834
+ num_examples: 59709
835
+ - name: validation
836
+ num_examples: 8208
837
+ - name: test
838
+ num_examples: 28375
 
 
 
 
839
 
840
+ ---
841
  # Dataset Card for "SwissJudgmentPrediction"
842
 
843
  ## Table of Contents
 
878
 
879
  Swiss-Judgment-Prediction is a multilingual, diachronic dataset of 85K Swiss Federal Supreme Court (FSCS) cases annotated with the respective binarized judgment outcome (approval/dismissal), posing a challenging text classification task. We also provide additional metadata, i.e., the publication year, the legal area and the canton of origin per case, to promote robustness and fairness studies on the critical area of legal NLP.
880
 
881
+
882
  ### Supported Tasks and Leaderboards
883
 
884
  SwissJudgmentPrediction can be used for the legal judgment prediction task.
885
 
886
+ OcclusionSwissJudgmentPrediction can be used for performing the occlusion in the legal judgment prediction task.
887
+
888
+ LowerCourtInsertionSwissJudgmentPrediction can be used for performing the LowerCourtInsertion in the legal judgment prediction task.
889
+
890
+ The dataset is part of the [LEXTREME benchmark](https://huggingface.co/datasets/joelito/lextreme)
891
 
892
  ### Languages
893
 
 
895
 
896
  ## Dataset Structure
897
 
898
+ In version 2 we added machine translated data using [EasyNMT](https://github.com/UKPLab/EasyNMT) for all documents into German, French, Italian and English as an additional training set. With Occlusion-Swiss-Judgment-Prediction we extended part of the test set by adding sentence splitting with explainability labels. The Lower-Court-Insertion-Swiss-Judgment-Prediction extends part of the test set with lower court insertion. Note that both the test set for the Lower Court Insertion and Occlusion should be used in combination with the
899
+ Swiss-Judgment-Prediction training and validation sets.
900
 
901
  ### Data Instances
902
 
 
957
  `language`: (**str**) one of (de, fr, it) \
958
  `region`: (**str**) the region of the lower court \
959
  `canton`: (**str**) the canton of the lower court \
960
+ `legal area`: (**str**) the legal area of the case
961
 
962
 
963
 
964
+ **Monolingual use of the dataset SwissJudgmentPrediction**
965
 
966
  The following data fields are provided for documents (`train`, `validation`, `test`):
967
 
 
972
  `language`: (**str**) one of (de, fr, it) \
973
  `region`: (**str**) the region of the lower court \
974
  `canton`: (**str**) the canton of the lower court \
975
+ `legal area`: (**str**) the legal area of the case
976
+
977
+ **Monolingual use of the dataset OcclusionSwissJudgmentPrediction**
978
+
979
+
980
+ The following data fields are provided for documents (occ_test):
981
+
982
+ id: (**int**) a unique identifier of the for the document
983
+ year: (**int**) the publication year
984
+ label: (**str**) the judgment outcome: dismissal or approval
985
+ language: (**str**) one of (de, fr, it)
986
+ region: (**str**) the region of the lower court
987
+ canton: (**str**) the canton of the lower court
988
+ legal area: (**str**) the legal area of the case
989
+ explainability_label (**str**): the explainability label assigned to the occluded text: Supports judgment, Opposes judgment, Neutral, Baseline
990
+ occluded_text (**str**): the occluded text
991
+ text: (**str**) the facts of the case w/o the occluded text except for cases w/ explainability label "Baseline" (contain entire facts)
992
+
993
+ Note that Baseline cases are only contained in version 1 of the occlusion test set, since they do not change from experiment to experiment.
994
+
995
+ **Monolingual use of the dataset LowerCourtInsertionSwissJudgmentPrediction**
996
+
997
+ The following data fields are provided for documents (lci_test):
998
+
999
+ id: (**int**) a unique identifier of the for the document
1000
+ year: (**int**) the publication year
1001
+ label: (**str**) the judgment outcome: dismissal or approval
1002
+ language: (**str**) one of (de, fr, it)
1003
+ region: (**str**) the region of the lower court
1004
+ canton: (**str**) the canton of the lower court
1005
+ legal area: (**str**) the legal area of the case
1006
+ explainability_label: (**str**) the explainability label assigned to the occluded text: Lower court, Baseline
1007
+ text: (**str**) the facts of the case w/o the occluded text except for cases w/ explainability label "Baseline" (contain entire facts)
1008
+ lower_court: (**str**) the inserted lower_court (for Baseline there is no insertion)
1009
 
1010
 
1011
  ### Data Splits
1012
 
1013
+ | Language | Subset | Number of Documents (Training/Validation/Test) |
1014
  |------------|------------|------------------------------------------------|
1015
  | German | **de** | 35'452 / 4'705 / 9'725 |
1016
  | French | **fr** | 21'179 / 3'095 / 6'820 |
 
1020
  | MT French | **mt_fr** | 38'524 / 0 / 0 |
1021
  | MT Italian | **mt_it** | 56'631 / 0 / 0 |
1022
  | MT All | **all+mt** | 238'818 / 8'208 / 17'357 |
1023
+ LCI German| **lci_de** | 35'452 / 4'705 / 378 |
1024
+ LCI French | **lci_fr** | 21'179 / 3'095 / 414 |
1025
+ LCI Italian | **lci_it** | 3'072 / 408 / 335 |
1026
+ LCI All | lci+all | 59'709 / 8'208 / 1127 |
1027
+ OCC German| **occ_de_1** | 35'452 / 4'705 / 427 |
1028
+ OCC German| **occ_de_2** | 35'452 / 4'705 / 1366 |
1029
+ OCC German| **occ_de_3**| 35'452 / 4'705 / 3567 |
1030
+ OCC German| **occ_4** | 35'452 / 4'705 / 7235 |
1031
+ OCC French | **occ_1** | 21'179 / 3'095 / 307 |
1032
+ OCC French | **occ_2** | 21'179 / 3'095 / 854 |
1033
+ OCC French | **occ_3** | 21'179 / 3'095 / 1926 |
1034
+ OCC French | **occ_4** | 21'179 / 3'095 / 3279 |
1035
+ OCC Italian | **occ_1** | 3'072 / 408 / 299 |
1036
+ OCC Italian | **occ_2** | 3'072 / 408 / 919 |
1037
+ OCC Italian | **occ_3** | 3'072 / 408 / 2493 |
1038
+ OCC Italian | **occ_4** | 3'072 / 408 / 5733 |
1039
+ OCC All | **occ+all** | 59'709 / 8'208 / 28375 |
1040
+
1041
 
1042
  ## Dataset Creation
1043
 
1044
  ### Curation Rationale
1045
 
1046
+ The dataset was curated by Niklaus et al. (2021) and Nina Baumgartner.
1047
 
1048
  ### Source Data
1049
 
1050
  #### Initial Data Collection and Normalization
1051
 
1052
+ The original data are available at the Swiss Federal Supreme Court (https://www.bger.ch) in unprocessed formats (HTML). The documents were downloaded from the Entscheidsuche portal (https://entscheidsuche.ch) in HTML.
1053
 
1054
  #### Who are the source language producers?
1055
 
 
1059
 
1060
  #### Annotation process
1061
 
1062
+ The decisions have been annotated with the binarized judgment outcome using parsers and regular expressions. In addition a subset of the test set (27 cases in German, 24 in French and 23 in Italian spanning over the years 2017 an 20200) was annotated by legal experts, splitting sentences/group of sentences and annotated with one of the following explainability label: Supports judgment, Opposes Judgment, Neutral and Lower Court. For the occlusion the test sets have each sentence/group of sentence once occluded, enabling an analysis of the changes in the model's performance. The lower court annotations were used the insert each lower court into each case once (instead of the original lower court). Allowing an analysis of the changes in the models performance for each inserted lower court, giving insight into a possible bias among them. The legal expert annotation were conducted from April 2020 to August 2020.
1063
 
1064
  #### Who are the annotators?
1065
 
1066
  Joel Niklaus and Adrian Jörg annotated the binarized judgment outcomes.
1067
  Metadata is published by the Swiss Federal Supreme Court (https://www.bger.ch).
1068
+ The group of legal experts consists of Thomas Lüthi (lawyer), Lynn Grau (law student at master's level) and Angela Stefanelli (law student at master's level).
1069
 
1070
  ### Personal and Sensitive Information
1071
 
 
1131
  }
1132
  ```
1133
 
1134
+ ```
1135
+ @misc{baumgartner_nina_occlusion_2019,
1136
+ title = {From Occlusion to Transparancy – An Occlusion-Based Explainability Approach for Legal Judgment Prediction in Switzerland},
1137
+ shorttitle = {From Occlusion to Transparancy},
1138
+ abstract = {Natural Language Processing ({NLP}) models have been used for more and more complex tasks such as Legal Judgment Prediction ({LJP}). A {LJP} model predicts the outcome of a legal case by utilizing its facts. This increasing deployment of Artificial Intelligence ({AI}) in high-stakes domains such as law and the involvement of sensitive data has increased the need for understanding such systems. We propose a multilingual occlusion-based explainability approach for {LJP} in Switzerland and conduct a study on the bias using Lower Court Insertion ({LCI}). We evaluate our results using different explainability metrics introduced in this thesis and by comparing them to high-quality Legal Expert Annotations using Inter Annotator Agreement. Our findings show that the model has a varying understanding of the semantic meaning and context of the facts section, and struggles to distinguish between legally relevant and irrelevant sentences. We also found that the insertion of a different lower court can have an effect on the prediction, but observed no distinct effects based on legal areas, cantons, or regions. However, we did identify a language disparity with Italian performing worse than the other languages due to representation inequality in the training data, which could lead to potential biases in the prediction in multilingual regions of Switzerland. Our results highlight the challenges and limitations of using {NLP} in the judicial field and the importance of addressing concerns about fairness, transparency, and potential bias in the development and use of {NLP} systems. The use of explainable artificial intelligence ({XAI}) techniques, such as occlusion and {LCI}, can help provide insight into the decision-making processes of {NLP} systems and identify areas for improvement. Finally, we identify areas for future research and development in this field in order to address the remaining limitations and challenges.},
1139
+ author = {{Baumgartner, Nina}},
1140
+ year = {2022},
1141
+ langid = {english}
1142
+ }
1143
+ ```
1144
+
1145
  ### Contributions
1146
 
1147
+ Thanks to [@joelniklaus](https://github.com/joelniklaus) and [@ninabaumgartner](https://github.com/ninabaumgartner) for adding this dataset.
test.jsonl.xz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd1b4b9cc9c212297079f2ee93b5d42162ede5500057f4dc160920076bfbb974
3
+ size 9202996
test_lci.jsonl.xz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c10b149538b79221bf3dc50f0e2d0360975c49d68ad4fc080a459353adc52b1a
3
+ size 64440
test_occ_1.jsonl.xz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edddcbef268ee92257794b1725c88033d3c6b1dcbea309e773b3d2086e8b2a6d
3
+ size 23964
test_occ_2.jsonl.xz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2257091ae41de0301beb4a34329c0e78afd0a81fd523a51b0b98f7b6094dbcd1
3
+ size 110416
test_occ_3.jsonl.xz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2dbaf759c202f16d1c6746d01a22fafebef37ca1724acb5ed23dd3e1b499bd6e
3
+ size 196132
test_occ_4.jsonl.xz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffbcb52357c6e418dbc9c977af20174f3f9eb90435e5c4bee0c5c03c191427b5
3
+ size 336580
train.jsonl.xz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f88f236f1fbc6c2362f59a3dd24361073142a4667915043647c69cd397e553cc
3
+ size 29606316
train_mt.jsonl.xz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57de3f80bf30ff908fa8ada76daef75edd5cb3317df71d64de278a4f021038a8
3
+ size 87355744
val.jsonl.xz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0a339d1890c18251b90e87aebef9054ba48348dd9602673599fa2e76798d264
3
+ size 4149924