Datasets:
Tasks:
Text Classification
Formats:
json
Sub-tasks:
entity-linking-classification
Size:
100K - 1M
ArXiv:
DOI:
License:
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Dataset for the doc2doc information retrieval task.""" | |
import json | |
import lzma | |
import os | |
import datasets | |
try: | |
import lzma as xz | |
except ImportError: | |
import pylzma as xz | |
# TODO: Add BibTeX citation | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@InProceedings{huggingface:dataset, | |
title = {A great new dataset}, | |
author={huggingface, Inc. | |
}, | |
year={2020} | |
} | |
""" | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
This dataset contains Swiss federal court decisions for the legal criticality prediction task | |
""" | |
_URLS = { | |
"full": "https://huggingface.co/datasets/rcds/doc2doc/resolve/main/data", | |
} | |
class doc2doc(datasets.GeneratorBasedBuilder): | |
"""This dataset contains court decision for doc2doc information retrieval task.""" | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="full", description="This part covers the whole dataset"), | |
] | |
DEFAULT_CONFIG_NAME = "full" # It's not mandatory to have a default configuration. Just use one if it make sense. | |
def _info(self): | |
if self.config.name == "full" or self.config.name == "origin": # This is the name of the configuration selected in BUILDER_CONFIGS above | |
features = datasets.Features( | |
{ | |
"decision_id": datasets.Value("string"), | |
"language": datasets.Value("string"), | |
"year": datasets.Value("int32"), | |
"chamber": datasets.Value("string"), | |
"region": datasets.Value("string"), | |
"origin_chamber": datasets.Value("string"), | |
"origin_court": datasets.Value("string"), | |
"origin_canton": datasets.Value("string"), | |
"law_area": datasets.Value("string"), | |
"law_sub_area": datasets.Value("string"), | |
"cited_rulings": datasets.Value("string"), | |
"laws": datasets.Value("string"), | |
"facts": datasets.Value("string"), | |
"considerations": datasets.Value("string"), | |
"rulings": datasets.Value("string"), | |
# These are the features of your dataset like images, labels ... | |
} | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and | |
# specify them. They'll be used if as_supervised=True in builder.as_dataset. | |
# supervised_keys=("sentence", "label"), | |
# Homepage of the dataset for documentation | |
# homepage=_HOMEPAGE, | |
# License for the dataset if available | |
# license=_LICENSE, | |
# Citation for the dataset | |
# citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
urls = _URLS[self.config.name] | |
filepath_train = dl_manager.download(os.path.join(urls, "train.jsonl.xz")) | |
filepath_validation = dl_manager.download(os.path.join(urls, "validation.jsonl.xz")) | |
filepath_test = dl_manager.download(os.path.join(urls, "test.jsonl.xz")) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": filepath_train, | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": filepath_validation, | |
"split": "validation", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": filepath_test, | |
"split": "test" | |
}, | |
) | |
] | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, filepath, split): | |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. | |
line_counter = 0 | |
try: | |
with xz.open(open(filepath, "rb"), "rt", encoding="utf-8") as f: | |
for id, line in enumerate(f): | |
line_counter += 1 | |
if line: | |
data = json.loads(line) | |
if self.config.name == "full": | |
yield id, { | |
"decision_id": data["decision_id"], | |
"language": data["language"], | |
"year": data["year"], | |
"chamber": data["chamber"], | |
"region": data["region"], | |
"origin_chamber": data["origin_chamber"], | |
"origin_court": data["origin_court"], | |
"origin_canton": data["origin_canton"], | |
"law_area": data["law_area"], | |
"law_sub_area": data["law_sub_area"], | |
"cited_rulings": data["cited_rulings"], | |
"laws": data["laws"], | |
"facts": data["facts"], | |
"considerations": data["considerations"], | |
"rulings": data["rulings"] | |
} | |
except lzma.LZMAError as e: | |
print(split, e) | |
if line_counter == 0: | |
raise e | |