ai_hub_summarization / ai_hub_summarization.py
Heerak's picture
Update ai_hub_summarization.py
1084464
raw
history blame
2.56 kB
import csv
import datasets
_CITATION = """"""
_DESCRIPTION = """"""
_LICENSE = "CC-BY-SA-4.0"
# _URL = "https://github.com/boostcampaitech2/data-annotation-nlp-level3-nlp-14"
_DATA_URLS = {
"train": "https://huggingface.co/datasets/raki-1203/ai_hub_summarization/resolve/main/train.tsv",
"dev": "https://huggingface.co/datasets/raki-1203/ai_hub_summarization/resolve/main/valid.tsv",
}
_VERSION = "0.0.0"
class AiHubSummarizationConfig(datasets.BuilderConfig):
def __init__(self, data_url, **kwargs):
super().__init__(version=datasets.Version(_VERSION), **kwargs)
self.data_url = data_url
class AiHubSummarization(datasets.GeneratorBasedBuilder):
DEFAULT_CONFIG_NAME = "ai_hub_summarization"
BUILDER_CONFIGS = [
AiHubSummarizationConfig(
name="ai_hub_summarization",
data_url=_DATA_URLS,
description=_DESCRIPTION,
)
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"passage": datasets.Value("string"),
"abstract_summary": datasets.Value("string"),
}
),
license=_LICENSE,
citation=_CITATION,
supervised_keys=None,
)
def _split_generators(self, dl_manager):
""" Returns SplitGenerators. """
data_file = dl_manager.download_and_extract(self.config.data_url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": data_file["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"data_file": data_file["dev"],
"split": "valid",
},
),
]
def _generate_examples(self, data_file: str, split: str):
""" Yields examples. """
with open(data_file, newline='', encoding="UTF-8") as csvfile:
reader = csv.reader(csvfile, delimiter='\t')
feature_names = next(reader)
idx = 0
for row in reader:
if idx == 0:
continue
features = {
"passage": row[0],
"abstract_summary": row[1],
}
yield idx, features
idx += 1