Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
system HF staff commited on
Commit
90946e1
1 Parent(s): 5f15256

Update files from the datasets library (from 1.8.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.8.0

Files changed (3) hide show
  1. README.md +22 -3
  2. dataset_infos.json +1 -1
  3. squad_v2.py +6 -0
README.md CHANGED
@@ -1,4 +1,23 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  paperswithcode_id: squad
3
  ---
4
 
@@ -95,9 +114,9 @@ The data fields are the same among all splits.
95
 
96
  ### Data Splits
97
 
98
- | name |train |validation|
99
- |--------|-----:|---------:|
100
- |squad_v2|130319| 11873|
101
 
102
  ## Dataset Creation
103
 
 
1
  ---
2
+ annotations_creators:
3
+ - crowdsourced
4
+ language_creators:
5
+ - crowdsourced
6
+ languages:
7
+ - en
8
+ licenses:
9
+ - cc-by-sa-4-0
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 100K<n<1M
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - question-answering
18
+ task_ids:
19
+ - open-domain-qa
20
+ - extractive-qa
21
  paperswithcode_id: squad
22
  ---
23
 
 
114
 
115
  ### Data Splits
116
 
117
+ | name | train | validation |
118
+ | -------- | -----: | ---------: |
119
+ | squad_v2 | 130319 | 11873 |
120
 
121
  ## Dataset Creation
122
 
dataset_infos.json CHANGED
@@ -1 +1 @@
1
- {"squad_v2": {"description": "combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers\n to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but \n also determine when no answer is supported by the paragraph and abstain from answering.\n", "citation": "@article{2016arXiv160605250R,\n author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},\n Konstantin and {Liang}, Percy},\n title = \"{SQuAD: 100,000+ Questions for Machine Comprehension of Text}\",\n journal = {arXiv e-prints},\n year = 2016,\n eid = {arXiv:1606.05250},\n pages = {arXiv:1606.05250},\narchivePrefix = {arXiv},\n eprint = {1606.05250},\n}\n", "homepage": "https://rajpurkar.github.io/SQuAD-explorer/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "supervised_keys": null, "builder_name": "squad_v2", "config_name": "squad_v2", "version": {"version_str": "2.0.0", "description": null, "datasets_version_to_prepare": null, "major": 2, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 116851642, "num_examples": 130319, "dataset_name": "squad_v2"}, "validation": {"name": "validation", "num_bytes": 11677230, "num_examples": 11873, "dataset_name": "squad_v2"}}, "download_checksums": {"https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json": {"num_bytes": 42123633, "checksum": "68dcfbb971bd3e96d5b46c7177b16c1a4e7d4bdef19fb204502738552dede002"}, "https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json": {"num_bytes": 4370528, "checksum": "80a5225e94905956a6446d296ca1093975c4d3b3260f1d6c8f68bc2ab77182d8"}}, "download_size": 46494161, "dataset_size": 128528872, "size_in_bytes": 175023033}}
 
1
+ {"squad_v2": {"description": "combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers\n to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but\n also determine when no answer is supported by the paragraph and abstain from answering.\n", "citation": "@article{2016arXiv160605250R,\n author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},\n Konstantin and {Liang}, Percy},\n title = \"{SQuAD: 100,000+ Questions for Machine Comprehension of Text}\",\n journal = {arXiv e-prints},\n year = 2016,\n eid = {arXiv:1606.05250},\n pages = {arXiv:1606.05250},\narchivePrefix = {arXiv},\n eprint = {1606.05250},\n}\n", "homepage": "https://rajpurkar.github.io/SQuAD-explorer/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "question-answering-extractive", "question_column": "question", "context_column": "context", "answers_column": "answers"}], "builder_name": "squad_v2", "config_name": "squad_v2", "version": {"version_str": "2.0.0", "description": null, "major": 2, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 116699950, "num_examples": 130319, "dataset_name": "squad_v2"}, "validation": {"name": "validation", "num_bytes": 11660302, "num_examples": 11873, "dataset_name": "squad_v2"}}, "download_checksums": {"https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json": {"num_bytes": 42123633, "checksum": "68dcfbb971bd3e96d5b46c7177b16c1a4e7d4bdef19fb204502738552dede002"}, "https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json": {"num_bytes": 4370528, "checksum": "80a5225e94905956a6446d296ca1093975c4d3b3260f1d6c8f68bc2ab77182d8"}}, "download_size": 46494161, "post_processing_size": null, "dataset_size": 128360252, "size_in_bytes": 174854413}}
squad_v2.py CHANGED
@@ -4,6 +4,7 @@
4
  import json
5
 
6
  import datasets
 
7
 
8
 
9
  # TODO(squad_v2): BibTeX citation
@@ -82,6 +83,11 @@ class SquadV2(datasets.GeneratorBasedBuilder):
82
  # Homepage of the dataset for documentation
83
  homepage="https://rajpurkar.github.io/SQuAD-explorer/",
84
  citation=_CITATION,
 
 
 
 
 
85
  )
86
 
87
  def _split_generators(self, dl_manager):
 
4
  import json
5
 
6
  import datasets
7
+ from datasets.tasks import QuestionAnsweringExtractive
8
 
9
 
10
  # TODO(squad_v2): BibTeX citation
 
83
  # Homepage of the dataset for documentation
84
  homepage="https://rajpurkar.github.io/SQuAD-explorer/",
85
  citation=_CITATION,
86
+ task_templates=[
87
+ QuestionAnsweringExtractive(
88
+ question_column="question", context_column="context", answers_column="answers"
89
+ )
90
+ ],
91
  )
92
 
93
  def _split_generators(self, dl_manager):