Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
squad_v2 / dataset_infos.json
albertvillanova's picture
Convert dataset to Parquet
167c717
raw
history blame
2.68 kB
{
"squad_v2": {
"description": "combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers\n to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but\n also determine when no answer is supported by the paragraph and abstain from answering.\n",
"citation": "@article{2016arXiv160605250R,\n author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},\n Konstantin and {Liang}, Percy},\n title = \"{SQuAD: 100,000+ Questions for Machine Comprehension of Text}\",\n journal = {arXiv e-prints},\n year = 2016,\n eid = {arXiv:1606.05250},\n pages = {arXiv:1606.05250},\narchivePrefix = {arXiv},\n eprint = {1606.05250},\n}\n",
"homepage": "https://rajpurkar.github.io/SQuAD-explorer/",
"license": "",
"features": {
"id": {
"dtype": "string",
"_type": "Value"
},
"title": {
"dtype": "string",
"_type": "Value"
},
"context": {
"dtype": "string",
"_type": "Value"
},
"question": {
"dtype": "string",
"_type": "Value"
},
"answers": {
"feature": {
"text": {
"dtype": "string",
"_type": "Value"
},
"answer_start": {
"dtype": "int32",
"_type": "Value"
}
},
"_type": "Sequence"
}
},
"task_templates": [
{
"task": "question-answering-extractive"
}
],
"builder_name": "squad_v2",
"dataset_name": "squad_v2",
"config_name": "squad_v2",
"version": {
"version_str": "2.0.0",
"major": 2,
"minor": 0,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 116732025,
"num_examples": 130319,
"dataset_name": null
},
"validation": {
"name": "validation",
"num_bytes": 11661091,
"num_examples": 11873,
"dataset_name": null
}
},
"download_size": 17720493,
"dataset_size": 128393116,
"size_in_bytes": 146113609
}
}