Datasets:

Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
squad / dataset_infos.json
albertvillanova's picture
Convert dataset to Parquet
06709de
raw
history blame
2.68 kB
{
"plain_text": {
"description": "Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.\n",
"citation": "@article{2016arXiv160605250R,\n author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},\n Konstantin and {Liang}, Percy},\n title = \"{SQuAD: 100,000+ Questions for Machine Comprehension of Text}\",\n journal = {arXiv e-prints},\n year = 2016,\n eid = {arXiv:1606.05250},\n pages = {arXiv:1606.05250},\narchivePrefix = {arXiv},\n eprint = {1606.05250},\n}\n",
"homepage": "https://rajpurkar.github.io/SQuAD-explorer/",
"license": "",
"features": {
"id": {
"dtype": "string",
"_type": "Value"
},
"title": {
"dtype": "string",
"_type": "Value"
},
"context": {
"dtype": "string",
"_type": "Value"
},
"question": {
"dtype": "string",
"_type": "Value"
},
"answers": {
"feature": {
"text": {
"dtype": "string",
"_type": "Value"
},
"answer_start": {
"dtype": "int32",
"_type": "Value"
}
},
"_type": "Sequence"
}
},
"task_templates": [
{
"task": "question-answering-extractive"
}
],
"builder_name": "squad",
"dataset_name": "squad",
"config_name": "plain_text",
"version": {
"version_str": "1.0.0",
"description": "",
"major": 1,
"minor": 0,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 79346108,
"num_examples": 87599,
"dataset_name": null
},
"validation": {
"name": "validation",
"num_bytes": 10472984,
"num_examples": 10570,
"dataset_name": null
}
},
"download_size": 16278203,
"dataset_size": 89819092,
"size_in_bytes": 106097295
}
}