rapadilla commited on
Commit
dc2f677
1 Parent(s): 2330aa3

loading script, readme, gitignore

Browse files
Files changed (3) hide show
  1. .gitignore +2 -0
  2. README.md +26 -0
  3. interior-cgi.py +134 -0
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ setup.cfg
2
+ bin/
README.md ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ dataset_info:
3
+ features:
4
+ - name: image
5
+ dtype: image
6
+ - name: label_id
7
+ dtype:
8
+ class_label:
9
+ names:
10
+ '0': bathroom
11
+ '1': bedroom
12
+ '2': dining_room
13
+ '3': kitchen
14
+ '4': living_room
15
+ - name: label_name
16
+ dtype: string
17
+ splits:
18
+ - name: train
19
+ num_bytes: 810900
20
+ num_examples: 4000
21
+ - name: test
22
+ num_bytes: 201725
23
+ num_examples: 1000
24
+ download_size: 1888811124
25
+ dataset_size: 1012625
26
+ ---
interior-cgi.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """This dataset contains interior images created using DALL-E.
16
+ The dataset contains 512x512 images split into 5 classes:
17
+ * bathroom: 1000 images
18
+ * bedroom: 1000 images
19
+ * dining_room: 1000 images
20
+ * kitchen: 1000 images
21
+ * living_room: 1000 images
22
+ """
23
+
24
+ import datasets
25
+ from datasets.download.download_manager import DownloadManager
26
+ from datasets.tasks import ImageClassification
27
+ from pathlib import Path
28
+ from typing import List, Iterator
29
+
30
+ _ALLOWED_IMG_EXT = {".png", ".jpg"}
31
+
32
+ _CITATION = """\
33
+ @InProceedings{huggingface:dataset,
34
+ title = {Computer Generated interior images},
35
+ author={Padilla, Rafael},
36
+ year={2023}
37
+ }
38
+ """
39
+
40
+ _DESCRIPTION = """\
41
+ This new dataset contains CG interior images representing interior of houses in 5 classes, with \
42
+ 1000 images per class.
43
+ """
44
+
45
+ _HOMEPAGE = "https://huggingface.co/datasets/rafaelpadilla/interior-cgi/"
46
+
47
+ _LICENSE = ""
48
+
49
+ _URLS = {
50
+ "test": "https://huggingface.co/datasets/rafaelpadilla/interior-cgi/resolve/main/data/test.zip",
51
+ "train": "https://huggingface.co/datasets/rafaelpadilla/interior-cgi/resolve/main/data/train.zip",
52
+ }
53
+
54
+ _NAMES = ["bathroom", "bedroom", "dining_room", "kitchen", "living_room"]
55
+
56
+
57
+ class CGInteriorDataset(datasets.GeneratorBasedBuilder):
58
+ """CGInterior: Computer Generated Interior images dataset"""
59
+
60
+ VERSION = datasets.Version("1.1.0")
61
+
62
+ def _info(self) -> datasets.DatasetInfo:
63
+ """
64
+ Returns the dataset metadata and features.
65
+
66
+ Returns:
67
+ DatasetInfo: Metadata and features of the dataset.
68
+ """
69
+
70
+ return datasets.DatasetInfo(
71
+ description=_DESCRIPTION,
72
+ features=datasets.Features(
73
+ {
74
+ "image": datasets.Image(),
75
+ "label_id": datasets.features.ClassLabel(names=_NAMES),
76
+ "label_name": datasets.Value("string"),
77
+ }
78
+ ),
79
+ supervised_keys=("image", "label_id"),
80
+ homepage=_HOMEPAGE,
81
+ license=_LICENSE,
82
+ citation=_CITATION,
83
+ task_templates=[
84
+ ImageClassification(image_column="image", label_column="label_id")
85
+ ],
86
+ )
87
+
88
+ def _split_generators(
89
+ self, dl_manager: DownloadManager
90
+ ) -> List[datasets.SplitGenerator]:
91
+ """
92
+ Provides the split information and downloads the data.
93
+
94
+ Args:
95
+ dl_manager (DownloadManager): The DownloadManager to use for downloading and extracting data.
96
+
97
+ Returns:
98
+ List[SplitGenerator]: List of SplitGenerator objects representing the data splits.
99
+ """
100
+ data_files = dl_manager.download_and_extract(_URLS)
101
+ return [
102
+ datasets.SplitGenerator(
103
+ name=datasets.Split.TRAIN,
104
+ gen_kwargs={
105
+ "files": dl_manager.iter_files(data_files["train"]),
106
+ },
107
+ ),
108
+ datasets.SplitGenerator(
109
+ name=datasets.Split.TEST,
110
+ gen_kwargs={
111
+ "files": dl_manager.iter_files(data_files["test"]),
112
+ },
113
+ ),
114
+ ]
115
+
116
+ def _generate_examples(self, files: List[str]) -> Iterator:
117
+ """
118
+ Generates examples for the dataset.
119
+
120
+ Args:
121
+ files (List[str]): List of image paths.
122
+
123
+ Yields:
124
+ Dict[str, Union[str, Image]]: A dictionary containing the generated examples.
125
+ """
126
+
127
+ for idx, img_path in enumerate(files):
128
+ path = Path(img_path)
129
+ if path.suffix in _ALLOWED_IMG_EXT:
130
+ yield idx, {
131
+ "image": img_path,
132
+ "label_id": path.parent.name,
133
+ "label_name": path.parent.name,
134
+ }