JGraphQA / llava_onevision.py
r-g2-2024's picture
Add files required for benchmark evaluation
4adddcc verified
# Adopted from lmms-eval from https://github.com/EvolvingLMMs-Lab/lmms-eval. Below is the original copyright:
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file was originally obtained from:
# https://github.com/EvolvingLMMs-Lab/lmms-eval/blob/main/lmms_eval/models/llava_onevision.py
#
# Minor modification by Akira Kinoshita on 2025-07-24:
import copy
import json
import logging
import math
import re
import warnings
from datetime import timedelta
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import transformers
from accelerate import Accelerator, DistributedType, InitProcessGroupKwargs
from accelerate.state import AcceleratorState
from decord import VideoReader, cpu
from packaging import version
from tqdm import tqdm
from transformers import AutoConfig
from lmms_eval import utils
from lmms_eval.api.instance import Instance
from lmms_eval.api.model import lmms
from lmms_eval.api.registry import register_model
from lmms_eval.models.model_utils.load_video import read_video_pyav
# Suppress warnings
warnings.filterwarnings("ignore")
# Configure logging
eval_logger = logging.getLogger("lmms-eval")
# Enable TF32 for CUDA
torch.backends.cuda.matmul.allow_tf32 = True
# Import LLaVA modules
try:
from llava.constants import (
DEFAULT_IM_END_TOKEN,
DEFAULT_IM_START_TOKEN,
DEFAULT_IMAGE_TOKEN,
IGNORE_INDEX,
IMAGE_TOKEN_INDEX,
)
from llava.conversation import SeparatorStyle, conv_templates
from llava.mm_utils import (
KeywordsStoppingCriteria,
get_model_name_from_path,
process_images,
tokenizer_image_token,
)
from llava.model.builder import load_pretrained_model
except ImportError as e:
eval_logger.debug(f"LLaVA is not installed. Please install LLaVA to use this model.\nError: {e}")
# Determine best attention implementation
if version.parse(torch.__version__) >= version.parse("2.1.2"):
best_fit_attn_implementation = "sdpa"
else:
best_fit_attn_implementation = "eager"
@register_model("llava_onevision")
class Llava_OneVision(lmms):
"""
Llava Model
"""
def __init__(
self,
pretrained: str = "lmms-lab/llava-onevision-qwen2-7b-ov",
truncation: Optional[bool] = True,
device: Optional[str] = "cuda:0",
batch_size: Optional[Union[int, str]] = 1,
model_name: Optional[str] = None,
attn_implementation: Optional[str] = best_fit_attn_implementation,
device_map: Optional[str] = "cuda:0",
conv_template: Optional[str] = "qwen_1_5",
use_cache: Optional[bool] = True,
truncate_context: Optional[bool] = False, # whether to truncate the context in generation, set it False for LLaVA-1.6
customized_config: Optional[str] = None, # ends in json
max_frames_num: Optional[int] = 32,
mm_spatial_pool_stride: Optional[int] = 2,
mm_spatial_pool_mode: Optional[str] = "bilinear",
token_strategy: Optional[str] = "single", # could be "single" or "multiple", "multiple" denotes adding multiple <image> tokens for each frame
video_decode_backend: str = "decord",
**kwargs,
) -> None:
super().__init__()
# Do not use kwargs for now
assert kwargs == {}, f"Unexpected kwargs: {kwargs}"
accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52))
accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs])
if accelerator.num_processes > 1:
self._device = torch.device(f"cuda:{accelerator.local_process_index}")
self.device_map = f"cuda:{accelerator.local_process_index}"
elif accelerator.num_processes == 1 and device_map == "auto":
self._device = torch.device(device)
self.device_map = device_map
else:
self._device = torch.device(f"cuda:{accelerator.local_process_index}")
self.device_map = f"cuda:{accelerator.local_process_index}"
llava_model_args = {
"multimodal": True,
}
if customized_config is not None:
llava_model_args["customized_config"] = customized_config
if attn_implementation is not None:
llava_model_args["attn_implementation"] = attn_implementation
if "use_flash_attention_2" in kwargs:
llava_model_args["use_flash_attention_2"] = kwargs["use_flash_attention_2"]
model_name = model_name if model_name is not None else get_model_name_from_path(pretrained)
self.pretrained = pretrained
self.token_strategy = token_strategy
self.max_frames_num = max_frames_num
self.mm_spatial_pool_stride = mm_spatial_pool_stride
self.mm_spatial_pool_mode = mm_spatial_pool_mode
self.video_decode_backend = video_decode_backend
overwrite_config = {}
overwrite_config["mm_spatial_pool_stride"] = self.mm_spatial_pool_stride
overwrite_config["mm_spatial_pool_mode"] = self.mm_spatial_pool_mode
cfg_pretrained = AutoConfig.from_pretrained(self.pretrained)
llava_model_args["overwrite_config"] = overwrite_config
try:
# Try to load the model with the multimodal argument
self._tokenizer, self._model, self._image_processor, self._max_length = load_pretrained_model(pretrained, None, model_name, device_map=self.device_map, **llava_model_args)
except TypeError:
# for older versions of LLaVA that don't have multimodal argument
llava_model_args.pop("multimodal", None)
self._tokenizer, self._model, self._image_processor, self._max_length = load_pretrained_model(pretrained, None, model_name, device_map=self.device_map, **llava_model_args)
self._config = self._model.config
self.model.eval()
self.truncation = truncation
self.batch_size_per_gpu = int(batch_size)
self.conv_template = conv_template
self.use_cache = use_cache
self.truncate_context = truncate_context
assert self.batch_size_per_gpu == 1, "Llava currently does not support batched generation. See https://github.com/haotian-liu/LLaVA/issues/754. HF Llava also has this issue."
if accelerator.num_processes > 1:
assert accelerator.distributed_type in [DistributedType.FSDP, DistributedType.MULTI_GPU, DistributedType.DEEPSPEED], "Unsupported distributed type provided. Only DDP and FSDP are supported."
# If you want to use DistributedType.DEEPSPEED, you have to run accelerate config before using the model
# Also, you have to select zero stage 0 (equivalent to DDP) in order to make the prepare model works
# I tried to set different parameters in the kwargs to let default zero 2 stage works, but it didn't work.
if accelerator.distributed_type == DistributedType.DEEPSPEED:
kwargs = {
"train_micro_batch_size_per_gpu": self.batch_size_per_gpu,
"train_batch_size": self.batch_size_per_gpu * accelerator.num_processes,
}
AcceleratorState().deepspeed_plugin.deepspeed_config_process(must_match=True, **kwargs)
eval_logger.info("Detected that you are using DistributedType.DEEPSPEED. Make sure you run `accelerate config` and set zero stage to 0")
if accelerator.distributed_type == DistributedType.FSDP or accelerator.distributed_type == DistributedType.DEEPSPEED:
self._model = accelerator.prepare(self.model)
else:
self._model = accelerator.prepare_model(self.model, evaluation_mode=True)
self.accelerator = accelerator
if self.accelerator.is_local_main_process:
eval_logger.info(f"Using {accelerator.num_processes} devices with data parallelism")
self._rank = self.accelerator.local_process_index
self._world_size = self.accelerator.num_processes
elif accelerator.num_processes == 1 and device_map == "auto":
eval_logger.info(f"Using {accelerator.num_processes} devices with tensor parallelism")
self._rank = 0
self._world_size = 1
else:
eval_logger.info(f"Using single device: {self._device}")
self.model.to(self._device)
self._rank = 0
self._world_size = 1
@property
def config(self):
# return the associated transformers.AutoConfig for the given pretrained model.
return self._config
@property
def tokenizer(self):
return self._tokenizer
@property
def model(self):
# returns the model, unwrapping it if using Accelerate
if hasattr(self, "accelerator"):
return self.accelerator.unwrap_model(self._model)
else:
return self._model
@property
def eot_token_id(self):
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
return self.tokenizer.eos_token_id
@property
def max_length(self):
return self._max_length
def pad_sequence(self, input_ids, batch_first, padding_value):
if self.tokenizer.padding_side == "left":
input_ids = [torch.flip(_input_ids, [0]) for _input_ids in input_ids]
input_ids = torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=batch_first, padding_value=padding_value)
if self.tokenizer.padding_side == "left":
input_ids = torch.flip(input_ids, [1])
return input_ids
@property
def batch_size(self):
return self.batch_size_per_gpu
@property
def device(self):
return self._device
@property
def rank(self):
return self._rank
@property
def world_size(self):
return self._world_size
def tok_encode(self, string: str, left_truncate_len=None, add_special_tokens=None) -> List[int]:
""" """
add_special_tokens = False if add_special_tokens is None else add_special_tokens
encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens)
# left-truncate the encoded context to be at most `left_truncate_len` tokens long
if left_truncate_len:
encoding = encoding[-left_truncate_len:]
return encoding
def tok_decode(self, tokens):
try:
return self.tokenizer.decode(tokens)
except:
return self.tokenizer.decode([tokens])
def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
res = []
pbar = tqdm(total=len(requests), disable=(self.rank != 0), desc="Model Responding")
origin_image_aspect_ratio = getattr(self._config, "image_aspect_ratio", None)
for contexts, doc_to_target, doc_to_visual, doc_id, task, split in [reg.args for reg in requests]:
visual = doc_to_visual(self.task_dict[task][split][doc_id])
if origin_image_aspect_ratio is not None and self._config.image_aspect_ratio != origin_image_aspect_ratio:
self._config.image_aspect_ratio = origin_image_aspect_ratio
eval_logger.info(f"Resetting image aspect ratio to {origin_image_aspect_ratio}")
if visual is None or visual == []:
visual = None
task_type = "text"
image_tensor = None
else:
if len(visual) > 1 or "image_aspect_ratio" not in self._config.__dict__:
self._config.image_aspect_ratio = "pad"
eval_logger.info(f"In Multi-Image setting, image aspect ratio: {self._config.image_aspect_ratio}")
if "task_type" in self.metadata and self.metadata["task_type"] == "video" and "sample_frames" in self.metadata:
assert type(visual) == list, "sample_frames must be specified for video task"
sample_indices = np.linspace(0, len(visual) - 1, self.metadata["sample_frames"], dtype=int)
visual = [visual[i] for i in sample_indices]
assert len(visual) == self.metadata["sample_frames"]
image_tensor = process_images(visual, self._image_processor, self._config)
if type(image_tensor) is list:
image_tensor = [_image.to(dtype=torch.float16, device=self.device) for _image in image_tensor]
else:
image_tensor = image_tensor.to(dtype=torch.float16, device=self.device)
task_type = "video"
# elif type(visual[0]) == PIL.Image.Image:
elif isinstance(visual[0], PIL.Image.Image):
# image_tensor = process_images(visual, self._image_processor, self._config)
inputs = self._image_processor(visual)
image_tensor = torch.tensor(inputs['pixel_values']).to(dtype=torch.float16, device=self.device)
image_tensor = [image_tensor]
# if type(image_tensor) is list:
# image_tensor = [_image.to(dtype=torch.float16, device=self.device) for _image in image_tensor]
# else:
# image_tensor = image_tensor.to(dtype=torch.float16, device=self.device)
task_type = "image"
elif type(visual[0]) == str:
image_tensor = []
try:
if self.video_decode_backend == "decord":
frames = self.load_video(visual, self.max_frames_num)
elif self.video_decode_backend == "pyav":
frames = read_video_pyav(visual[0], num_frm=self.max_frames_num)
frames = self._image_processor.preprocess(frames, return_tensors="pt")["pixel_values"].half().cuda()
image_tensor.append(frames)
except Exception as e:
eval_logger.error(f"Error {e} in loading video")
image_tensor = None
task_type = "video"
if image_tensor is not None and len(image_tensor) != 0 and DEFAULT_IMAGE_TOKEN not in contexts:
placeholder_count = len(visual) if isinstance(visual, list) else 1
if task_type == "video":
placeholder_count = len(frames) if self.token_strategy == "multiple" else 1
image_tokens = [DEFAULT_IMAGE_TOKEN] * placeholder_count
image_tokens = " ".join(image_tokens)
prompts_input = image_tokens + "\n" + contexts
else:
prompts_input = contexts
if "llama_3" in self.conv_template:
conv = copy.deepcopy(conv_templates[self.conv_template])
else:
conv = conv_templates[self.conv_template].copy()
conv.append_message(conv.roles[0], prompts_input)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(self.device)
if type(doc_to_target) == str:
continuation = doc_to_target
else:
continuation = doc_to_target(self.task_dict[task][split][doc_id])
conv.messages[-1][1] = continuation
full_prompt = conv.get_prompt()
full_input_ids = tokenizer_image_token(full_prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(self.device)
labels = full_input_ids.clone()
labels[0, : input_ids.shape[1]] = -100
kwargs = {}
if task_type == "image":
kwargs["image_sizes"] = [[v.size[0], v.size[1]] for v in visual] if isinstance(visual, list) else [[visual.size[0], visual.size[1]]]
_image_grid_thw = torch.tensor(inputs['image_grid_thw'], dtype=torch.long)
kwargs["image_grid_thws"] = [_image_grid_thw]
elif task_type == "video":
kwargs["modalities"] = ["video"]
self._config.mm_spatial_pool_stride = self.mm_spatial_pool_stride
self._config.mm_spatial_pool_mode = self.mm_spatial_pool_mode
with torch.inference_mode():
outputs = self.model(input_ids=full_input_ids, labels=labels, images=image_tensor, use_cache=True, **kwargs)
loss = outputs["loss"]
logits = outputs["logits"]
greedy_tokens = logits.argmax(dim=-1)
cont_toks = full_input_ids[:, input_ids.shape[1] :]
greedy_tokens = greedy_tokens[:, input_ids.shape[1] : full_input_ids.shape[1]]
max_equal = (greedy_tokens == cont_toks).all()
res.append((float(loss.item()), bool(max_equal)))
pbar.update(1)
pbar.close()
return res
def flatten(self, input):
if not input or any(i is None for i in input):
return []
new_list = []
for i in input:
if i:
for j in i:
new_list.append(j)
return new_list
def load_video(self, video_path, max_frames_num):
if type(video_path) == str:
vr = VideoReader(video_path, ctx=cpu(0))
else:
vr = VideoReader(video_path[0], ctx=cpu(0))
total_frame_num = len(vr)
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int)
frame_idx = uniform_sampled_frames.tolist()
spare_frames = vr.get_batch(frame_idx).asnumpy()
return spare_frames # (frames, height, width, channels)
def generate_until(self, requests: List[Instance]) -> List[str]:
res = []
def _collate(x):
# the negative sign on len(toks) sorts descending - this has a few advantages:
# - time estimates will always be over not underestimates, which is more useful for planning
# - to know the size of a batch when going through the list, you know the first one is always the batch
# padded context length. this is useful to simplify the batching logic and more importantly to make
# automatic adaptive batches much much easier to implement
# - any OOMs will happen right away rather than near the end
toks = self.tok_encode(x[0])
return -len(toks), x[0]
# we group requests by their generation_kwargs,
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
# in the same batch.
metadata = requests[0].metadata
re_ords = utils.Collator([reg.args for reg in requests], _collate, grouping=True)
chunks = re_ords.get_batched(n=self.batch_size, batch_fn=None)
num_iters = len(requests) // self.batch_size if len(requests) % self.batch_size == 0 else len(requests) // self.batch_size + 1
pbar = tqdm(total=num_iters, disable=(self.rank != 0), desc="Model Responding")
origin_image_aspect_ratio = getattr(self._config, "image_aspect_ratio", None)
for chunk in chunks:
batched_contexts, all_gen_kwargs, batched_doc_to_visual, batched_doc_id, batched_task, batched_split = zip(*chunk)
task = batched_task[0]
split = batched_split[0]
batched_visuals = [batched_doc_to_visual[0](self.task_dict[task][split][ids]) for ids in batched_doc_id] # [B, N]
assert len(batched_visuals) == 1
# we assume all gen kwargs in the batch are the same
# this is safe to assume because the `grouper` object ensures it.
gen_kwargs = all_gen_kwargs[0]
if "until" in gen_kwargs:
gen_kwargs.pop("until")
question_input = []
# import ipdb; ipdb.set_trace()
for visual, context in zip(batched_visuals, batched_contexts):
if origin_image_aspect_ratio is not None and self._config.image_aspect_ratio != origin_image_aspect_ratio:
self._config.image_aspect_ratio = origin_image_aspect_ratio
eval_logger.info(f"Resetting image aspect ratio to {origin_image_aspect_ratio}")
if visual is None or visual == []: # for text-only tasks.
visual = None
task_type = "text"
placeholder_count = 0
image_tensor = None
else:
if len(visual) > 1 or "image_aspect_ratio" not in self._config.__dict__: # for multi image case, we treat per image aspect ratio as "pad" by default.
self._config.image_aspect_ratio = getattr(gen_kwargs, "image_aspect_ratio", "pad")
eval_logger.info(f"In Multi-Image setting, image aspect ratio: {self._config.image_aspect_ratio}")
if "task_type" in metadata and metadata["task_type"] == "video" and "sample_frames" in metadata: # overwrite logic for video task with multiple static image frames
assert type(visual) == list, "sample_frames must be specified for video task"
sample_indices = np.linspace(0, len(visual) - 1, metadata["sample_frames"], dtype=int)
visual = [visual[i] for i in sample_indices]
assert len(visual) == metadata["sample_frames"]
image_tensor = process_images(visual, self._image_processor, self._config)
if type(image_tensor) is list:
image_tensor = [_image.to(dtype=torch.float16, device=self.device) for _image in image_tensor]
else:
image_tensor = image_tensor.to(dtype=torch.float16, device=self.device)
task_type = "video"
placeholder_count = 1
elif type(visual[0]) == PIL.Image.Image: # For image, multi-image tasks
# image_tensor = process_images(visual, self._image_processor, self._config)
inputs = self._image_processor(visual)
image_tensor = torch.tensor(inputs['pixel_values']).to(dtype=torch.float16, device=self.device)
image_tensor = [image_tensor]
if type(image_tensor) is list:
image_tensor = [_image.to(dtype=torch.float16, device=self.device) for _image in image_tensor]
else:
image_tensor = image_tensor.to(dtype=torch.float16, device=self.device)
task_type = "image"
placeholder_count = len(visual) if isinstance(visual, list) else 1
elif type(visual[0]) == str: # For video task
image_tensor = []
try:
if self.video_decode_backend == "decord":
frames = self.load_video(visual, self.max_frames_num)
elif self.video_decode_backend == "pyav":
frames = read_video_pyav(visual[0], num_frm=self.max_frames_num)
frames = self._image_processor.preprocess(frames, return_tensors="pt")["pixel_values"].half().cuda()
image_tensor.append(frames)
except Exception as e:
eval_logger.error(f"Error {e} in loading video")
image_tensor = None
task_type = "video"
placeholder_count = len(frames) if self.token_strategy == "multiple" else 1
if image_tensor is not None and len(image_tensor) != 0 and DEFAULT_IMAGE_TOKEN not in context:
"""
Three senarios:
1. No image, and there for, no image token should be added.
2. image token is already specified in the context, so we don't need to add it.
3. image token is not specified in the context and there is image inputs, so we need to add it. In this case, we add the image token at the beginning of the context and add a new line.
4. For video tasks, we could add a <image> token or multiple <image> tokens for each frame in the context. This depends on the training strategy and should balance in test to decide which is better
"""
# if task_type == "image": # indeed in multi-image case, not the video in frames.
# image_tokens = [DEFAULT_IMAGE_TOKEN] * placeholder_count if isinstance(visual, list) else [DEFAULT_IMAGE_TOKEN]
# elif task_type == "video":
# image_tokens = [DEFAULT_IMAGE_TOKEN] * placeholder_count if self.token_strategy == "multiple" else [DEFAULT_IMAGE_TOKEN]
image_tokens = [DEFAULT_IMAGE_TOKEN] * placeholder_count
image_tokens = " ".join(image_tokens)
question = image_tokens + "\n" + context
else:
question = context
# This is much safer for llama3, as we now have some object type in it
if "llama_3" in self.conv_template:
conv = copy.deepcopy(conv_templates[self.conv_template])
else:
conv = conv_templates[self.conv_template].copy()
if utils.is_json(question): # conversational question input
question = json.loads(question)
for idx, item in enumerate(question):
role = conv.roles[idx % 2]
message = item["value"]
conv.append_message(role, message)
assert len(conv.messages) % 2 == 1
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
question_input.append(prompt_question)
else: # only simple string for question
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
question_input.append(prompt_question)
# preconfigure gen_kwargs with defaults
if "max_new_tokens" not in gen_kwargs:
gen_kwargs["max_new_tokens"] = 1024
if "temperature" not in gen_kwargs:
gen_kwargs["temperature"] = 0
if "do_sample" not in gen_kwargs:
gen_kwargs["do_sample"] = False
if "top_p" not in gen_kwargs:
gen_kwargs["top_p"] = None
if "num_beams" not in gen_kwargs:
gen_kwargs["num_beams"] = 1
input_ids_list = [tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") for prompt in question_input]
pad_token_ids = self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id
input_ids = self.pad_sequence(input_ids_list, batch_first=True, padding_value=pad_token_ids).to(self.device)
attention_masks = input_ids.ne(pad_token_ids).to(self.device)
if task_type == "image":
gen_kwargs["image_sizes"] = [batched_visuals[0][idx].size for idx in range(len(batched_visuals[0]))]
_image_grid_thw = torch.tensor(inputs['image_grid_thw'], dtype=torch.long)
gen_kwargs["image_grid_thws"] = [_image_grid_thw]
elif task_type == "video":
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, self.tokenizer, input_ids)
gen_kwargs["modalities"] = ["video"]
gen_kwargs["stopping_criteria"] = [stopping_criteria]
self._config.mm_spatial_pool_stride = self.mm_spatial_pool_stride
self._config.mm_spatial_pool_mode = self.mm_spatial_pool_mode
# These steps are not in LLaVA's original code, but are necessary for generation to work
# TODO: attention to this major generation step...
if "image_aspect_ratio" in gen_kwargs.keys():
gen_kwargs.pop("image_aspect_ratio")
try:
with torch.inference_mode():
cont = self.model.generate(input_ids, attention_mask=attention_masks, pad_token_id=pad_token_ids, images=image_tensor, use_cache=self.use_cache, **gen_kwargs)
# cont = self.model.generate(qwen_input_ids, pad_token_id=pad_token_ids, images=image_tensor, use_cache=self.use_cache, **gen_kwargs)
text_outputs = self.tokenizer.batch_decode(cont, skip_special_tokens=True)
except Exception as e:
raise e
text_outputs = [response.strip() for response in text_outputs]
res.extend(text_outputs)
self.cache_hook.add_partial("generate_until", (context, gen_kwargs), text_outputs)
pbar.update(1)
# reorder this group of results back to original unsorted form
res = re_ords.get_original(res)
pbar.close()
return res
def generate_until_multi_round(self, requests: List[Instance]) -> List[str]:
res = []
def _collate(x):
# the negative sign on len(toks) sorts descending - this has a few advantages:
# - time estimates will always be over not underestimates, which is more useful for planning
# - to know the size of a batch when going through the list, you know the first one is always the batch
# padded context length. this is useful to simplify the batching logic and more importantly to make
# automatic adaptive batches much much easier to implement
# - any OOMs will happen right away rather than near the end
toks = self.tok_encode(x[0])
return -len(toks), x[0]
# we group requests by their generation_kwargs,
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
# in the same batch.
metadata = requests[0].metadata
re_ords = utils.Collator([reg.args for reg in requests], _collate, grouping=True)
chunks = re_ords.get_batched(n=self.batch_size, batch_fn=None)
num_iters = len(requests) // self.batch_size if len(requests) % self.batch_size == 0 else len(requests) // self.batch_size + 1
pbar = tqdm(total=num_iters, disable=(self.rank != 0), desc="Model Responding")
origin_image_aspect_ratio = getattr(self._config, "image_aspect_ratio", None)
for chunk in chunks:
batched_contexts, all_gen_kwargs, batched_doc_to_visual, batched_doc_to_text, batched_doc_id, batched_task, batched_split = zip(*chunk)
task = batched_task[0]
split = batched_split[0]
batched_visuals = [batched_doc_to_visual[0](self.task_dict[task][split][ids]) for ids in batched_doc_id] # [B, N]
assert len(batched_visuals) == 1
# we assume all gen kwargs in the batch are the same
# this is safe to assume because the `grouper` object ensures it.
gen_kwargs = all_gen_kwargs[0]
if "until" in gen_kwargs:
gen_kwargs.pop("until")
# multi round inference: terminate when receiving signal from the doc_to_text
round_idx = 0
batched_round_res = []
batched_previous_round_info = None
while True:
question_input = []
if round_idx != 0: # get current round visual and context from doc_to_text function
batched_visuals, batched_contexts, batched_terminal_singal, batched_round_res, batched_previous_round_info = list(
zip(
*[
batched_doc_to_text[0](
self.task_dict[task][split][ids],
previous_output=[round_res[ids_idx] for round_res in batched_round_res],
round_idx=round_idx,
previous_round_info=batched_previous_round_info[ids_idx] if batched_previous_round_info is not None else None,
)
for ids_idx, ids in enumerate(batched_doc_id)
]
)
)
# import ipdb; ipdb.set_trace()
batched_round_res = list(zip(*batched_round_res)) # [(r1_1, r1_2), (r2_1, r2_2), ...]
if batched_terminal_singal[0]: # terminal signal from doc_to_text function
break
for visual, context in zip(batched_visuals, batched_contexts):
if origin_image_aspect_ratio is not None and self._config.image_aspect_ratio != origin_image_aspect_ratio:
self._config.image_aspect_ratio = origin_image_aspect_ratio
eval_logger.info(f"Resetting image aspect ratio to {origin_image_aspect_ratio}")
if visual is None or visual == []: # for text-only tasks.
visual = None
task_type = "text"
placeholder_count = 0
image_tensor = None
else:
if len(visual) > 1 or "image_aspect_ratio" not in self._config.__dict__: # for multi image case, we treat per image aspect ratio as "pad" by default.
self._config.image_aspect_ratio = getattr(gen_kwargs, "image_aspect_ratio", "pad")
eval_logger.info(f"In Multi-Image setting, image aspect ratio: {self._config.image_aspect_ratio}")
if "task_type" in metadata and metadata["task_type"] == "video" and "sample_frames" in metadata: # overwrite logic for video task with multiple static image frames
assert type(visual) == list, "sample_frames must be specified for video task"
sample_indices = np.linspace(0, len(visual) - 1, metadata["sample_frames"], dtype=int)
visual = [visual[i] for i in sample_indices]
assert len(visual) == metadata["sample_frames"]
image_tensor = process_images(visual, self._image_processor, self._config)
if type(image_tensor) is list:
image_tensor = [_image.to(dtype=torch.float16, device=self.device) for _image in image_tensor]
else:
image_tensor = image_tensor.to(dtype=torch.float16, device=self.device)
task_type = "video"
placeholder_count = 1
elif type(visual[0]) == PIL.Image.Image: # For image, multi-image tasks
image_tensor = process_images(visual, self._image_processor, self._config)
if type(image_tensor) is list:
image_tensor = [_image.to(dtype=torch.float16, device=self.device) for _image in image_tensor]
else:
image_tensor = image_tensor.to(dtype=torch.float16, device=self.device)
task_type = "image"
placeholder_count = len(visual) if isinstance(visual, list) else 1
elif type(visual[0]) == str: # For video task
image_tensor = []
try:
if self.video_decode_backend == "decord":
frames = self.load_video(visual, self.max_frames_num)
elif self.video_decode_backend == "pyav":
frames = read_video_pyav(visual[0], num_frm=self.max_frames_num)
frames = self._image_processor.preprocess(frames, return_tensors="pt")["pixel_values"].half().cuda()
image_tensor.append(frames)
except Exception as e:
eval_logger.error(f"Error {e} in loading video")
image_tensor = None
task_type = "video"
placeholder_count = len(frames) if self.token_strategy == "multiple" else 1
if image_tensor is not None and len(image_tensor) != 0 and DEFAULT_IMAGE_TOKEN not in context:
"""
Three senarios:
1. No image, and there for, no image token should be added.
2. image token is already specified in the context, so we don't need to add it.
3. image token is not specified in the context and there is image inputs, so we need to add it. In this case, we add the image token at the beginning of the context and add a new line.
4. For video tasks, we could add a <image> token or multiple <image> tokens for each frame in the context. This depends on the training strategy and should balance in test to decide which is better
"""
# if task_type == "image": # indeed in multi-image case, not the video in frames.
# image_tokens = [DEFAULT_IMAGE_TOKEN] * placeholder_count if isinstance(visual, list) else [DEFAULT_IMAGE_TOKEN]
# elif task_type == "video":
# image_tokens = [DEFAULT_IMAGE_TOKEN] * placeholder_count if self.token_strategy == "multiple" else [DEFAULT_IMAGE_TOKEN]
image_tokens = [DEFAULT_IMAGE_TOKEN] * placeholder_count
image_tokens = " ".join(image_tokens)
question = image_tokens + "\n" + context
else:
question = context
# This is much safer for llama3, as we now have some object type in it
if "llama_3" in self.conv_template:
conv = copy.deepcopy(conv_templates[self.conv_template])
else:
conv = conv_templates[self.conv_template].copy()
if utils.is_json(question): # conversational question input
question = json.loads(question)
for idx, item in enumerate(question):
role = conv.roles[idx % 2]
message = item["value"]
conv.append_message(role, message)
assert len(conv.messages) % 2 == 1
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
question_input.append(prompt_question)
else: # only simple string for question
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
question_input.append(prompt_question)
# preconfigure gen_kwargs with defaults
if "max_new_tokens" not in gen_kwargs:
gen_kwargs["max_new_tokens"] = 1024
if "temperature" not in gen_kwargs:
gen_kwargs["temperature"] = 0
if "do_sample" not in gen_kwargs:
gen_kwargs["do_sample"] = False
if "top_p" not in gen_kwargs:
gen_kwargs["top_p"] = None
if "num_beams" not in gen_kwargs:
gen_kwargs["num_beams"] = 1
input_ids_list = [tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") for prompt in question_input]
pad_token_ids = self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id
input_ids = self.pad_sequence(input_ids_list, batch_first=True, padding_value=pad_token_ids).to(self.device)
attention_masks = input_ids.ne(pad_token_ids).to(self.device)
if task_type == "image":
gen_kwargs["image_sizes"] = [batched_visuals[0][idx].size for idx in range(len(batched_visuals[0]))]
elif task_type == "video":
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, self.tokenizer, input_ids)
gen_kwargs["modalities"] = ["video"]
gen_kwargs["stopping_criteria"] = [stopping_criteria]
self._config.mm_spatial_pool_stride = self.mm_spatial_pool_stride
self._config.mm_spatial_pool_mode = self.mm_spatial_pool_mode
# These steps are not in LLaVA's original code, but are necessary for generation to work
# TODO: attention to this major generation step...
if "image_aspect_ratio" in gen_kwargs.keys():
gen_kwargs.pop("image_aspect_ratio")
try:
with torch.inference_mode():
cont = self.model.generate(input_ids, attention_mask=attention_masks, pad_token_id=pad_token_ids, images=image_tensor, use_cache=self.use_cache, **gen_kwargs)
# cont = self.model.generate(qwen_input_ids, pad_token_id=pad_token_ids, images=image_tensor, use_cache=self.use_cache, **gen_kwargs)
text_outputs = self.tokenizer.batch_decode(cont, skip_special_tokens=True)
except Exception as e:
raise e
text_outputs = [response.strip() for response in text_outputs]
batched_round_res.append(text_outputs)
round_idx += 1
res.extend(list(zip(*batched_round_res)))
self.cache_hook.add_partial("generate_until_multi_round", (context, gen_kwargs), batched_round_res)
pbar.update(1)
# reorder this group of results back to original unsorted form
res = re_ords.get_original(res)
pbar.close()
return res