Datasets:
License:
update
Browse files- data/early_media_examples_wav.zip +3 -0
- examples/channel_dual_to_single.py +3 -1
- examples/early_media_and_voicemail/step_1_early_media_and_voicemail.py +182 -0
- examples/early_media_and_voicemail/step_2_analysis_features.py +67 -0
- examples/make_templates/step_1_wav_classification.py +1 -1
- examples/make_templates/step_2_wav_split.py +2 -2
- examples/make_templates/step_3_move_by_template.py +20 -5
- examples/media_to_resample_dual_channel.py +60 -0
- requirements.txt +1 -0
data/early_media_examples_wav.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66ac7e2aa7f8fe0b001038f3041b9e8d03a27f30d99c27dab2efe82c93fc6c0f
|
3 |
+
size 27919350
|
examples/channel_dual_to_single.py
CHANGED
@@ -15,7 +15,7 @@ def get_args():
|
|
15 |
|
16 |
parser.add_argument(
|
17 |
"--wav_dir",
|
18 |
-
default=(project_path / "data/early_media/
|
19 |
type=str
|
20 |
)
|
21 |
|
@@ -43,6 +43,8 @@ def main():
|
|
43 |
continue
|
44 |
|
45 |
# print(signal.shape)
|
|
|
|
|
46 |
signal = signal[:, 0]
|
47 |
# print(signal.shape)
|
48 |
|
|
|
15 |
|
16 |
parser.add_argument(
|
17 |
"--wav_dir",
|
18 |
+
default=(project_path / "data/early_media/63/wav").as_posix(),
|
19 |
type=str
|
20 |
)
|
21 |
|
|
|
43 |
continue
|
44 |
|
45 |
# print(signal.shape)
|
46 |
+
if signal.ndim != 2:
|
47 |
+
continue
|
48 |
signal = signal[:, 0]
|
49 |
# print(signal.shape)
|
50 |
|
examples/early_media_and_voicemail/step_1_early_media_and_voicemail.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import argparse
|
4 |
+
import os
|
5 |
+
from pathlib import Path
|
6 |
+
import sys
|
7 |
+
import tempfile
|
8 |
+
import zipfile
|
9 |
+
|
10 |
+
pwd = os.path.abspath(os.path.dirname(__file__))
|
11 |
+
sys.path.append(os.path.join(pwd, "../../"))
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
import pandas as pd
|
15 |
+
from scipy.io import wavfile
|
16 |
+
import torch
|
17 |
+
from tqdm import tqdm
|
18 |
+
|
19 |
+
from project_settings import project_path
|
20 |
+
from toolbox.torch.utils.data.vocabulary import Vocabulary
|
21 |
+
|
22 |
+
|
23 |
+
area_code = 886
|
24 |
+
|
25 |
+
|
26 |
+
def get_args():
|
27 |
+
parser = argparse.ArgumentParser()
|
28 |
+
parser.add_argument(
|
29 |
+
"--voicemail_model_file",
|
30 |
+
# default="D:/Users/tianx/VoiceProxyProjects/VoicemailDetection/trained_models/cnn_voicemail_ms_my_20240122.zip",
|
31 |
+
# default="D:/Users/tianx/VoiceProxyProjects/VoicemailDetection/trained_models/cnn_voicemail_th_th_20221107.zip",
|
32 |
+
default="D:/Users/tianx/VoiceProxyProjects/VoicemailDetection/trained_models/cnn_voicemail_zh_tw_20230814.zip",
|
33 |
+
# default=(project_path / "trained_models").as_posix(),
|
34 |
+
type=str
|
35 |
+
)
|
36 |
+
parser.add_argument(
|
37 |
+
"--calling_wav_dir",
|
38 |
+
default=(project_path / "data/calling/{area_code}/wav".format(area_code=area_code)).as_posix(),
|
39 |
+
type=str
|
40 |
+
)
|
41 |
+
parser.add_argument(
|
42 |
+
"--early_media_wav_dir",
|
43 |
+
default=(project_path / "data/early_media/{area_code}/wav".format(area_code=area_code)).as_posix(),
|
44 |
+
type=str
|
45 |
+
)
|
46 |
+
parser.add_argument("--output_file", default="result.xlsx", type=str)
|
47 |
+
|
48 |
+
args = parser.parse_args()
|
49 |
+
return args
|
50 |
+
|
51 |
+
|
52 |
+
class VoicemailDetection(object):
|
53 |
+
def __init__(self, model_file: str):
|
54 |
+
self.model_file = model_file
|
55 |
+
|
56 |
+
self.model = None
|
57 |
+
self.vocabulary = None
|
58 |
+
self.load_models()
|
59 |
+
|
60 |
+
def load_models(self):
|
61 |
+
model_file = Path(self.model_file)
|
62 |
+
model_name = model_file.stem
|
63 |
+
|
64 |
+
with zipfile.ZipFile(model_file.as_posix(), "r") as f_zip:
|
65 |
+
out_root = Path(tempfile.gettempdir()) / "cnn_voicemail"
|
66 |
+
out_root.mkdir(parents=True, exist_ok=True)
|
67 |
+
f_zip.extractall(path=out_root)
|
68 |
+
|
69 |
+
tgt_path = out_root / model_name
|
70 |
+
pth_path = tgt_path / "cnn_voicemail.pth"
|
71 |
+
vocab_path = tgt_path / "vocabulary"
|
72 |
+
|
73 |
+
with open(pth_path.as_posix(), "rb") as f:
|
74 |
+
model = torch.jit.load(f, map_location="cpu")
|
75 |
+
vocabulary = Vocabulary.from_files(vocab_path.as_posix())
|
76 |
+
self.model = model
|
77 |
+
self.vocabulary = vocabulary
|
78 |
+
|
79 |
+
def infer(self, inputs: np.ndarray):
|
80 |
+
# infer
|
81 |
+
inputs = inputs / (1 << 15)
|
82 |
+
inputs = torch.tensor(inputs, dtype=torch.float32)
|
83 |
+
inputs = torch.unsqueeze(inputs, dim=0)
|
84 |
+
|
85 |
+
outputs = self.model(inputs)
|
86 |
+
|
87 |
+
probs = outputs["probs"]
|
88 |
+
argmax = torch.argmax(probs, dim=-1)
|
89 |
+
probs = probs.tolist()[0]
|
90 |
+
argmax = argmax.tolist()[0]
|
91 |
+
|
92 |
+
label = self.vocabulary.get_token_from_index(argmax, namespace="labels")
|
93 |
+
prob = round(probs[argmax], 4)
|
94 |
+
return label, prob
|
95 |
+
|
96 |
+
|
97 |
+
def main():
|
98 |
+
args = get_args()
|
99 |
+
|
100 |
+
voicemail_detection = VoicemailDetection(model_file=args.voicemail_model_file)
|
101 |
+
|
102 |
+
calling_wav_dir = Path(args.calling_wav_dir)
|
103 |
+
early_media_wav_dir = Path(args.early_media_wav_dir)
|
104 |
+
|
105 |
+
result = list()
|
106 |
+
for filename in tqdm(calling_wav_dir.glob("**/*.wav")):
|
107 |
+
filename = Path(filename)
|
108 |
+
call_id = filename.stem.split("_")[-1]
|
109 |
+
|
110 |
+
# early media
|
111 |
+
early_media_filename = None
|
112 |
+
for fn in early_media_wav_dir.glob("*/*.wav"):
|
113 |
+
basename = fn.stem
|
114 |
+
|
115 |
+
if str(basename).__contains__(call_id):
|
116 |
+
early_media_filename = fn
|
117 |
+
break
|
118 |
+
if early_media_filename is None:
|
119 |
+
continue
|
120 |
+
early_media_label = early_media_filename.parts[-2]
|
121 |
+
|
122 |
+
# read early media signal
|
123 |
+
sample_rate, signal = wavfile.read(early_media_filename)
|
124 |
+
if sample_rate != 8000:
|
125 |
+
raise AssertionError
|
126 |
+
if len(signal) < 1.0 * sample_rate:
|
127 |
+
continue
|
128 |
+
early_media_duration = len(signal) / sample_rate
|
129 |
+
|
130 |
+
# read calling signal
|
131 |
+
sample_rate, signal = wavfile.read(filename)
|
132 |
+
if sample_rate != 8000:
|
133 |
+
raise AssertionError
|
134 |
+
if len(signal) < 1.0 * sample_rate:
|
135 |
+
continue
|
136 |
+
signal = signal[:, 0]
|
137 |
+
calling_duration = len(signal) / sample_rate
|
138 |
+
|
139 |
+
# voicemail
|
140 |
+
calling_label = "non_voicemail"
|
141 |
+
last_prob = 0
|
142 |
+
for i in range(4):
|
143 |
+
begin = i * sample_rate * 2
|
144 |
+
end = begin + sample_rate * 2
|
145 |
+
if end > len(signal):
|
146 |
+
break
|
147 |
+
sub_signal = signal[begin:end]
|
148 |
+
|
149 |
+
label, prob = voicemail_detection.infer(sub_signal)
|
150 |
+
if label == "non_voicemail":
|
151 |
+
prob = 1.0 - prob
|
152 |
+
|
153 |
+
if prob > 0.5:
|
154 |
+
calling_label = "voicemail"
|
155 |
+
break
|
156 |
+
if (prob + last_prob) / 2 > 0.5:
|
157 |
+
calling_label = "voicemail"
|
158 |
+
break
|
159 |
+
|
160 |
+
if early_media_label in ("voicemail",):
|
161 |
+
calling_label = early_media_label
|
162 |
+
|
163 |
+
# print(early_media_label)
|
164 |
+
# print(early_media_duration)
|
165 |
+
# print(calling_label)
|
166 |
+
# print(calling_duration)
|
167 |
+
result.append({
|
168 |
+
"call_id": call_id,
|
169 |
+
"early_media_filename": early_media_filename.as_posix(),
|
170 |
+
"early_media_label": early_media_label,
|
171 |
+
"early_media_duration": early_media_duration,
|
172 |
+
"calling_filename": filename.as_posix(),
|
173 |
+
"calling_label": calling_label,
|
174 |
+
"calling_duration": calling_duration,
|
175 |
+
})
|
176 |
+
result = pd.DataFrame(result)
|
177 |
+
result.to_excel(args.output_file, index=False, encoding="utf-8")
|
178 |
+
return
|
179 |
+
|
180 |
+
|
181 |
+
if __name__ == '__main__':
|
182 |
+
main()
|
examples/early_media_and_voicemail/step_2_analysis_features.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import argparse
|
4 |
+
from collections import Counter
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
|
9 |
+
def get_args():
|
10 |
+
parser = argparse.ArgumentParser()
|
11 |
+
|
12 |
+
parser.add_argument("--excel_file", default="result.xlsx", type=str)
|
13 |
+
|
14 |
+
args = parser.parse_args()
|
15 |
+
return args
|
16 |
+
|
17 |
+
|
18 |
+
def main():
|
19 |
+
args = get_args()
|
20 |
+
|
21 |
+
df = pd.read_excel(args.excel_file)
|
22 |
+
|
23 |
+
# count
|
24 |
+
labels = df["calling_label"].tolist()
|
25 |
+
counter = Counter(labels)
|
26 |
+
msg = "语音信箱和非语音信箱的数量: \n"
|
27 |
+
msg += "label\tcount\n"
|
28 |
+
for l, c in counter.most_common():
|
29 |
+
row = "{}\t{}\n".format(l, c)
|
30 |
+
msg += row
|
31 |
+
print(msg)
|
32 |
+
|
33 |
+
# voicemail labels
|
34 |
+
labels = df[df["calling_label"] == "voicemail"]["early_media_label"].tolist()
|
35 |
+
voicemail_labels_counter = Counter(labels)
|
36 |
+
|
37 |
+
msg = "语音信箱的早媒体标签特征: \n"
|
38 |
+
msg += "label\tcount\n"
|
39 |
+
for l, c in voicemail_labels_counter.most_common():
|
40 |
+
row = "{}\t{}\n".format(l, c)
|
41 |
+
msg += row
|
42 |
+
print(msg)
|
43 |
+
|
44 |
+
auc = list()
|
45 |
+
voicemail_total = len(df[df["calling_label"] == "voicemail"])
|
46 |
+
non_voicemail_total = len(df[df["calling_label"] == "non_voicemail"])
|
47 |
+
for t in range(60):
|
48 |
+
sub_df = df[df["early_media_duration"] > t]
|
49 |
+
voicemail_count = len(sub_df[sub_df["calling_label"] == "voicemail"])
|
50 |
+
non_voicemail_count = len(sub_df[sub_df["calling_label"] == "non_voicemail"])
|
51 |
+
tpr = voicemail_count / voicemail_total
|
52 |
+
fpr = non_voicemail_count / non_voicemail_total
|
53 |
+
rate = tpr / (fpr + 1e-5)
|
54 |
+
auc.append((t, round(tpr, 4), round(fpr, 4), round(rate, 4)))
|
55 |
+
|
56 |
+
msg = "语音信箱和响铃时长的AUC: \n"
|
57 |
+
msg += "t\ttpr\tfpr\trate\n"
|
58 |
+
for t, tpr, fpr, rate in auc:
|
59 |
+
row = "{}\t{}\t{}\t{}\n".format(t, tpr, fpr, rate)
|
60 |
+
msg += row
|
61 |
+
|
62 |
+
print(msg)
|
63 |
+
return
|
64 |
+
|
65 |
+
|
66 |
+
if __name__ == '__main__':
|
67 |
+
main()
|
examples/make_templates/step_1_wav_classification.py
CHANGED
@@ -24,7 +24,7 @@ from toolbox.cv2.misc import show_image
|
|
24 |
from toolbox.python_speech_features.misc import wave2spectrum_image
|
25 |
|
26 |
|
27 |
-
area_code =
|
28 |
|
29 |
|
30 |
def get_args():
|
|
|
24 |
from toolbox.python_speech_features.misc import wave2spectrum_image
|
25 |
|
26 |
|
27 |
+
area_code = 63
|
28 |
|
29 |
|
30 |
def get_args():
|
examples/make_templates/step_2_wav_split.py
CHANGED
@@ -18,14 +18,14 @@ from tqdm import tqdm
|
|
18 |
from project_settings import project_path
|
19 |
|
20 |
|
21 |
-
area_code =
|
22 |
|
23 |
|
24 |
def get_args():
|
25 |
parser = argparse.ArgumentParser()
|
26 |
parser.add_argument(
|
27 |
"--filename",
|
28 |
-
default=(project_path / "data/early_media/
|
29 |
type=str
|
30 |
)
|
31 |
parser.add_argument(
|
|
|
18 |
from project_settings import project_path
|
19 |
|
20 |
|
21 |
+
area_code = 66
|
22 |
|
23 |
|
24 |
def get_args():
|
25 |
parser = argparse.ArgumentParser()
|
26 |
parser.add_argument(
|
27 |
"--filename",
|
28 |
+
default=(project_path / "data/early_media/66/wav/voice/early_vm_0ef2743d-341a-4859-960f-520ed3abda07.wav").as_posix(),
|
29 |
type=str
|
30 |
)
|
31 |
parser.add_argument(
|
examples/make_templates/step_3_move_by_template.py
CHANGED
@@ -3,6 +3,7 @@
|
|
3 |
import argparse
|
4 |
from collections import defaultdict
|
5 |
from glob import glob
|
|
|
6 |
import os
|
7 |
from pathlib import Path
|
8 |
import shutil
|
@@ -18,7 +19,7 @@ from project_settings import project_path
|
|
18 |
from toolbox.python_speech_features.misc import wave2spectrum_image
|
19 |
|
20 |
|
21 |
-
area_code =
|
22 |
|
23 |
|
24 |
def get_args():
|
@@ -170,6 +171,10 @@ def main():
|
|
170 |
templates_dir = Path(args.templates_dir)
|
171 |
wav_dir = Path(args.wav_dir)
|
172 |
|
|
|
|
|
|
|
|
|
173 |
def wave_to_spectrum(wave: np.ndarray):
|
174 |
spectrum = wave2spectrum_image(wave=wave, sample_rate=8000)
|
175 |
spectrum = np.array(spectrum, dtype=np.float32)
|
@@ -197,15 +202,25 @@ def main():
|
|
197 |
if len(matches) == 0:
|
198 |
continue
|
199 |
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
labels_ = [label for label in labels if label not in ("music",)]
|
202 |
|
203 |
if len(set(labels_)) > 1:
|
204 |
print("超过两个模板类别被匹配,请检测是否匹配正确。")
|
205 |
print(filename)
|
206 |
-
|
207 |
-
|
208 |
-
continue
|
|
|
209 |
|
210 |
if len(labels_) == 0:
|
211 |
label = "music"
|
|
|
3 |
import argparse
|
4 |
from collections import defaultdict
|
5 |
from glob import glob
|
6 |
+
import json
|
7 |
import os
|
8 |
from pathlib import Path
|
9 |
import shutil
|
|
|
19 |
from toolbox.python_speech_features.misc import wave2spectrum_image
|
20 |
|
21 |
|
22 |
+
area_code = 63
|
23 |
|
24 |
|
25 |
def get_args():
|
|
|
171 |
templates_dir = Path(args.templates_dir)
|
172 |
wav_dir = Path(args.wav_dir)
|
173 |
|
174 |
+
config_json_file = templates_dir / "config.json"
|
175 |
+
with open(config_json_file.as_posix(), "r", encoding="utf-8") as f:
|
176 |
+
config_json = json.load(f)
|
177 |
+
|
178 |
def wave_to_spectrum(wave: np.ndarray):
|
179 |
spectrum = wave2spectrum_image(wave=wave, sample_rate=8000)
|
180 |
spectrum = np.array(spectrum, dtype=np.float32)
|
|
|
202 |
if len(matches) == 0:
|
203 |
continue
|
204 |
|
205 |
+
matches_ = list()
|
206 |
+
for match in matches:
|
207 |
+
label = match["label"]
|
208 |
+
matches_.append({
|
209 |
+
**match,
|
210 |
+
"weight": config_json[label]["weight"]
|
211 |
+
})
|
212 |
+
matches_ = list(sorted(matches_, key=lambda x: x["weight"], reverse=True))
|
213 |
+
|
214 |
+
labels = [match["label"] for match in matches_]
|
215 |
labels_ = [label for label in labels if label not in ("music",)]
|
216 |
|
217 |
if len(set(labels_)) > 1:
|
218 |
print("超过两个模板类别被匹配,请检测是否匹配正确。")
|
219 |
print(filename)
|
220 |
+
for match in matches_:
|
221 |
+
print(match)
|
222 |
+
# continue
|
223 |
+
labels_ = labels_[:1]
|
224 |
|
225 |
if len(labels_) == 0:
|
226 |
label = "music"
|
examples/media_to_resample_dual_channel.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import argparse
|
4 |
+
import os
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
import librosa
|
8 |
+
import numpy as np
|
9 |
+
from scipy.io import wavfile
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
from project_settings import project_path
|
13 |
+
|
14 |
+
|
15 |
+
def get_args():
|
16 |
+
parser = argparse.ArgumentParser()
|
17 |
+
|
18 |
+
parser.add_argument(
|
19 |
+
"--wav_dir",
|
20 |
+
# default=(project_path / "data/early_media/60/wav").as_posix(),
|
21 |
+
default=(project_path / "data/calling/60/wav").as_posix(),
|
22 |
+
type=str
|
23 |
+
)
|
24 |
+
parser.add_argument("--to_sample_rate", default=16000, type=int)
|
25 |
+
parser.add_argument(
|
26 |
+
"--output_dir",
|
27 |
+
# default="./early_media",
|
28 |
+
default="./calling",
|
29 |
+
type=str
|
30 |
+
)
|
31 |
+
args = parser.parse_args()
|
32 |
+
return args
|
33 |
+
|
34 |
+
|
35 |
+
def main():
|
36 |
+
args = get_args()
|
37 |
+
|
38 |
+
wav_dir = Path(args.wav_dir)
|
39 |
+
output_dir = Path(args.output_dir)
|
40 |
+
|
41 |
+
max_value = (2 << 15)
|
42 |
+
|
43 |
+
for filename in tqdm(wav_dir.glob("**/*.wav")):
|
44 |
+
filename = Path(filename)
|
45 |
+
|
46 |
+
signal, sample_rate = librosa.load(filename.as_posix(), sr=args.to_sample_rate)
|
47 |
+
signal = np.array(signal * max_value, dtype=np.int16)
|
48 |
+
|
49 |
+
if signal.ndim != 2:
|
50 |
+
signal2 = np.zeros(shape=signal.shape, dtype=np.int16)
|
51 |
+
signal = np.stack([signal, signal2], axis=-1)
|
52 |
+
|
53 |
+
to_filename = output_dir / filename.relative_to(wav_dir)
|
54 |
+
to_filename.parent.mkdir(parents=True, exist_ok=True)
|
55 |
+
wavfile.write(to_filename.as_posix(), rate=args.to_sample_rate, data=signal)
|
56 |
+
return
|
57 |
+
|
58 |
+
|
59 |
+
if __name__ == '__main__':
|
60 |
+
main()
|
requirements.txt
CHANGED
@@ -16,3 +16,4 @@ gunicorn==20.1.0
|
|
16 |
pandas==1.1.5
|
17 |
xlrd==1.2.0
|
18 |
openpyxl==3.0.9
|
|
|
|
16 |
pandas==1.1.5
|
17 |
xlrd==1.2.0
|
18 |
openpyxl==3.0.9
|
19 |
+
librosa==0.10.1
|