|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Arabic Wiki Question Answering corpus.""" |
|
|
|
|
|
import csv |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{YangYihMeek:EMNLP2015:WikiQA, |
|
author = {{Yi}, Yang and {Wen-tau}, Yih and {Christopher} Meek}, |
|
title = "{WikiQA: A Challenge Dataset for Open-Domain Question Answering}", |
|
journal = {Association for Computational Linguistics}, |
|
year = 2015, |
|
doi = {10.18653/v1/D15-1237}, |
|
pages = {2013–2018}, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Arabic Version of WikiQA by automatic automatic machine translators \ |
|
and crowdsourced the selection of the best one to be incorporated into the corpus |
|
""" |
|
|
|
_URL = "https://raw.githubusercontent.com/qcri/WikiQAar/master/" |
|
_URL_FILES = { |
|
"train": _URL + "WikiQAar-train.tsv", |
|
"dev": _URL + "WikiQAar-dev.tsv", |
|
"test": _URL + "WikiQAar-test.tsv", |
|
} |
|
|
|
|
|
class WikiQaArConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for WikiQaAr.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for WikiQaAr. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(WikiQaArConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) |
|
|
|
|
|
class WikiQaAr(datasets.GeneratorBasedBuilder): |
|
"""WikiQaAr dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
WikiQaArConfig( |
|
name="plain_text", |
|
description="Plain text", |
|
) |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"question_id": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"answer_id": datasets.Value("string"), |
|
"answer": datasets.Value("string"), |
|
"label": datasets.features.ClassLabel(num_classes=2), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://github.com/qcri/WikiQAar", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
dl_dir = dl_manager.download_and_extract(_URL_FILES) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": dl_dir["test"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_dir["dev"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": dl_dir["train"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) |
|
for _id, row in enumerate(reader): |
|
|
|
|
|
if len(row) > 6 or len(row["Label"]) == 0: |
|
continue |
|
|
|
yield str(_id), { |
|
"question_id": row["QuestionID"], |
|
"question": row["Question"], |
|
"document_id": row["DocumentID"], |
|
"answer_id": row["SentenceID"], |
|
"answer": row["Sentence"], |
|
"label": row["Label"], |
|
} |
|
|