qanastek commited on
Commit
fb3b08a
1 Parent(s): 884a611

Convert BIO tags to HuggingFace classes.

Browse files
Files changed (2) hide show
  1. MASSIVE.py +15 -8
  2. README.md +11 -13
MASSIVE.py CHANGED
@@ -260,6 +260,8 @@ _SCENARIOS = ['social', 'transport', 'calendar', 'play', 'news', 'datetime', 're
260
 
261
  _INTENTS = ['datetime_query', 'iot_hue_lightchange', 'transport_ticket', 'takeaway_query', 'qa_stock', 'general_greet', 'recommendation_events', 'music_dislikeness', 'iot_wemo_off', 'cooking_recipe', 'qa_currency', 'transport_traffic', 'general_quirky', 'weather_query', 'audio_volume_up', 'email_addcontact', 'takeaway_order', 'email_querycontact', 'iot_hue_lightup', 'recommendation_locations', 'play_audiobook', 'lists_createoradd', 'news_query', 'alarm_query', 'iot_wemo_on', 'general_joke', 'qa_definition', 'social_query', 'music_settings', 'audio_volume_other', 'calendar_remove', 'iot_hue_lightdim', 'calendar_query', 'email_sendemail', 'iot_cleaning', 'audio_volume_down', 'play_radio', 'cooking_query', 'datetime_convert', 'qa_maths', 'iot_hue_lightoff', 'iot_hue_lighton', 'transport_query', 'music_likeness', 'email_query', 'play_music', 'audio_volume_mute', 'social_post', 'alarm_set', 'qa_factoid', 'calendar_set', 'play_game', 'alarm_remove', 'lists_remove', 'transport_taxi', 'recommendation_movies', 'iot_coffee', 'music_query', 'play_podcasts', 'lists_query']
262
 
 
 
263
  class MASSIVE(datasets.GeneratorBasedBuilder):
264
  """MASSIVE: A 1M-Example Multilingual Natural Language Understanding Dataset with 51 Typologically-Diverse Languages"""
265
 
@@ -285,10 +287,12 @@ class MASSIVE(datasets.GeneratorBasedBuilder):
285
  "intent": datasets.features.ClassLabel(names=_INTENTS),
286
  "utt": datasets.Value("string"),
287
  "annot_utt": datasets.Value("string"),
288
- "annot_utt_bio": datasets.Sequence({
289
- "word": datasets.Value("string"),
290
- "tag": datasets.Value("string"),
291
- }),
 
 
292
  "worker_id": datasets.Value("string"),
293
  "slot_method": datasets.Sequence({
294
  "slot": datasets.Value("string"),
@@ -343,7 +347,7 @@ class MASSIVE(datasets.GeneratorBasedBuilder):
343
 
344
  def _getBioFormat(self, text):
345
 
346
- tags, words = [], []
347
 
348
  bio_mode = False
349
  cpt_bio = 0
@@ -386,9 +390,9 @@ class MASSIVE(datasets.GeneratorBasedBuilder):
386
  word = s
387
 
388
  tags.append(token)
389
- words.append(word)
390
 
391
- return [{"word": w, "tag": t} for w, t in zip(words, tags)]
392
 
393
  def _generate_examples(self, filepath, split, lang):
394
 
@@ -436,6 +440,8 @@ class MASSIVE(datasets.GeneratorBasedBuilder):
436
  else:
437
  judgments = []
438
 
 
 
439
  yield key_, {
440
  "id": data["id"],
441
  "locale": data["locale"],
@@ -444,7 +450,8 @@ class MASSIVE(datasets.GeneratorBasedBuilder):
444
  "intent": data["intent"],
445
  "utt": data["utt"],
446
  "annot_utt": data["annot_utt"],
447
- "annot_utt_bio": self._getBioFormat(data["annot_utt"]),
 
448
  "worker_id": data["worker_id"],
449
  "slot_method": slot_method,
450
  "judgments": judgments,
 
260
 
261
  _INTENTS = ['datetime_query', 'iot_hue_lightchange', 'transport_ticket', 'takeaway_query', 'qa_stock', 'general_greet', 'recommendation_events', 'music_dislikeness', 'iot_wemo_off', 'cooking_recipe', 'qa_currency', 'transport_traffic', 'general_quirky', 'weather_query', 'audio_volume_up', 'email_addcontact', 'takeaway_order', 'email_querycontact', 'iot_hue_lightup', 'recommendation_locations', 'play_audiobook', 'lists_createoradd', 'news_query', 'alarm_query', 'iot_wemo_on', 'general_joke', 'qa_definition', 'social_query', 'music_settings', 'audio_volume_other', 'calendar_remove', 'iot_hue_lightdim', 'calendar_query', 'email_sendemail', 'iot_cleaning', 'audio_volume_down', 'play_radio', 'cooking_query', 'datetime_convert', 'qa_maths', 'iot_hue_lightoff', 'iot_hue_lighton', 'transport_query', 'music_likeness', 'email_query', 'play_music', 'audio_volume_mute', 'social_post', 'alarm_set', 'qa_factoid', 'calendar_set', 'play_game', 'alarm_remove', 'lists_remove', 'transport_taxi', 'recommendation_movies', 'iot_coffee', 'music_query', 'play_podcasts', 'lists_query']
262
 
263
+ _TAGS = ['I-playlist_name', 'I-general_frequency', 'B-audiobook_name', 'I-player_setting', 'I-business_type', 'I-time', 'I-place_name', 'I-date', 'B-device_type', 'I-song_name', 'B-timeofday', 'B-movie_type', 'B-order_type', 'B-date', 'B-news_topic', 'I-music_descriptor', 'B-media_type', 'B-cooking_type', 'B-meal_type', 'I-movie_name', 'B-joke_type', 'I-media_type', 'B-list_name', 'I-podcast_descriptor', 'I-meal_type', 'I-transport_descriptor', 'I-transport_agency', 'B-player_setting', 'B-house_place', 'B-music_genre', 'I-timeofday', 'I-personal_info', 'I-definition_word', 'B-podcast_name', 'I-podcast_name', 'I-music_album', 'I-transport_type', 'B-business_name', 'B-transport_name', 'B-sport_type', 'I-house_place', 'I-movie_type', 'B-transport_descriptor', 'B-artist_name', 'O', 'I-email_folder', 'I-event_name', 'B-email_folder', 'I-cooking_type', 'B-music_album', 'I-coffee_type', 'I-alarm_type', 'B-game_type', 'I-audiobook_name', 'B-playlist_name', 'B-alarm_type', 'B-place_name', 'I-relation', 'B-drink_type', 'I-drink_type', 'I-business_name', 'I-artist_name', 'B-music_descriptor', 'B-change_amount', 'I-weather_descriptor', 'I-game_name', 'I-app_name', 'I-ingredient', 'B-song_name', 'B-weather_descriptor', 'I-email_address', 'B-time', 'B-color_type', 'B-food_type', 'I-person', 'B-transport_type', 'B-radio_name', 'I-change_amount', 'B-transport_agency', 'B-movie_name', 'B-general_frequency', 'B-event_name', 'I-joke_type', 'B-relation', 'B-coffee_type', 'I-order_type', 'B-email_address', 'B-app_name', 'B-podcast_descriptor', 'B-definition_word', 'I-list_name', 'B-audiobook_author', 'I-audiobook_author', 'I-sport_type', 'I-news_topic', 'B-personal_info', 'I-radio_name', 'B-person', 'I-color_type', 'I-food_type', 'I-device_type', 'B-time_zone', 'I-music_genre', 'B-business_type', 'B-currency_name', 'I-currency_name', 'B-ingredient', 'I-transport_name', 'B-game_name', 'I-time_zone']
264
+
265
  class MASSIVE(datasets.GeneratorBasedBuilder):
266
  """MASSIVE: A 1M-Example Multilingual Natural Language Understanding Dataset with 51 Typologically-Diverse Languages"""
267
 
 
287
  "intent": datasets.features.ClassLabel(names=_INTENTS),
288
  "utt": datasets.Value("string"),
289
  "annot_utt": datasets.Value("string"),
290
+ "tokens": datasets.Sequence(datasets.Value("string")),
291
+ "ner_tags": datasets.Sequence(
292
+ datasets.features.ClassLabel(
293
+ names = _TAGS
294
+ )
295
+ ),
296
  "worker_id": datasets.Value("string"),
297
  "slot_method": datasets.Sequence({
298
  "slot": datasets.Value("string"),
 
347
 
348
  def _getBioFormat(self, text):
349
 
350
+ tags, tokens = [], []
351
 
352
  bio_mode = False
353
  cpt_bio = 0
 
390
  word = s
391
 
392
  tags.append(token)
393
+ tokens.append(word)
394
 
395
+ return tokens, tags
396
 
397
  def _generate_examples(self, filepath, split, lang):
398
 
 
440
  else:
441
  judgments = []
442
 
443
+ tokens, tags = self._getBioFormat(data["annot_utt"])
444
+
445
  yield key_, {
446
  "id": data["id"],
447
  "locale": data["locale"],
 
450
  "intent": data["intent"],
451
  "utt": data["utt"],
452
  "annot_utt": data["annot_utt"],
453
+ "tokens": tokens,
454
+ "ner_tags": tags,
455
  "worker_id": data["worker_id"],
456
  "slot_method": slot_method,
457
  "judgments": judgments,
README.md CHANGED
@@ -265,19 +265,17 @@ print(dataset[0])
265
  "intent": 48,
266
  "utt": "réveille-moi à neuf heures du matin le vendredi",
267
  "annot_utt": "réveille-moi à [time : neuf heures du matin] le [date : vendredi]",
268
- "annot_utt_bio": {
269
- "word": [
270
- "réveille-moi",
271
- "à",
272
- "neuf",
273
- "heures",
274
- "du",
275
- "matin",
276
- "le",
277
- "vendredi"
278
- ],
279
- "tag": ["O", "O", "B-time", "I-time", "I-time", "I-time", "O", "B-date"]
280
- },
281
  "worker_id": "22",
282
  "slot_method": {
283
  "slot": ["time", "date"],
 
265
  "intent": 48,
266
  "utt": "réveille-moi à neuf heures du matin le vendredi",
267
  "annot_utt": "réveille-moi à [time : neuf heures du matin] le [date : vendredi]",
268
+ "tokens": [
269
+ "réveille-moi",
270
+ "à",
271
+ "neuf",
272
+ "heures",
273
+ "du",
274
+ "matin",
275
+ "le",
276
+ "vendredi"
277
+ ],
278
+ "ner_tags": [44, 44, 71, 5, 5, 5, 44, 13],
 
 
279
  "worker_id": "22",
280
  "slot_method": {
281
  "slot": ["time", "date"],