qanastek commited on
Commit
75a635f
·
1 Parent(s): c8428ad

Add the capability to get the entire corpora using the 'all' subset.

Browse files
Files changed (2) hide show
  1. MASSIVE.py +74 -57
  2. test_MASSIVE.py +14 -1
MASSIVE.py CHANGED
@@ -260,7 +260,7 @@ _SCENARIOS = ['social', 'transport', 'calendar', 'play', 'news', 'datetime', 're
260
 
261
  _INTENTS = ['datetime_query', 'iot_hue_lightchange', 'transport_ticket', 'takeaway_query', 'qa_stock', 'general_greet', 'recommendation_events', 'music_dislikeness', 'iot_wemo_off', 'cooking_recipe', 'qa_currency', 'transport_traffic', 'general_quirky', 'weather_query', 'audio_volume_up', 'email_addcontact', 'takeaway_order', 'email_querycontact', 'iot_hue_lightup', 'recommendation_locations', 'play_audiobook', 'lists_createoradd', 'news_query', 'alarm_query', 'iot_wemo_on', 'general_joke', 'qa_definition', 'social_query', 'music_settings', 'audio_volume_other', 'calendar_remove', 'iot_hue_lightdim', 'calendar_query', 'email_sendemail', 'iot_cleaning', 'audio_volume_down', 'play_radio', 'cooking_query', 'datetime_convert', 'qa_maths', 'iot_hue_lightoff', 'iot_hue_lighton', 'transport_query', 'music_likeness', 'email_query', 'play_music', 'audio_volume_mute', 'social_post', 'alarm_set', 'qa_factoid', 'calendar_set', 'play_game', 'alarm_remove', 'lists_remove', 'transport_taxi', 'recommendation_movies', 'iot_coffee', 'music_query', 'play_podcasts', 'lists_query']
262
 
263
- _TAGS = ['O', 'I-playlist_name', 'I-general_frequency', 'B-audiobook_name', 'I-player_setting', 'I-business_type', 'I-time', 'I-place_name', 'I-date', 'B-device_type', 'I-song_name', 'B-timeofday', 'B-movie_type', 'B-order_type', 'B-date', 'B-news_topic', 'I-music_descriptor', 'B-media_type', 'B-cooking_type', 'B-meal_type', 'I-movie_name', 'B-joke_type', 'I-media_type', 'B-list_name', 'I-podcast_descriptor', 'I-meal_type', 'I-transport_descriptor', 'I-transport_agency', 'B-player_setting', 'B-house_place', 'B-music_genre', 'I-timeofday', 'I-personal_info', 'I-definition_word', 'B-podcast_name', 'I-podcast_name', 'I-music_album', 'I-transport_type', 'B-business_name', 'B-transport_name', 'B-sport_type', 'I-house_place', 'I-movie_type', 'B-transport_descriptor', 'B-artist_name', 'I-email_folder', 'I-event_name', 'B-email_folder', 'I-cooking_type', 'B-music_album', 'I-coffee_type', 'I-alarm_type', 'B-game_type', 'I-audiobook_name', 'B-playlist_name', 'B-alarm_type', 'B-place_name', 'I-relation', 'B-drink_type', 'I-drink_type', 'I-business_name', 'I-artist_name', 'B-music_descriptor', 'B-change_amount', 'I-weather_descriptor', 'I-game_name', 'I-app_name', 'I-ingredient', 'B-song_name', 'B-weather_descriptor', 'I-email_address', 'B-time', 'B-color_type', 'B-food_type', 'I-person', 'B-transport_type', 'B-radio_name', 'I-change_amount', 'B-transport_agency', 'B-movie_name', 'B-general_frequency', 'B-event_name', 'I-joke_type', 'B-relation', 'B-coffee_type', 'I-order_type', 'B-email_address', 'B-app_name', 'B-podcast_descriptor', 'B-definition_word', 'I-list_name', 'B-audiobook_author', 'I-audiobook_author', 'I-sport_type', 'I-news_topic', 'B-personal_info', 'I-radio_name', 'B-person', 'I-color_type', 'I-food_type', 'I-device_type', 'B-time_zone', 'I-music_genre', 'B-business_type', 'B-currency_name', 'I-currency_name', 'B-ingredient', 'I-transport_name', 'B-game_name', 'I-time_zone']
264
 
265
  class MASSIVE(datasets.GeneratorBasedBuilder):
266
  """MASSIVE: A 1M-Example Multilingual Natural Language Understanding Dataset with 51 Typologically-Diverse Languages"""
@@ -270,9 +270,15 @@ class MASSIVE(datasets.GeneratorBasedBuilder):
270
  name = name,
271
  version = datasets.Version("1.0.0"),
272
  description = f"The MASSIVE corpora for {name}",
273
- ) for name in _LANGUAGE_PAIRS
274
  ]
275
 
 
 
 
 
 
 
276
  DEFAULT_CONFIG_NAME = "en-US"
277
 
278
  def _info(self):
@@ -396,65 +402,76 @@ class MASSIVE(datasets.GeneratorBasedBuilder):
396
 
397
  def _generate_examples(self, filepath, split, lang):
398
 
399
- filepath = filepath + "/1.0/data/" + lang + ".jsonl"
400
 
401
- logger.info("⏳ Generating examples from = %s", filepath)
 
 
 
402
 
403
- # Read the file
404
- f = open(filepath,"r")
405
- lines = f.read().split("\n")
406
- f.close()
407
 
408
- key_ = 0
409
 
410
- for line in lines:
411
 
412
- data = json.loads(line)
 
 
 
 
 
413
 
414
- if data["partition"] != split:
415
- continue
416
 
417
- # Slot method
418
- if "slot_method" in data:
419
- slot_method = [
420
- {
421
- "slot": s["slot"],
422
- "method": s["method"],
423
- } for s in data["slot_method"]
424
- ]
425
- else:
426
- slot_method = []
427
-
428
- # Judgments
429
- if "judgments" in data:
430
- judgments = [
431
- {
432
- "worker_id": j["worker_id"],
433
- "intent_score": j["intent_score"],
434
- "slots_score": j["slots_score"],
435
- "grammar_score": j["grammar_score"],
436
- "spelling_score": j["spelling_score"],
437
- "language_identification": j["language_identification"],
438
- } for j in data["judgments"]
439
- ]
440
- else:
441
- judgments = []
442
-
443
- tokens, tags = self._getBioFormat(data["annot_utt"])
444
-
445
- yield key_, {
446
- "id": data["id"],
447
- "locale": data["locale"],
448
- "partition": data["partition"],
449
- "scenario": data["scenario"],
450
- "intent": data["intent"],
451
- "utt": data["utt"],
452
- "annot_utt": data["annot_utt"],
453
- "tokens": tokens,
454
- "ner_tags": tags,
455
- "worker_id": data["worker_id"],
456
- "slot_method": slot_method,
457
- "judgments": judgments,
458
- }
459
-
460
- key_ += 1
 
 
 
 
 
 
 
 
260
 
261
  _INTENTS = ['datetime_query', 'iot_hue_lightchange', 'transport_ticket', 'takeaway_query', 'qa_stock', 'general_greet', 'recommendation_events', 'music_dislikeness', 'iot_wemo_off', 'cooking_recipe', 'qa_currency', 'transport_traffic', 'general_quirky', 'weather_query', 'audio_volume_up', 'email_addcontact', 'takeaway_order', 'email_querycontact', 'iot_hue_lightup', 'recommendation_locations', 'play_audiobook', 'lists_createoradd', 'news_query', 'alarm_query', 'iot_wemo_on', 'general_joke', 'qa_definition', 'social_query', 'music_settings', 'audio_volume_other', 'calendar_remove', 'iot_hue_lightdim', 'calendar_query', 'email_sendemail', 'iot_cleaning', 'audio_volume_down', 'play_radio', 'cooking_query', 'datetime_convert', 'qa_maths', 'iot_hue_lightoff', 'iot_hue_lighton', 'transport_query', 'music_likeness', 'email_query', 'play_music', 'audio_volume_mute', 'social_post', 'alarm_set', 'qa_factoid', 'calendar_set', 'play_game', 'alarm_remove', 'lists_remove', 'transport_taxi', 'recommendation_movies', 'iot_coffee', 'music_query', 'play_podcasts', 'lists_query']
262
 
263
+ _TAGS = ['O', 'B-food_type', 'B-movie_type', 'B-person', 'B-change_amount', 'I-relation', 'I-game_name', 'B-date', 'B-movie_name', 'I-person', 'I-place_name', 'I-podcast_descriptor', 'I-audiobook_name', 'B-email_folder', 'B-coffee_type', 'B-app_name', 'I-time', 'I-coffee_type', 'B-transport_agency', 'B-podcast_descriptor', 'I-playlist_name', 'B-media_type', 'B-song_name', 'I-music_descriptor', 'I-song_name', 'B-event_name', 'I-timeofday', 'B-alarm_type', 'B-cooking_type', 'I-business_name', 'I-color_type', 'B-podcast_name', 'I-personal_info', 'B-weather_descriptor', 'I-list_name', 'B-transport_descriptor', 'I-game_type', 'I-date', 'B-place_name', 'B-color_type', 'B-game_name', 'I-artist_name', 'I-drink_type', 'B-business_name', 'B-timeofday', 'B-sport_type', 'I-player_setting', 'I-transport_agency', 'B-game_type', 'B-player_setting', 'I-music_album', 'I-event_name', 'I-general_frequency', 'I-podcast_name', 'I-cooking_type', 'I-radio_name', 'I-joke_type', 'I-meal_type', 'I-transport_type', 'B-joke_type', 'B-time', 'B-order_type', 'B-business_type', 'B-general_frequency', 'I-food_type', 'I-time_zone', 'B-currency_name', 'B-time_zone', 'B-ingredient', 'B-house_place', 'B-audiobook_name', 'I-ingredient', 'I-media_type', 'I-news_topic', 'B-music_genre', 'I-definition_word', 'B-list_name', 'B-playlist_name', 'B-email_address', 'I-currency_name', 'I-movie_name', 'I-device_type', 'I-weather_descriptor', 'B-audiobook_author', 'I-audiobook_author', 'I-app_name', 'I-order_type', 'I-transport_name', 'B-radio_name', 'I-business_type', 'B-definition_word', 'B-artist_name', 'I-movie_type', 'B-transport_name', 'I-email_folder', 'B-music_album', 'I-house_place', 'I-music_genre', 'B-drink_type', 'I-alarm_type', 'B-music_descriptor', 'B-news_topic', 'B-meal_type', 'I-transport_descriptor', 'I-email_address', 'I-change_amount', 'B-device_type', 'B-transport_type', 'B-relation', 'I-sport_type', 'B-personal_info']
264
 
265
  class MASSIVE(datasets.GeneratorBasedBuilder):
266
  """MASSIVE: A 1M-Example Multilingual Natural Language Understanding Dataset with 51 Typologically-Diverse Languages"""
 
270
  name = name,
271
  version = datasets.Version("1.0.0"),
272
  description = f"The MASSIVE corpora for {name}",
273
+ ) for name in _LANGUAGE_PAIRS
274
  ]
275
 
276
+ BUILDER_CONFIGS.append(datasets.BuilderConfig(
277
+ name = "all",
278
+ version = datasets.Version("1.0.0"),
279
+ description = f"The MASSIVE corpora for entire corpus",
280
+ ))
281
+
282
  DEFAULT_CONFIG_NAME = "en-US"
283
 
284
  def _info(self):
 
402
 
403
  def _generate_examples(self, filepath, split, lang):
404
 
405
+ key_ = 0
406
 
407
+ if lang == "all":
408
+ lang = _LANGUAGE_PAIRS
409
+ else:
410
+ lang = [lang]
411
 
412
+ logger.info("⏳ Generating examples from = %s", ", ".join(lang))
 
 
 
413
 
414
+ for l in lang:
415
 
416
+ path = filepath + "/1.0/data/" + l + ".jsonl"
417
 
418
+ print(f"->{l}<-")
419
+
420
+ # Read the file
421
+ f = open(path ,"r")
422
+ lines = f.read().split("\n")
423
+ f.close()
424
 
425
+ for line in lines:
 
426
 
427
+ data = json.loads(line)
428
+
429
+ # print(data["id"])
430
+
431
+ if data["partition"] != split:
432
+ continue
433
+
434
+ # Slot method
435
+ if "slot_method" in data:
436
+ slot_method = [
437
+ {
438
+ "slot": s["slot"],
439
+ "method": s["method"],
440
+ } for s in data["slot_method"]
441
+ ]
442
+ else:
443
+ slot_method = []
444
+
445
+ # Judgments
446
+ if "judgments" in data:
447
+ judgments = [
448
+ {
449
+ "worker_id": j["worker_id"],
450
+ "intent_score": j["intent_score"],
451
+ "slots_score": j["slots_score"],
452
+ "grammar_score": j["grammar_score"],
453
+ "spelling_score": j["spelling_score"],
454
+ "language_identification": j["language_identification"] if "language_identification" in j else "target",
455
+ } for j in data["judgments"]
456
+ ]
457
+ else:
458
+ judgments = []
459
+
460
+ tokens, tags = self._getBioFormat(data["annot_utt"])
461
+
462
+ yield key_, {
463
+ "id": data["id"],
464
+ "locale": data["locale"],
465
+ "partition": data["partition"],
466
+ "scenario": data["scenario"],
467
+ "intent": data["intent"],
468
+ "utt": data["utt"],
469
+ "annot_utt": data["annot_utt"],
470
+ "tokens": tokens,
471
+ "ner_tags": tags,
472
+ "worker_id": data["worker_id"],
473
+ "slot_method": slot_method,
474
+ "judgments": judgments,
475
+ }
476
+
477
+ key_ += 1
test_MASSIVE.py CHANGED
@@ -5,7 +5,9 @@ set_caching_enabled(False)
5
  source = "MASSIVE.py"
6
  # source = "qanastek/MASSIVE"
7
 
8
- dataset = load_dataset(source, "fr-FR")
 
 
9
  # dataset = load_dataset(source, "fr-FR", download_mode="force_redownload")
10
  # print(dataset)
11
 
@@ -17,3 +19,14 @@ print(dataset)
17
  # print(dataset[0])
18
  f = dataset["train"][0]
19
  print(f)
 
 
 
 
 
 
 
 
 
 
 
 
5
  source = "MASSIVE.py"
6
  # source = "qanastek/MASSIVE"
7
 
8
+ dataset = load_dataset(source, "all")
9
+ # dataset = load_dataset(source, "zh-CN")
10
+ # dataset = load_dataset(source, "fr-FR")
11
  # dataset = load_dataset(source, "fr-FR", download_mode="force_redownload")
12
  # print(dataset)
13
 
 
19
  # print(dataset[0])
20
  f = dataset["train"][0]
21
  print(f)
22
+
23
+ # tags = []
24
+
25
+ # for e in dataset["train"]:
26
+ # tags.extend(
27
+ # e["ner_tags"]
28
+ # )
29
+
30
+ # print("#"*50)
31
+
32
+ # print(list(set(tags)))