albertvillanova HF staff commited on
Commit
7725d1e
1 Parent(s): a8dfb46

Delete loading script

Browse files
Files changed (1) hide show
  1. cdt.py +0 -93
cdt.py DELETED
@@ -1,93 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """Cyberbullying detection task"""
16
-
17
-
18
- import csv
19
- import os
20
-
21
- import datasets
22
- from datasets.tasks import TextClassification
23
-
24
-
25
- _CITATION = """\
26
- @article{ptaszynski2019results,
27
- title={Results of the PolEval 2019 Shared Task 6: First Dataset and Open Shared Task for Automatic Cyberbullying Detection in Polish Twitter},
28
- author={Ptaszynski, Michal and Pieciukiewicz, Agata and Dybala, Pawel},
29
- journal={Proceedings of the PolEval 2019 Workshop},
30
- publisher={Institute of Computer Science, Polish Academy of Sciences},
31
- pages={89},
32
- year={2019}
33
- }
34
- """
35
-
36
- _DESCRIPTION = """\
37
- The Cyberbullying Detection task was part of 2019 edition of PolEval competition. The goal is to predict if a given Twitter message contains a cyberbullying (harmful) content.
38
- """
39
-
40
- _HOMEPAGE = "https://github.com/ptaszynski/cyberbullying-Polish"
41
-
42
- _LICENSE = "BSD 3-Clause"
43
-
44
- _URLs = "https://klejbenchmark.com/static/data/klej_cbd.zip"
45
-
46
-
47
- class Cdt(datasets.GeneratorBasedBuilder):
48
- """CyberbullyingDetectionTask"""
49
-
50
- VERSION = datasets.Version("1.1.0")
51
-
52
- def _info(self):
53
- return datasets.DatasetInfo(
54
- description=_DESCRIPTION,
55
- features=datasets.Features(
56
- {
57
- "sentence": datasets.Value("string"),
58
- "target": datasets.ClassLabel(names=["0", "1"]),
59
- }
60
- ),
61
- supervised_keys=None,
62
- homepage=_HOMEPAGE,
63
- license=_LICENSE,
64
- citation=_CITATION,
65
- task_templates=[TextClassification(text_column="sentence", label_column="target")],
66
- )
67
-
68
- def _split_generators(self, dl_manager):
69
- """Returns SplitGenerators."""
70
- data_dir = dl_manager.download_and_extract(_URLs)
71
- return [
72
- datasets.SplitGenerator(
73
- name=datasets.Split.TRAIN,
74
- gen_kwargs={
75
- "filepath": os.path.join(data_dir, "train.tsv"),
76
- "split": "train",
77
- },
78
- ),
79
- datasets.SplitGenerator(
80
- name=datasets.Split.TEST,
81
- gen_kwargs={"filepath": os.path.join(data_dir, "test_features.tsv"), "split": "test"},
82
- ),
83
- ]
84
-
85
- def _generate_examples(self, filepath, split):
86
- """Yields examples."""
87
- with open(filepath, encoding="utf-8") as f:
88
- reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
89
- for id_, row in enumerate(reader):
90
- yield id_, {
91
- "sentence": row["sentence"],
92
- "target": -1 if split == "test" else row["target"],
93
- }