qmsum-cleaned / cleaning_code.py
pszemraj's picture
Upload cleaning_code.py
031526e
raw
history blame
4.67 kB
# -*- coding: utf-8 -*-
"""scratchpad
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/notebooks/empty.ipynb
"""
pip install -q datasets transformers
from datasets import load_dataset
dataset = load_dataset("tau/scrolls", "qmsum")
dataset
!pip install clean-text[gpl] -q
from cleantext import clean
train_df = dataset["train"].to_pandas().convert_dtypes()
val_df = dataset["validation"].to_pandas().convert_dtypes()
test_df = dataset["test"].to_pandas().convert_dtypes()
from tqdm.auto import tqdm
tqdm.pandas()
train_df["input"] = train_df["input"].progress_apply(clean, lower=False, no_urls=True, no_emails=True)
val_df["input"] = val_df["input"].progress_apply(clean, lower=False, no_urls=True, no_emails=True)
test_df["input"] = test_df["input"].progress_apply(clean, lower=False, no_urls=True, no_emails=True)
train_df["output"] = train_df["output"].progress_apply(clean, lower=False, no_urls=True, no_emails=True)
val_df["output"] = val_df["output"].progress_apply(clean, lower=False, no_urls=True, no_emails=True)
test_df["output"] = test_df["output"].progress_apply(clean, lower=False, no_urls=True, no_emails=True)
import re
import re
def fix_punct_whitespace(text: str) -> str:
# Fix spaces around apostrophes
text = re.sub(r"([a-zA-Z])\s?'\s?([a-zA-Z])", r"\1'\2", text)
# Remove spaces before punctuation marks (except for parentheses)
text = re.sub(r"\s+([.,;:!?])", r"\1", text)
# Add a space after punctuation marks (except for parentheses) if missing
text = re.sub(r"([.,;:!?])(?=[^\s])", r"\1 ", text)
# Handle spaces around parentheses
text = re.sub(r"\s?\(\s?", r" (", text)
text = re.sub(r"\s?\)\s?", r")", text)
# Add a space after a closing parenthesis if:
# followed by a word or opening parenthesis
text = re.sub(r"\)(?=[^\s.,;:!?])", r") ", text)
# Handle spaces around quotation marks
text = re.sub(r'\s?"', r'"', text)
text = re.sub(r'"\s?', r'" ', text)
# Handle spaces around single quotes
text = re.sub(r"\s?'", r"'", text)
text = re.sub(r"'\s?", r"' ", text)
# Handle comma in numbers
text = re.sub(r"(\d),\s+(\d)", r"\1,\2", text)
return text.replace("' ", "'")
train_df["input"] = train_df["input"].progress_apply(fix_punct_whitespace)
val_df["input"] = val_df["input"].progress_apply(fix_punct_whitespace)
test_df["input"] = test_df["input"].progress_apply(fix_punct_whitespace)
train_df["output"] = train_df["output"].progress_apply(fix_punct_whitespace)
val_df["output"] = val_df["output"].progress_apply(fix_punct_whitespace)
test_df["output"] = test_df["output"].progress_apply(fix_punct_whitespace)
train_df.head(2)
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("pszemraj/long-t5-tglobal-xl-16384-book-summary-8bit")
def get_token_count(text:str):
if len(text) < 1:
return 0
else:
return len(tokenizer.encode(text, truncation=False, padding=False))
get_token_count("ayyy waddup my g")
train_df["input_token_count"] = train_df["input"].progress_apply(get_token_count)
val_df["input_token_count"] = val_df["input"].progress_apply(get_token_count)
test_df["input_token_count"] = test_df["input"].progress_apply(get_token_count)
train_df["output_token_count"] = train_df["output"].progress_apply(get_token_count)
val_df["output_token_count"] = val_df["output"].progress_apply(get_token_count)
test_df["output_token_count"] = test_df["output"].progress_apply(get_token_count)
train_df.describe()
"""# New Section"""
# Commented out IPython magic to ensure Python compatibility.
# %%bash
# curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | bash
# apt-get install git-lfs -q
# git lfs install
!pip install -U -q transformers accelerate
from huggingface_hub import notebook_login
notebook_login()
# Commented out IPython magic to ensure Python compatibility.
# %%bash
#
# git lfs install
# git clone https://huggingface.co/datasets/pszemraj/qmsum-cleaned
from pathlib import Path
target = Path.cwd() / 'qmsum-cleaned'
target.exists()
train_df.to_parquet(target / 'train.parquet')
val_df.to_parquet(target / 'validation.parquet')
test_df.to_parquet(target/ 'test.parquet')
!ls $target
# Commented out IPython magic to ensure Python compatibility.
# %cd $target
!git pull
!git lfs install && git lfs track *.parquet
!git add . && git commit -a -m add_cleaned
!git push
# %cd ..
# Commented out IPython magic to ensure Python compatibility.
# %%bash
# git config --global user.email "you@example.com"
# git config --global user.name "colab"