|
import torch |
|
|
|
from ..modules.attention import * |
|
from ..modules.diffusionmodules.util import AlphaBlender, linear, timestep_embedding |
|
|
|
|
|
class TimeMixSequential(nn.Sequential): |
|
def forward(self, x, context=None, timesteps=None): |
|
for layer in self: |
|
x = layer(x, context, timesteps) |
|
|
|
return x |
|
|
|
|
|
class VideoTransformerBlock(nn.Module): |
|
ATTENTION_MODES = { |
|
"softmax": CrossAttention, |
|
"softmax-xformers": MemoryEfficientCrossAttention, |
|
} |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
n_heads, |
|
d_head, |
|
dropout=0.0, |
|
context_dim=None, |
|
gated_ff=True, |
|
checkpoint=True, |
|
timesteps=None, |
|
ff_in=False, |
|
inner_dim=None, |
|
attn_mode="softmax", |
|
disable_self_attn=False, |
|
disable_temporal_crossattention=False, |
|
switch_temporal_ca_to_sa=False, |
|
): |
|
super().__init__() |
|
|
|
attn_cls = self.ATTENTION_MODES[attn_mode] |
|
|
|
self.ff_in = ff_in or inner_dim is not None |
|
if inner_dim is None: |
|
inner_dim = dim |
|
|
|
assert int(n_heads * d_head) == inner_dim |
|
|
|
self.is_res = inner_dim == dim |
|
|
|
if self.ff_in: |
|
self.norm_in = nn.LayerNorm(dim) |
|
self.ff_in = FeedForward( |
|
dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff |
|
) |
|
|
|
self.timesteps = timesteps |
|
self.disable_self_attn = disable_self_attn |
|
if self.disable_self_attn: |
|
self.attn1 = attn_cls( |
|
query_dim=inner_dim, |
|
heads=n_heads, |
|
dim_head=d_head, |
|
context_dim=context_dim, |
|
dropout=dropout, |
|
) |
|
else: |
|
self.attn1 = attn_cls( |
|
query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout |
|
) |
|
|
|
self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff) |
|
|
|
if disable_temporal_crossattention: |
|
if switch_temporal_ca_to_sa: |
|
raise ValueError |
|
else: |
|
self.attn2 = None |
|
else: |
|
self.norm2 = nn.LayerNorm(inner_dim) |
|
if switch_temporal_ca_to_sa: |
|
self.attn2 = attn_cls( |
|
query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout |
|
) |
|
else: |
|
self.attn2 = attn_cls( |
|
query_dim=inner_dim, |
|
context_dim=context_dim, |
|
heads=n_heads, |
|
dim_head=d_head, |
|
dropout=dropout, |
|
) |
|
|
|
self.norm1 = nn.LayerNorm(inner_dim) |
|
self.norm3 = nn.LayerNorm(inner_dim) |
|
self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa |
|
|
|
self.checkpoint = checkpoint |
|
if self.checkpoint: |
|
print(f"{self.__class__.__name__} is using checkpointing") |
|
|
|
def forward( |
|
self, x: torch.Tensor, context: torch.Tensor = None, timesteps: int = None |
|
) -> torch.Tensor: |
|
if self.checkpoint: |
|
return checkpoint(self._forward, x, context, timesteps) |
|
else: |
|
return self._forward(x, context, timesteps=timesteps) |
|
|
|
def _forward(self, x, context=None, timesteps=None): |
|
assert self.timesteps or timesteps |
|
assert not (self.timesteps and timesteps) or self.timesteps == timesteps |
|
timesteps = self.timesteps or timesteps |
|
B, S, C = x.shape |
|
x = rearrange(x, "(b t) s c -> (b s) t c", t=timesteps) |
|
|
|
if self.ff_in: |
|
x_skip = x |
|
x = self.ff_in(self.norm_in(x)) |
|
if self.is_res: |
|
x += x_skip |
|
|
|
if self.disable_self_attn: |
|
x = self.attn1(self.norm1(x), context=context) + x |
|
else: |
|
x = self.attn1(self.norm1(x)) + x |
|
|
|
if self.attn2 is not None: |
|
if self.switch_temporal_ca_to_sa: |
|
x = self.attn2(self.norm2(x)) + x |
|
else: |
|
x = self.attn2(self.norm2(x), context=context) + x |
|
x_skip = x |
|
x = self.ff(self.norm3(x)) |
|
if self.is_res: |
|
x += x_skip |
|
|
|
x = rearrange( |
|
x, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps |
|
) |
|
return x |
|
|
|
def get_last_layer(self): |
|
return self.ff.net[-1].weight |
|
|
|
|
|
class SpatialVideoTransformer(SpatialTransformer): |
|
def __init__( |
|
self, |
|
in_channels, |
|
n_heads, |
|
d_head, |
|
depth=1, |
|
dropout=0.0, |
|
use_linear=False, |
|
context_dim=None, |
|
use_spatial_context=False, |
|
timesteps=None, |
|
merge_strategy: str = "fixed", |
|
merge_factor: float = 0.5, |
|
time_context_dim=None, |
|
ff_in=False, |
|
checkpoint=False, |
|
time_depth=1, |
|
attn_mode="softmax", |
|
disable_self_attn=False, |
|
disable_temporal_crossattention=False, |
|
max_time_embed_period: int = 10000, |
|
): |
|
super().__init__( |
|
in_channels, |
|
n_heads, |
|
d_head, |
|
depth=depth, |
|
dropout=dropout, |
|
attn_type=attn_mode, |
|
use_checkpoint=checkpoint, |
|
context_dim=context_dim, |
|
use_linear=use_linear, |
|
disable_self_attn=disable_self_attn, |
|
) |
|
self.time_depth = time_depth |
|
self.depth = depth |
|
self.max_time_embed_period = max_time_embed_period |
|
|
|
time_mix_d_head = d_head |
|
n_time_mix_heads = n_heads |
|
|
|
time_mix_inner_dim = int(time_mix_d_head * n_time_mix_heads) |
|
|
|
inner_dim = n_heads * d_head |
|
if use_spatial_context: |
|
time_context_dim = context_dim |
|
|
|
self.time_stack = nn.ModuleList( |
|
[ |
|
VideoTransformerBlock( |
|
inner_dim, |
|
n_time_mix_heads, |
|
time_mix_d_head, |
|
dropout=dropout, |
|
context_dim=time_context_dim, |
|
timesteps=timesteps, |
|
checkpoint=checkpoint, |
|
ff_in=ff_in, |
|
inner_dim=time_mix_inner_dim, |
|
attn_mode=attn_mode, |
|
disable_self_attn=disable_self_attn, |
|
disable_temporal_crossattention=disable_temporal_crossattention, |
|
) |
|
for _ in range(self.depth) |
|
] |
|
) |
|
|
|
assert len(self.time_stack) == len(self.transformer_blocks) |
|
|
|
self.use_spatial_context = use_spatial_context |
|
self.in_channels = in_channels |
|
|
|
time_embed_dim = self.in_channels * 4 |
|
self.time_pos_embed = nn.Sequential( |
|
linear(self.in_channels, time_embed_dim), |
|
nn.SiLU(), |
|
linear(time_embed_dim, self.in_channels), |
|
) |
|
|
|
self.time_mixer = AlphaBlender( |
|
alpha=merge_factor, merge_strategy=merge_strategy |
|
) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
context: Optional[torch.Tensor] = None, |
|
time_context: Optional[torch.Tensor] = None, |
|
timesteps: Optional[int] = None, |
|
image_only_indicator: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
_, _, h, w = x.shape |
|
x_in = x |
|
spatial_context = None |
|
if exists(context): |
|
spatial_context = context |
|
|
|
if self.use_spatial_context: |
|
assert ( |
|
context.ndim == 3 |
|
), f"n dims of spatial context should be 3 but are {context.ndim}" |
|
|
|
time_context = context |
|
time_context_first_timestep = time_context[::timesteps] |
|
time_context = repeat( |
|
time_context_first_timestep, "b ... -> (b n) ...", n=h * w |
|
) |
|
elif time_context is not None and not self.use_spatial_context: |
|
time_context = repeat(time_context, "b ... -> (b n) ...", n=h * w) |
|
if time_context.ndim == 2: |
|
time_context = rearrange(time_context, "b c -> b 1 c") |
|
|
|
x = self.norm(x) |
|
if not self.use_linear: |
|
x = self.proj_in(x) |
|
x = rearrange(x, "b c h w -> b (h w) c") |
|
if self.use_linear: |
|
x = self.proj_in(x) |
|
|
|
num_frames = torch.arange(timesteps, device=x.device) |
|
num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps) |
|
num_frames = rearrange(num_frames, "b t -> (b t)") |
|
t_emb = timestep_embedding( |
|
num_frames, |
|
self.in_channels, |
|
repeat_only=False, |
|
max_period=self.max_time_embed_period, |
|
) |
|
emb = self.time_pos_embed(t_emb) |
|
emb = emb[:, None, :] |
|
|
|
for it_, (block, mix_block) in enumerate( |
|
zip(self.transformer_blocks, self.time_stack) |
|
): |
|
x = block( |
|
x, |
|
context=spatial_context, |
|
) |
|
|
|
x_mix = x |
|
x_mix = x_mix + emb |
|
|
|
x_mix = mix_block(x_mix, context=time_context, timesteps=timesteps) |
|
x = self.time_mixer( |
|
x_spatial=x, |
|
x_temporal=x_mix, |
|
image_only_indicator=image_only_indicator, |
|
) |
|
if self.use_linear: |
|
x = self.proj_out(x) |
|
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w) |
|
if not self.use_linear: |
|
x = self.proj_out(x) |
|
out = x + x_in |
|
return out |
|
|