|
from functools import partial |
|
from typing import List, Optional, Union |
|
|
|
from einops import rearrange |
|
|
|
from ...modules.diffusionmodules.openaimodel import * |
|
from ...modules.video_attention import SpatialVideoTransformer |
|
from ...util import default |
|
from .util import AlphaBlender |
|
|
|
|
|
class VideoResBlock(ResBlock): |
|
def __init__( |
|
self, |
|
channels: int, |
|
emb_channels: int, |
|
dropout: float, |
|
video_kernel_size: Union[int, List[int]] = 3, |
|
merge_strategy: str = "fixed", |
|
merge_factor: float = 0.5, |
|
out_channels: Optional[int] = None, |
|
use_conv: bool = False, |
|
use_scale_shift_norm: bool = False, |
|
dims: int = 2, |
|
use_checkpoint: bool = False, |
|
up: bool = False, |
|
down: bool = False, |
|
): |
|
super().__init__( |
|
channels, |
|
emb_channels, |
|
dropout, |
|
out_channels=out_channels, |
|
use_conv=use_conv, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
up=up, |
|
down=down, |
|
) |
|
|
|
self.time_stack = ResBlock( |
|
default(out_channels, channels), |
|
emb_channels, |
|
dropout=dropout, |
|
dims=3, |
|
out_channels=default(out_channels, channels), |
|
use_scale_shift_norm=False, |
|
use_conv=False, |
|
up=False, |
|
down=False, |
|
kernel_size=video_kernel_size, |
|
use_checkpoint=use_checkpoint, |
|
exchange_temb_dims=True, |
|
) |
|
self.time_mixer = AlphaBlender( |
|
alpha=merge_factor, |
|
merge_strategy=merge_strategy, |
|
rearrange_pattern="b t -> b 1 t 1 1", |
|
) |
|
|
|
def forward( |
|
self, |
|
x: th.Tensor, |
|
emb: th.Tensor, |
|
num_video_frames: int, |
|
image_only_indicator: Optional[th.Tensor] = None, |
|
) -> th.Tensor: |
|
x = super().forward(x, emb) |
|
|
|
x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames) |
|
x = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames) |
|
|
|
x = self.time_stack( |
|
x, rearrange(emb, "(b t) ... -> b t ...", t=num_video_frames) |
|
) |
|
x = self.time_mixer( |
|
x_spatial=x_mix, x_temporal=x, image_only_indicator=image_only_indicator |
|
) |
|
x = rearrange(x, "b c t h w -> (b t) c h w") |
|
return x |
|
|
|
|
|
class VideoUNet(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
model_channels: int, |
|
out_channels: int, |
|
num_res_blocks: int, |
|
attention_resolutions: int, |
|
dropout: float = 0.0, |
|
channel_mult: List[int] = (1, 2, 4, 8), |
|
conv_resample: bool = True, |
|
dims: int = 2, |
|
num_classes: Optional[int] = None, |
|
use_checkpoint: bool = False, |
|
num_heads: int = -1, |
|
num_head_channels: int = -1, |
|
num_heads_upsample: int = -1, |
|
use_scale_shift_norm: bool = False, |
|
resblock_updown: bool = False, |
|
transformer_depth: Union[List[int], int] = 1, |
|
transformer_depth_middle: Optional[int] = None, |
|
context_dim: Optional[int] = None, |
|
time_downup: bool = False, |
|
time_context_dim: Optional[int] = None, |
|
extra_ff_mix_layer: bool = False, |
|
use_spatial_context: bool = False, |
|
merge_strategy: str = "fixed", |
|
merge_factor: float = 0.5, |
|
spatial_transformer_attn_type: str = "softmax", |
|
video_kernel_size: Union[int, List[int]] = 3, |
|
use_linear_in_transformer: bool = False, |
|
adm_in_channels: Optional[int] = None, |
|
disable_temporal_crossattention: bool = False, |
|
max_ddpm_temb_period: int = 10000, |
|
): |
|
super().__init__() |
|
assert context_dim is not None |
|
|
|
if num_heads_upsample == -1: |
|
num_heads_upsample = num_heads |
|
|
|
if num_heads == -1: |
|
assert num_head_channels != -1 |
|
|
|
if num_head_channels == -1: |
|
assert num_heads != -1 |
|
|
|
self.in_channels = in_channels |
|
self.model_channels = model_channels |
|
self.out_channels = out_channels |
|
if isinstance(transformer_depth, int): |
|
transformer_depth = len(channel_mult) * [transformer_depth] |
|
transformer_depth_middle = default( |
|
transformer_depth_middle, transformer_depth[-1] |
|
) |
|
|
|
self.num_res_blocks = num_res_blocks |
|
self.attention_resolutions = attention_resolutions |
|
self.dropout = dropout |
|
self.channel_mult = channel_mult |
|
self.conv_resample = conv_resample |
|
self.num_classes = num_classes |
|
self.use_checkpoint = use_checkpoint |
|
self.num_heads = num_heads |
|
self.num_head_channels = num_head_channels |
|
self.num_heads_upsample = num_heads_upsample |
|
|
|
time_embed_dim = model_channels * 4 |
|
self.time_embed = nn.Sequential( |
|
linear(model_channels, time_embed_dim), |
|
nn.SiLU(), |
|
linear(time_embed_dim, time_embed_dim), |
|
) |
|
|
|
if self.num_classes is not None: |
|
if isinstance(self.num_classes, int): |
|
self.label_emb = nn.Embedding(num_classes, time_embed_dim) |
|
elif self.num_classes == "continuous": |
|
print("setting up linear c_adm embedding layer") |
|
self.label_emb = nn.Linear(1, time_embed_dim) |
|
elif self.num_classes == "timestep": |
|
self.label_emb = nn.Sequential( |
|
Timestep(model_channels), |
|
nn.Sequential( |
|
linear(model_channels, time_embed_dim), |
|
nn.SiLU(), |
|
linear(time_embed_dim, time_embed_dim), |
|
), |
|
) |
|
|
|
elif self.num_classes == "sequential": |
|
assert adm_in_channels is not None |
|
self.label_emb = nn.Sequential( |
|
nn.Sequential( |
|
linear(adm_in_channels, time_embed_dim), |
|
nn.SiLU(), |
|
linear(time_embed_dim, time_embed_dim), |
|
) |
|
) |
|
else: |
|
raise ValueError() |
|
|
|
self.input_blocks = nn.ModuleList( |
|
[ |
|
TimestepEmbedSequential( |
|
conv_nd(dims, in_channels, model_channels, 3, padding=1) |
|
) |
|
] |
|
) |
|
self._feature_size = model_channels |
|
input_block_chans = [model_channels] |
|
ch = model_channels |
|
ds = 1 |
|
|
|
def get_attention_layer( |
|
ch, |
|
num_heads, |
|
dim_head, |
|
depth=1, |
|
context_dim=None, |
|
use_checkpoint=False, |
|
disabled_sa=False, |
|
): |
|
return SpatialVideoTransformer( |
|
ch, |
|
num_heads, |
|
dim_head, |
|
depth=depth, |
|
context_dim=context_dim, |
|
time_context_dim=time_context_dim, |
|
dropout=dropout, |
|
ff_in=extra_ff_mix_layer, |
|
use_spatial_context=use_spatial_context, |
|
merge_strategy=merge_strategy, |
|
merge_factor=merge_factor, |
|
checkpoint=use_checkpoint, |
|
use_linear=use_linear_in_transformer, |
|
attn_mode=spatial_transformer_attn_type, |
|
disable_self_attn=disabled_sa, |
|
disable_temporal_crossattention=disable_temporal_crossattention, |
|
max_time_embed_period=max_ddpm_temb_period, |
|
) |
|
|
|
def get_resblock( |
|
merge_factor, |
|
merge_strategy, |
|
video_kernel_size, |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_ch, |
|
dims, |
|
use_checkpoint, |
|
use_scale_shift_norm, |
|
down=False, |
|
up=False, |
|
): |
|
return VideoResBlock( |
|
merge_factor=merge_factor, |
|
merge_strategy=merge_strategy, |
|
video_kernel_size=video_kernel_size, |
|
channels=ch, |
|
emb_channels=time_embed_dim, |
|
dropout=dropout, |
|
out_channels=out_ch, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
down=down, |
|
up=up, |
|
) |
|
|
|
for level, mult in enumerate(channel_mult): |
|
for _ in range(num_res_blocks): |
|
layers = [ |
|
get_resblock( |
|
merge_factor=merge_factor, |
|
merge_strategy=merge_strategy, |
|
video_kernel_size=video_kernel_size, |
|
ch=ch, |
|
time_embed_dim=time_embed_dim, |
|
dropout=dropout, |
|
out_ch=mult * model_channels, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
) |
|
] |
|
ch = mult * model_channels |
|
if ds in attention_resolutions: |
|
if num_head_channels == -1: |
|
dim_head = ch // num_heads |
|
else: |
|
num_heads = ch // num_head_channels |
|
dim_head = num_head_channels |
|
|
|
layers.append( |
|
get_attention_layer( |
|
ch, |
|
num_heads, |
|
dim_head, |
|
depth=transformer_depth[level], |
|
context_dim=context_dim, |
|
use_checkpoint=use_checkpoint, |
|
disabled_sa=False, |
|
) |
|
) |
|
self.input_blocks.append(TimestepEmbedSequential(*layers)) |
|
self._feature_size += ch |
|
input_block_chans.append(ch) |
|
if level != len(channel_mult) - 1: |
|
ds *= 2 |
|
out_ch = ch |
|
self.input_blocks.append( |
|
TimestepEmbedSequential( |
|
get_resblock( |
|
merge_factor=merge_factor, |
|
merge_strategy=merge_strategy, |
|
video_kernel_size=video_kernel_size, |
|
ch=ch, |
|
time_embed_dim=time_embed_dim, |
|
dropout=dropout, |
|
out_ch=out_ch, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
down=True, |
|
) |
|
if resblock_updown |
|
else Downsample( |
|
ch, |
|
conv_resample, |
|
dims=dims, |
|
out_channels=out_ch, |
|
third_down=time_downup, |
|
) |
|
) |
|
) |
|
ch = out_ch |
|
input_block_chans.append(ch) |
|
|
|
self._feature_size += ch |
|
|
|
if num_head_channels == -1: |
|
dim_head = ch // num_heads |
|
else: |
|
num_heads = ch // num_head_channels |
|
dim_head = num_head_channels |
|
|
|
self.middle_block = TimestepEmbedSequential( |
|
get_resblock( |
|
merge_factor=merge_factor, |
|
merge_strategy=merge_strategy, |
|
video_kernel_size=video_kernel_size, |
|
ch=ch, |
|
time_embed_dim=time_embed_dim, |
|
out_ch=None, |
|
dropout=dropout, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
), |
|
get_attention_layer( |
|
ch, |
|
num_heads, |
|
dim_head, |
|
depth=transformer_depth_middle, |
|
context_dim=context_dim, |
|
use_checkpoint=use_checkpoint, |
|
), |
|
get_resblock( |
|
merge_factor=merge_factor, |
|
merge_strategy=merge_strategy, |
|
video_kernel_size=video_kernel_size, |
|
ch=ch, |
|
out_ch=None, |
|
time_embed_dim=time_embed_dim, |
|
dropout=dropout, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
), |
|
) |
|
self._feature_size += ch |
|
|
|
self.output_blocks = nn.ModuleList([]) |
|
for level, mult in list(enumerate(channel_mult))[::-1]: |
|
for i in range(num_res_blocks + 1): |
|
ich = input_block_chans.pop() |
|
layers = [ |
|
get_resblock( |
|
merge_factor=merge_factor, |
|
merge_strategy=merge_strategy, |
|
video_kernel_size=video_kernel_size, |
|
ch=ch + ich, |
|
time_embed_dim=time_embed_dim, |
|
dropout=dropout, |
|
out_ch=model_channels * mult, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
) |
|
] |
|
ch = model_channels * mult |
|
if ds in attention_resolutions: |
|
if num_head_channels == -1: |
|
dim_head = ch // num_heads |
|
else: |
|
num_heads = ch // num_head_channels |
|
dim_head = num_head_channels |
|
|
|
layers.append( |
|
get_attention_layer( |
|
ch, |
|
num_heads, |
|
dim_head, |
|
depth=transformer_depth[level], |
|
context_dim=context_dim, |
|
use_checkpoint=use_checkpoint, |
|
disabled_sa=False, |
|
) |
|
) |
|
if level and i == num_res_blocks: |
|
out_ch = ch |
|
ds //= 2 |
|
layers.append( |
|
get_resblock( |
|
merge_factor=merge_factor, |
|
merge_strategy=merge_strategy, |
|
video_kernel_size=video_kernel_size, |
|
ch=ch, |
|
time_embed_dim=time_embed_dim, |
|
dropout=dropout, |
|
out_ch=out_ch, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
up=True, |
|
) |
|
if resblock_updown |
|
else Upsample( |
|
ch, |
|
conv_resample, |
|
dims=dims, |
|
out_channels=out_ch, |
|
third_up=time_downup, |
|
) |
|
) |
|
|
|
self.output_blocks.append(TimestepEmbedSequential(*layers)) |
|
self._feature_size += ch |
|
|
|
self.out = nn.Sequential( |
|
normalization(ch), |
|
nn.SiLU(), |
|
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), |
|
) |
|
|
|
def forward( |
|
self, |
|
x: th.Tensor, |
|
timesteps: th.Tensor, |
|
context: Optional[th.Tensor] = None, |
|
y: Optional[th.Tensor] = None, |
|
time_context: Optional[th.Tensor] = None, |
|
num_video_frames: Optional[int] = None, |
|
image_only_indicator: Optional[th.Tensor] = None, |
|
): |
|
assert (y is not None) == ( |
|
self.num_classes is not None |
|
), "must specify y if and only if the model is class-conditional -> no, relax this TODO" |
|
hs = [] |
|
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) |
|
emb = self.time_embed(t_emb) |
|
|
|
if self.num_classes is not None: |
|
assert y.shape[0] == x.shape[0] |
|
emb = emb + self.label_emb(y) |
|
|
|
h = x |
|
for module in self.input_blocks: |
|
h = module( |
|
h, |
|
emb, |
|
context=context, |
|
image_only_indicator=image_only_indicator, |
|
time_context=time_context, |
|
num_video_frames=num_video_frames, |
|
) |
|
hs.append(h) |
|
h = self.middle_block( |
|
h, |
|
emb, |
|
context=context, |
|
image_only_indicator=image_only_indicator, |
|
time_context=time_context, |
|
num_video_frames=num_video_frames, |
|
) |
|
for module in self.output_blocks: |
|
h = th.cat([h, hs.pop()], dim=1) |
|
h = module( |
|
h, |
|
emb, |
|
context=context, |
|
image_only_indicator=image_only_indicator, |
|
time_context=time_context, |
|
num_video_frames=num_video_frames, |
|
) |
|
h = h.type(x.dtype) |
|
return self.out(h) |
|
|