from abc import ABC, abstractmethod | |
import torch | |
class DiffusionLossWeighting(ABC): | |
def __call__(self, sigma: torch.Tensor) -> torch.Tensor: | |
pass | |
class UnitWeighting(DiffusionLossWeighting): | |
def __call__(self, sigma: torch.Tensor) -> torch.Tensor: | |
return torch.ones_like(sigma, device=sigma.device) | |
class EDMWeighting(DiffusionLossWeighting): | |
def __init__(self, sigma_data: float = 0.5): | |
self.sigma_data = sigma_data | |
def __call__(self, sigma: torch.Tensor) -> torch.Tensor: | |
return (sigma**2 + self.sigma_data**2) / (sigma * self.sigma_data) ** 2 | |
class VWeighting(EDMWeighting): | |
def __init__(self): | |
super().__init__(sigma_data=1.0) | |
class EpsWeighting(DiffusionLossWeighting): | |
def __call__(self, sigma: torch.Tensor) -> torch.Tensor: | |
return sigma**-2.0 | |