|
from typing import Dict, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from ...util import append_dims, instantiate_from_config |
|
from .denoiser_scaling import DenoiserScaling |
|
from .discretizer import Discretization |
|
|
|
|
|
class Denoiser(nn.Module): |
|
def __init__(self, scaling_config: Dict): |
|
super().__init__() |
|
|
|
self.scaling: DenoiserScaling = instantiate_from_config(scaling_config) |
|
|
|
def possibly_quantize_sigma(self, sigma: torch.Tensor) -> torch.Tensor: |
|
return sigma |
|
|
|
def possibly_quantize_c_noise(self, c_noise: torch.Tensor) -> torch.Tensor: |
|
return c_noise |
|
|
|
def forward( |
|
self, |
|
network: nn.Module, |
|
input: torch.Tensor, |
|
sigma: torch.Tensor, |
|
cond: Dict, |
|
**additional_model_inputs, |
|
) -> torch.Tensor: |
|
sigma = self.possibly_quantize_sigma(sigma) |
|
sigma_shape = sigma.shape |
|
sigma = append_dims(sigma, input.ndim) |
|
c_skip, c_out, c_in, c_noise = self.scaling(sigma) |
|
c_noise = self.possibly_quantize_c_noise(c_noise.reshape(sigma_shape)) |
|
return ( |
|
network(input * c_in, c_noise, cond, **additional_model_inputs) * c_out |
|
+ input * c_skip |
|
) |
|
|
|
|
|
class DiscreteDenoiser(Denoiser): |
|
def __init__( |
|
self, |
|
scaling_config: Dict, |
|
num_idx: int, |
|
discretization_config: Dict, |
|
do_append_zero: bool = False, |
|
quantize_c_noise: bool = True, |
|
flip: bool = True, |
|
): |
|
super().__init__(scaling_config) |
|
self.discretization: Discretization = instantiate_from_config( |
|
discretization_config |
|
) |
|
sigmas = self.discretization(num_idx, do_append_zero=do_append_zero, flip=flip) |
|
self.register_buffer("sigmas", sigmas) |
|
self.quantize_c_noise = quantize_c_noise |
|
self.num_idx = num_idx |
|
|
|
def sigma_to_idx(self, sigma: torch.Tensor) -> torch.Tensor: |
|
dists = sigma - self.sigmas[:, None] |
|
return dists.abs().argmin(dim=0).view(sigma.shape) |
|
|
|
def idx_to_sigma(self, idx: Union[torch.Tensor, int]) -> torch.Tensor: |
|
return self.sigmas[idx] |
|
|
|
def possibly_quantize_sigma(self, sigma: torch.Tensor) -> torch.Tensor: |
|
return self.idx_to_sigma(self.sigma_to_idx(sigma)) |
|
|
|
def possibly_quantize_c_noise(self, c_noise: torch.Tensor) -> torch.Tensor: |
|
if self.quantize_c_noise: |
|
return self.sigma_to_idx(c_noise) |
|
else: |
|
return c_noise |
|
|